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ABSTRACT

Opportunities exist to apply nonlinear filtering
to model-based prognostics in order to provide
a systematic way of dealing with the propa-
gation of system damage at some future time,
whenever imprecise diagnostic information is ob-
tained. Central to the prognostics problem is the
ability to properly capture and manage uncertain-
ties when predicting remaining useful life of a
particular component of interest. The goal of this
paper is to present a foundation for prediction
and filtering of the failure process using nonlinear
prognostic models and exact (finite-dimensional)
filters. Specifically, we consider the use of non-
linear filters to represent the uncertainty distribu-
tions exactly for certain classes of nonlinear sys-
tems, given a statistically-representative process
model of remaining useful life. One such filter,
known as the Beneš filter, is derived in this paper
for a certain class of prognostic process model.
The filter is applied to crack growth data and is
shown to perform reasonably well in the context
of the 1-D hyperbolic model. Although directly
applicable to certain prognostic systems, the tech-
niques descibed provide a theoretical founda-
tion for approximate but less model-restrictive
techniques for dynamic model-based prognostics
such as particle filtering.

1 INTRODUCTION
One of the most important goals of prognostics and
health management (PHM) algorithms is to provide
the end-user with the capability to probabilistically
forecast the future health of a given component so
that changes in operation and condition-based main-
tenance tasks can be planned effectively. Failure prog-
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nostics (forecasting) requires extrapolation into the fu-
ture, and imprecisions in the damage state accumulate
with time, causing uncertainties in the prognostic re-
sult to grow substantially over moderate time intervals.
Therefore it is imperative to represent the prediction
step as accurately as possible by correctly account-
ing for uncertainties the damage state and measure-
ments as well as in the parameters and model structure.
Moreover, when health information is present, it is es-
sential to update the current state based on the avail-
ability of this data in a statistically-meaningful man-
ner. The dynamics of all damage processes are inher-
ently nonlinear process with uncertainties that are of-
ten non-Gaussian, therefore propagating these effects
through time becomes a challenging and error-prone
task. Data-based regression techniques are applica-
ble to many systems, but the form of the regression
curves are quite general, and are not guaranteed to ex-
trapolate well when failure. Dynamic models, on the
other hand, allow a number of systematic tools to be
applied for prediction in the presence of noisy diag-
nostic information, loading profiles, and modeling un-
certainties. The paradigm offers flexibility to be com-
bined with damage-mitigating control systems in order
to extend the remaining useful life. In model-based
prognostics, it is important to employ techniques that
provide a reasonable representation of the prognostic
result over a long prediction horizon in order to reli-
ably determine perform maintenance on a component
based on its current health. Linear filtering techniques,
such as the Kalman filter, do provide one way to solve
the prediction and updating problem exactly, but these
of course do not provide adequate levels of accuracy
when making predictions within a nonlinear modeling
framework. This motivates the exploration of nonlin-
ear methods to perform the prognosis task.

The key elements of the model-based prognostic
problem are illustrated in Fig. 1. Each time measured
data is received, the data is filtered to form a posterior
distribution based on the likelihood formed by the in-
coming data. Afterward, a prediction is performed to
project the state distribution to next time step (or an ar-
bitrary future time step). The recursive computation of
the state’s probability density from a measurement up-
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date step and a prediction step is known as the filtering
problem. The prediction step can be repeated at sev-
eral points in time until a critical threshold is reached
at which logistical or maintenance actions are ordered;
this is a long-term prediction process. The poten-
tial danger with any non-deterministic prediction tech-
nique is that any errors or approximations in the initial
probability density function (pdf), however small, can
accumulate and grow over certain time horizon, and
can severely distort the probability distribution over a
long time frame. Hence, the problems of uncertainty
representation and uncertainty management become
improtant problems. Here, the uncertainty represen-
tation problem focuses on how well an algorithm can
propagate the true probability distribution of remain-
ing useful life (RUL) through time. In contrast, the un-
certainty management problem is focused on how one
can extract the most information from available mea-
surements to reduce the system uncertainties. Clearly,
both of these problems benefit from consideration of
the wealth of dynamic/stochastic systems approaches
in existence to treat such problems. The purpose of this
paper is therefore to examine the uncertainty represen-
tation problem by exploring exact (finite-dimensional)
nonlinear filtering strategies to reduce the approxima-
tions made when forecating the states. By “exact,” we
mean that the uncertainty distributions in the damage
profile or RUL can be represented exactly. It should
be noted that the solution is only exact in the context
of the chosen model, which may or may not provide a
good representation of reality.

Figure 1: Concept of process model-based prognos-
tics.

Sample-based filtering techniques such as sequen-
tial Monte Carlo filters (a.k.a. particle filters) have
increasingly been applied to the prognostics problem
(Orchard et al., 2008), (Goebel et al., 2008). Parti-
cle filters are attractive to practitioners in various disci-
plines because they offer a unified means for the non-
linear filtering problem for general classes and struc-
tures of nonlinear systems excited by non-Gaussian
noise. These methods are extremely powerful tools
when used within the filtering and target tracking dis-
ciplines, but deserves some foundational development
in order to gain confidence as a viable tool in the prog-
nostics arena. Particle filters, when applied to the

prognostic problem, must be tuned to reduce the ef-
fects on sample impoverishment and loss of prognos-
tic fidelity. There are few rules governing the resam-
pling step in the absence of measurements, so past
work has focused on establishing design considera-
tions, such as resampling methods and kernel mod-
ifications, to mitigate these effects (Orchard et al.,
2008). This motivates a sound theoretical basis for
model-based prognostics and the exploration of exact
filtering techniques to properly represent and manage
the uncertainty in the prognostic horizon. It is im-
portant to understand which applications such filters
are and are not appropriate by framing the develop-
ment on an actual system. For example, exact fil-
ters can certainly be used to calibrate and tune parti-
cle filters by minimizing the “predictive erosion” with
time due to the sample-based approximation when ob-
taining long-term predictions. Such a statistically-
grounded theory is especially important since it is ex-
tremely costly and time consuming to validate such
techniques with statistically-significant ground truth
failure data. We explore one such filter in this pa-
per, the Beneš filter, where exact solutions are ob-
tained provided a reasonable nonlinear model of the
physics-of-failure phenomenon exists that satisfies the
Beneš condition (Beneš, 1981). The key to this fil-
tering problem is in the exact solution to the Fokker-
Planck-Kolmogorov equation, which provides a com-
plete stochastic description of the prediction process.
We then apply the technique to a gear carrier plate ex-
ample problem, which exhibits nonlinear failure pro-
gression characteristics. It is important to note that the
proposed methods are seen as complementary to ap-
proximation techniques, and therefore a direct compar-
ison between finite-dimensional filters sample-based
filters is beyond the scope of this paper.

The remainder of the paper is structured as follows.
Section 2 outlines some preliminaries of the nonlin-
ear filtering problem, including the problem formula-
tion, assumptions, formulation of the Fokker-Planck-
Kolmogorov partial differential equation (PDE), and
the formulation of Bayesian updating for the compu-
tation of conditional densities. Section 3 details the
finite-dimensional filtering strategy studied herein that
admits closed-form solutions to the Fokker-Planck-
Kolmogorov equation. Section 4 treats the necessary
step of model and parameter selection, both for cali-
bration and online model adaptation to incoming data.
Section 5 outlines an example gear carrier plate prob-
lem to demonstrate this unified framework for prog-
nostics evaluated in the context of established perfor-
mance metrics.

2 PROBLEM FORMULATION

To set up the exact filtering problem, it is necessary
to introduce the form of the process and measure-
ment equations considered and to describe the general
methodology for solving the filtering problem of such
processes. From there, we can proceed to an exact so-
lution method for a specific class of models, based on
the underpinning assumption that a reasonable prog-
nostic model exists that belongs to this class.
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2.1 Diffusion Model
The dynamic system under consideration is known as a
drift/diffusion process, which provides a general prob-
lem set-up for many filtering problems. For x ∈ Rn,
the system of interest is written:

dx(t) = f(x, t)dt+ g(x, t)dW (t) (1)

where f(x, t) is the process equation, g(x, t) is the dif-
fusion term, {W (t)}, t > 0 is a Wiener process. The
physical process is often represented as the drift term

D(x, t) = f(x, t) +
1
2
∂g(x, t)
∂x

Qg(x, t) (2)

where the process noise generated from {W (t)} is
Gaussian with covariance Q. Note that the drift equa-
tion is the same as the process equation when the dif-
fusion g(x, t) is constant.

For the exact filtering problem, the diffusion process
in Eq. (1) is observed through the measurement equa-
tion:

y(t) = H(t)x(t) + v(t) (3)

where the underlying state x represents the system
damage and the output y is the measured variable or
diagnostic feature. Here, v(t) is a white noise pro-
cess with covariance R that characterizes the uncer-
tainty in how well the diagnostic result correlates to
actual damage as well as the uncertainty in the mea-
surement or feature. The process noise w(t) generated
byW (t) captures any additive uncertainties in the pro-
cess model, due to parameters, structure or unmodeled
dynamics.1

2.2 The Fokker-Planck-Kolmogorov Equation
The conditional probability density function may
be obtained by solving a special stochastic partial
differential equation known as the Fokker-Planck-
Kolmogorov equation (FPKE). The FPKE has been
well-studied and, in many cases, closed form solutions
exist. Recently, there has been much interest in solving
these equations both for transient and stationary so-
lutions to chaotic dynamical systems (Paola and Sofi,
2002), (Wang and Zhang, 2000), (Fuller, 1969). In
some finite-dimensional filters, the unnormalized pdf
is obtained by solution to the Zakai equation, (Zakai,
1969) a more general form of the FPKE, the PDE en-
compasses a description of both the prediction and fil-
tering problem. Since we apply the technique by Mit-
ter (Mitter, 1983) and Daum (Daum, 1987) to separate
the prediction part from the filtering part, the focus is
on solving the FPKE directly for the pdf p(x, t), which
is described by the forward generator

∂

∂t
p(x, t) = L [p(x, t)] (4)

1Note that the system is posed in continuous time, which
does not always satisfy prognostic models that are deter-
mined by cycle counts or discrete events. Naturally, one
may use approximate discretization methods to transform the
models into this form, without appreciable loss of fidelity.

with

L(·) = −
n∑

i=1

∂

∂xi
[Ji(x, t)(·)]

+
n∑

i=1

n∑
j=1

∂2

∂xi∂xj
[Kij(x, t)(·)] (5)

and

J(x, t) = f(x, t) +
1
2
∂g(x, t)
∂x

Qg(x, t) (6)

K(x, t) =
1
2
g(x, t)QgT (x, t) (7)

In the FPKE, Eq. (6) is known as the drift term and
Eq. (7) is known as the diffusion term.

Direct solutions to the FPKE include exact methods,
approximate numerical methods (Galerkin projection,
finite element analysis methods), and sample-based
methods (Monte-Carlo methods). Numerical meth-
ods suffer greatly from the curse of dimensionality,
but since prognostics problems are rarely required to
be implemented online, these methods still hold merit.
The remainder of this paper focuses on an exact special
case solution to the FPKE, known as the Beneš filter.

3 EXACT FILTERING AND PREDICTION
Finite-dimensional filters where exact solutions to the
FPKE have been discovered are rare, but those that
exist are nonetheless applicable to realistic engineer-
ing problems. Exact filters referred to as “finite-
dimensional” due to the fact that, as measurements ar-
rive, the dimension of the filter remains finite even as
more data enters. The Beneš filter (Beneš, 1981) is
one example of a finite-dimensional filter whose con-
ditional pdf is taken from the exponential family. An-
other notable exact filter is the Daum filter, (Daum,
1986) where the model is generalized to more com-
pletely include the Beneš filter and Kalman filter.

The main premise of this paper is that, if a rea-
sonable failure progression model exists that yields an
analytical solution to the measurement updating and
prediction problem, then we can avoid using sample-
based filtering methods to perform prognostics. In
the Beneš filter, the conditional pdf can be solved ex-
actly if a nonlinear process function f(x, t) satisfies
the Beneš condition

Tr [∇xf ] + fT f = xTAx+ βTx+ γ (8)

whereA, β and γ are of appropriate dimension and we
assume that f(x, t) is Lipschitz. Note that linear func-
tions of the form f(x, t) = Ax satisfy the condition,
as do certain classes of nonlinear functions.

If a system is found that satisfies Eq. (8), then the
solution always satisfies the well-known Generalized
Fisher-Darmois-Koopman-Pitman Theorem (provided
without proof):
Theorem 3.1. Generalized FDKP Theorem (Daum,
1987) Given the nonlinear system of Eqs. (1) and
(3), where x(t) has nowhere vanishing unconditional
probability density p(x, t) and given the process equa-
tion satisfying Eq. (8) and some RM -valued sufficient

3



Annual Conference of the Prognostics and Health Management Society, 2009

statistic Ψ(t), the unnormalized probability density is
given by

p(x, t|Yk) = ψ(x, t) exp
[
θT (x, t)Ψ(t)

]
(9)

which belongs to the exponential family. Here, Yk =
{y0, y1, . . . , yk} is the set of measurements up to and
including time k.

In short, this theorem states that the exponential
family is the only nonvanishing family of distributions
where the dimension of the sufficient statistic remains
bounded as the sample size increases. Moreover, the
estimation problem is separable into the prediction part
to determine both the density ψ(x, t) and the parame-
ter vector θ(x, t), which may be computed offline, and
the update part, which is computed online.

If we let F (x) =
∫ x

0
f(s)ds, then the conditional

probability density function of Eq. (9) is expressed as

p(x, t|Yk) = exp
[
F (x)− 1

2
(x−m(t))T

·P−1(t)(x−m(t))
]

= ψ(x, t) exp
[
−1

2
(x−m(t))T

·P−1(t)(x−m(t))
]

(10)

where m(t) and P (t) are the two sufficient statistics
required to parameterize the exponential distribution;
it is important to point out that these are not neces-
sarily the mean and covariance. Note that the predic-
tion and measurement update parts are separable and
hence computed independently of one another, then
combined to form the unnormalized pdf. Within this
framework, the solution to the FPKE (assuming g con-
stant with respect to x)

∂ψ(x, t)
∂t

= −∂ψ(x, t)
∂x

f − ψ(x, t)Tr
(
∂f

∂x

)
+

1
2

Tr
(
g(t)Qg(t)T ∂

2ψ(x, t)
∂xxT

)
(11)

is given by
ψ(x, t) = exp(F (x)) (12)

The filtering problem is achieved through the recursive
relationships:

mk = m̄k + PkH
T
k R
−1
k (yk −Hkm̄k) (13)

Pk = P̄k − P̄kH
T
k (HkP̄kH

T
k +Rk)−1HkP̄k (14)

where m̄k and P̄k are solved through the following or-
dinary differential equations:

dm̄(t)
dt

= −2P̄ (t)Am̄(t)− P̄ (t)β (15)

dP̄ (t)
dt

= −2P̄ (t)AP̄ (t) +Q(t) (16)

In this filter, the conditional pdf comes from the ex-
ponential class of distributions with the two sufficient
statistics mk and Pk.

3.1 Beneš Filter: Scalar Case
In this section, we examine the special case where the
process equation is described by a scalar state. It turns
out that, if A = β = 0, then the Beneš condition of
Eq. (8) is satisfied for the following forms of the pro-
cess equation:

f(x) =
ex − ce−x

ex + ce−x
(17)

where c is an arbitrary constant. If, in addition, we set
γ = 1, then f(x) = tanh(x). The form in Eq. (17) is
referred to as the hyperbolic process.

For a scalar hyperbolic process where only pre-
diction is considered (by removing the innovations
terms), Eqs. (13)–(16) reduce to:

m̄k = mk (18)

P̄k = Pk (19)

and
dm̄(t)
dt

= 0 (20)

dP̄ (t)
dt

= Q (21)

which yields m̄k = m̄0 and P̄k = Q(tk−t0)+P̄0. The
subscript “0” represents the initial value. The solution
to the FPKE is

ψ(x, t) =
c1
2

(ex + ce−x) (22)

where c1 is an arbitrary constant. Substitution of
Eq. (22) into Eq. (10) results in the conditional pdf

p(xk|x0) =
1
2

(exk + ce−xk) exp
[
−1

2
(xk −m0)2

Q(tk − t0) + P̄0

]
=

1
2

exp
[
xk −

1
2

(xk −m0)2

Q(tk − t0) + P̄0

]
+
c

2
exp

[
−xk −

1
2

(xk −m0)2

Q(tk − t0) + P̄0

]
(23)

This equation captures the pdf evolution of the state
based only on the initial pdf described by m0 and P0.
This prediction process is adopted when forecasting
the damage state at future time instants where no mea-
surements are available.

For the case where diagnostic updates are available,
we pose the problem as a combined prediction/filtering
problem. In this case, we assume that the state is mea-
sured directly (Hk = 1). Then, Eqs. (13) and (14) are
represented by

mk = m̄k + Pk(yk − m̄k)/R (24)

Pk = P̄k − P̄ 2
k /(P̄k +R) (25)

and
dm̄(t)
dt

= 0 (26)

dP̄ (t)
dt

= Q (27)
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where m̄k = m̄k−1 = xk|k and P̄k = QT + P̄k−1, for
a uniform time step T = tk − tk−1. In this case, the
conditional pdf is given by

p(xk|Yk) =
1
2

(exk + ce−xk) exp
[
−1

2
(xk −mk)2

Pk

]
=

1
2

exp
[
xk −

1
2

(xk −mk)2

Pk

]
+
c

2
exp

[
−xk −

1
2

(xk −mk)2

Pk

]
(28)

where the solution ψ(x, t) is identical to the one in
Eq. (22). By including measurements in the problem
formulation, the distribution is of the same type as in
the prediction-only case, with the exception that the
statistical moments now include measurements in their
propagation formulas.

4 MODEL STRUCTURE SELECTION AND
PARAMETER IDENTIFICATION

Identification of an appropriate dynamic model is a
necessary (and sometimes overlooked) step in the de-
velopment of an adequate prognostic algorithm. In
the field of prognostics, one may be confronted with
a choice between physics-of-failure models and data-
driven models. In the classical sense, data-driven mod-
els (often synonomous with data regression) are usu-
ally employed when a population of data exists and
physics-of-failure is either unknown or not consid-
ered. Conversely, dynamic system models are used
only if one has knowledge of the physics-of-failure
and are used less often when data exists. Physics-
of-failure mechanisms that describe transition to fail-
ure are widespread to different applications, but these
are oftentimes not appropriate for a given piece of
equipment under question. Such models include the
Paris Law for fracture mechanics, Arrhenius models
for thermal degradation, and exponential models for
battery deterioration. In many realistic complex sys-
tems, the one failure mode targeted by the system mod-
els are often only a subset of the actual failure mode
of the component. It is sometimes appropriate to em-
ploy semi-empirical models to effectively blend the
two sources in a statistically meaningful manner, how-
ever, it is rare to have a physical model match the hy-
perbolic model.

4.1 Offline Model Selection and Calibration
Before employing an exact filter to the prognostic
model, the hyperbolic model structure and model pa-
rameters should be deemed sufficient to describe cer-
tain failure physics phenomena (with respect to some
“benchmark” physics-based model) or capture an en-
emble of damage progression data realizations. In-
deed, it is necessary to qualify if a model of the form
in Eq. (17) is suited (in a statistical sense) for the prog-
nostics task. There is tremendous volume of literature
that treat model structure selection and model calibra-
tion (see, for example (Chipman et al., 2001)).

For a finite set of K modelsM = {M1, . . . ,MK},
the model selection proceeds by determining the
model that best fits statistically-significant historical

run-to-failure data Y . The posterior is determined by
application of Bayes rule

p(Mk|Y ) =
p(Y |Mk)p(Mk)∑
k p(Y |Mk)p(Mk)

(29)

where the marginal likelihood of model Mk is

p(Y |Mk) =
∫
p(Y |θk,Mk)p(θk|Mk)dθk (30)

The posterior is dependent on the model parameters
θk as well as the model Mk. Of course, the major con-
sideration in determining the posterior is in arriving at
a suitable set of priors p(Mk) and p(θk|Mk). Since
the parameters and model are often high-dimensional,
posterior calculation takes place using numerical tech-
niques such as Markov Chain Monte Carlo (MCMC)
using noninformative priors.

4.2 Online Learning
When the model and parameters obtained from the
offline learning process are now applied to a nonlin-
ear filter, the parameters may be tuned to more accu-
rately match the unit under question, given data ac-
quired from that unit. Online learning is defined here
as any adaptation process to immediately determine
model parameters specific to a given unit each time
diagnostic data is collected on that unit.

The online learning process is itself a stochastic pro-
cess, and we therefore employ an extended Kalman fil-
ter parameter update scheme to determine the expected
value of ck when used in conjunction with the Beneš
filter kernel. The parameter learning can be incorpo-
rated within the framework of the exact filter, but is
separated in this work in order to illustrate that the up-
dating is an outer loop process on the state estimation.
Taking zk = [xk ck]T , the prediction step is:

ẑk+1|k = Φkẑk|k (31)

P̂k+1|k = ΦkP̂k|kΦT
k + Q̄k (32)

and the filtering process is described by:
Kk = Pk|k−1H

T
k (HkPk|k−1H

T
k + R̄k)−1 (33)

ẑk|k = ẑk|k−1 +Kk(yk −Hkẑk|k−1) (34)

P̂k|k = (I −KkHk)P̂k|k−1 (35)
where

Φk =

 1 + T 2
(

1− exk−cke−xk

exk +cke−xk

)2

− 2exk e−xk

(exk +cke−xk )2

0 1


(36)

Here, Q̄k and R̄k correspond to user-definable pro-
cess and measurement noise intensities corresponding
to the learning algorithm. Essentially, this filter allows
computation of the variable ck with time.

5 RESULTS
In this section, we present some relevant results for the
Beneš filter as an application as a prognostic algorithm
to predict damage in helicopter planetary gear carrier
plate. We first demonstrate the important result that
the proposed model is suitable for representing exist-
ing run-to-failure datasets, then we apply the Beneš
filter in tandem with the EKF-based online parameter
learning process to predict remaining useful life.

5
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5.1 Crack Propagation Model
The model under consideration in this study is a UH-
60 gear carrier plate model from (Orchard et al., 2008)
The model assumes the form
xs(k + 1) = F (xs(k), xp(k), u(k), k) + ω1(k)

(37)
xp(k + 1) = xp(k) + ω2(k) (38)

y(k) = G(xs(k), xp(k), u(k), k) + v(k) (39)
where xs is the fault dimension, xp is the parameter
vector, ω1 and ω2 are the process noise terms and v
is the measurement noise. The process equation used
here is
F (x(k)) = xs(k)+3×10−4(0.05+0.1xp(k))3 (40)

When fitted with the hyperbolic process of Eq. (17)
to the above system, the model agreement is quite fa-
vorable, as verified by the posterior pdf value com-
puted by the model selection process. Here, the state
x represents the crack length. Application of max-
imum likelihood estimation (MLE) to three run-to-
failure datasets produces an expected value of the c
parameter in the process equation (Eq. (17)) of 1.16 at
a variance of 0.0962. Diagnostic measurements are as-
sumed to take place once every loading cycle and we
assume that the crack length is measured, i.e. yk = xk.
When measurements are available, Eqs. (24) - (28) are
used to employ the exact filter. To obtain the prognos-
tic forecast, Eqs. (18) - (23) are used to determine the
damage estimate at future time intervals.

5.2 RUL Prediction of a Gear Carrier Plate
In this work, two parameter adaptation cases were
tested: the first is one where the parameters are
updated aggressively (by using a large process-to-
measurement noise ratio), while the other is one where
the parameters are more slowly updated (by using a
small ratio). Figure 2 shows the result of both cases.
Noting that the parameter update process modifies the
Bayesian calibration scheme used to parameterize the
selected model, we seek an update process that has a
gradual impact on the prognostic model. In the first
case, the parameter is clearly heavily influenced by the
measurements and drifts by about 15% over 1000 cy-
cles. In contrast, the variation is nearly 2.5% over the
same range for the slow learning case.

Choosing the slow parameter learning case, three
snapshots of the prognostic result are shown in Fig. 3.
It is evident that the system is, in fact, nonlinear since
the trajectory rises with an almost linear slope, then
later exhibits a steeper exponential profile. In each
figure, the measured fault dimension is shown in blue
and the 95% two-sided confidence interval is shown
as the red line. The pdfs displayed on both axes are
unnormalized. For the crack growth data, the hazard
line is chosen to be 2.9 units and the true end-of-life
(EOL) is 840 cycles. Figure 3(a) shows the response
at 300 cycles. Clearly, the data lies within the confi-
dence interval for a great majority of the dataset. Fig-
ure 3(b) shows the prognostic result at 740 cycles, just
before a sharp discontinuity appears in the fault di-
mension (that is un-modeled by both the polynomial
model and the hyperbolic model). This jump is a phe-
nomenon that appears when the crack reaches a critical

0 100 200 300 400 500 600 700 800

1.16

1.18

1.2

1.22

1.24

1.26

1.28

1.3

1.32

1.34

cycle number

c 
pa

ra
m

et
er

aggressive parameter learning

slow parameter learning

Figure 2: Parameter adaptation.

length, and is fairly repeatable. Since this is an un-
modeled effect, the algorithm is not able to predict the
jump, as is evident in the prediction. By cycle number
760 (Fig. 3(c)), however, the filtering process adjusts
the prediction and the predicted remaining useful life
(RUL) is again close to the actual EOL.

To quantify the performance of the filter, prognos-
tic performance metrics were computed using a sin-
gle evaluation dataset, following (Saxena et al., 2009).
This was done for both the aggressive and slow param-
eter learning cases. The relative accuracy is shown in
Fig. 4. This is computed by

RA = 1− |RUL
∗(λ)−RUL(λ)|
RUL∗(λ)

(41)

where λ is the time instant at which the prediction
is made and “∗” denotes the ground truth. Clearly,
the two cases diverge before the jump in the dataset.
The aggressive learning process clearly aggrevates the
prognostic result, because the parameter adaptation
tends to over-adjust the prognostic model in response
to an ever-accumulating volume of unit-specific data.
The α–λ performance is computed by
(1− α)RUL∗(λ) ≤ RUL(λ) ≤ (1 + α)RUL∗(λ)

(42)
The α–λ performance is shown in Fig. 5 using an

accuracy modifier α of 0.25. Clearly, these perfor-
mance trends confirm the observations made in the rel-
ative accuracy evaluation, namely that the prognostic
results for the slow learning case lie closer to the RUL
cone than the results obtained for the case where ag-
gressive learning is employed.

6 CONCLUSION
We have shown a promising theoretical foundation for
an exact finite-dimensional nonlinear filter as a use-
ful algorithm for practical prognostic problems. We
have proposed an exact solution to the prognostic un-
certainty representation, in the form of a Beneš filter,
to underscore the utility that such an exact formula-
tion has on the quality of the RUL prediction. We have
also presented a Bayesian scheme that qualify the hy-
perbolic process model for application to a gear car-
rier plate example problem. When applying an on-line
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Figure 3: Benes filter results for the slow parameter
adaptation scenario.
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Figure 4: Relative accuracy performance metric.
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parameter learning scheme, the ability of the system
to capture RUL in long-horizon predictions is remark-
ably promising. In addition to the possessing the un-
certainty representation attributes of an exact nonlin-
ear filter, the technique represents an improvement in
computational efficiency over sample-based methods
as well.

This paper only presents a small fraction of the po-
tential solution methods available for application to
process model-based prognostics. Future work will
include applying the technique to other types of prog-
nostic models for other systems (e.g., batteries, elec-
tromechanical actuators (EMA), etc.), and discovering
a greater variety of models that satisfy the Beneš con-
dition to apply model selection. A more complete,
statistically-representative characterization of the al-
gorithm’s ability to match the RUL distribution as
compared to a population of unit RULs is required.
Refining the online adaptation process to unify the fil-
tering and parameter updating, and expanding to incor-
porate online model structure or parametric uncertain-
ties, is left as future work.
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