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ABSTRACT 

Prognostics has the potential to be very valuable 
in many industries.  This is especially the case in 
the petroleum industry where the costs of tool 
failure are extremely high and continue to 
increase.  Previous attempts have been made to 
predict the remaining useful life of drilling tools.  
While the developed methods were shown to be 
able to accurately predict the remaining useful 
life, the data requirement was such that they had 
limited or no viability in "real world" operations.  
This paper builds on previous work in this area 
by developing a new life consumption estimation 
model that has been specifically designed to 
ensure that it can be viable in the "real world".  
The developed model was shown to be able to 
estimate the life consumed of an individual 
drilling tool to within 4-12% with uncertainties 
of ±15-35%.* 

1. INTRODUCTION 

In the petroleum industry, drilling tool reliability is critical 
for performance.  With rig costs reaching $350,000 a day 
(Wand et al., 2006) and increasing drilling profile 
difficulty, there is an ever-increasing need for more 
reliable tools.  Furthermore, recent research by Brehme 
and Travis (2008) has found that tool unreliability has 
produced tool failure rates on the order of 33%, which 
increases the urgency for the development of new 
processes and methods to support reliability improvement. 

One way to improve reliability is to develop a 
prognostic model that is able to accurately estimate tool 
weariness such that it can be removed from service prior to 
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failure.  Furthermore, to be useful in the drilling 
industry, a method needs to be developed that 
readily fits into established operational practices 
such that it has a higher chance of being realistically 
used in day-to-day operations.  This paper describes 
and demonstrates a new life consumption estimation 
algorithm that meets these requirements.  This paper 
will:  
 

• introduce advanced drilling systems, 
• describe the life consumption model, and 
• present results of a feasibility study. 

2. ADVANCED DRILLING SYSTEMS 

Modern drilling systems can be thought of as being 
composed of two major components: 
 

1. drill pipe and the 
2. bottom hole assembly (BHA). 

 
The function of the drill pipe is to maintain hole 
integrity and connect the surface to the BHA.  The 
BHA is the “heart” of the drilling system and is a 
collection of specialized tools that provide different 
sets of functionality to enhance the performance and 
efficiency of the drilling process.  In a typical 
directional drilling application, the BHA is 
composed of: 
 

• drill bit, 
• steering tool, 
• power generation tool, 
• communication tool, and  
• formation evaluation tool(s). 

 
At this point, it is important to note that modern 
BHAs are massive systems and are exposed to 
extremely stressful environments.  As depicted in 
Figure 1, modern BHAs: 
 

• have lengths on the order of 50 ft,  
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• can drill to depths more than seven miles below 
the earth’s surface (ExxonMobil 2007), and 

• are capable of producing highly complex well 
profiles. 

 
One of the most critical tools is the steering system 

(Wand et al., 2006; Brehme and Travis, 2008).  For this 
reason, it was selected as the first target for the 
development of a prognostic system.  In the present 
application, the steering system is composed of three 
hydraulic ribs that extend to “push” the BHA in the 
desired direction. 

Current practices have tool components that are 
deployed in different wells across its life between 
maintenance.  Keeping track of data for an individual tool 
and/or its components over its life is very difficult.  A 
method is needed that allows us to make an assessment of 
consumed life for an arbitrary run in that device's history.  
This way, we only need to carry a single number along 
with the device and thereby make tool weariness 
assessment practical. 

3. LIFE CONSUMPTION ESTIMATION 

This work is not the first step to try to develop a 
prognostic model for drilling tools (Hines and Garvey, 
2008; Garvey et al. 2009).  The model that was developed 
was referred to as the path classification and estimation 
(PACE) model.  While the PACE was demonstrated to be 
able to produce accurate remaining useful life (RUL) 
estimates, several factors limited its applicability to 
deployed tools.  This section will describe the initial 
PACE model, point out its short comings, and then discuss 
how it was modified to address its problems. 

3.1 Initial PACE Model 

The initial PACE model can be most easily understood by 
considering the problem outlined in Figure 2.  Here, we 
have functional approximations of example cumulative 
stresses, Ui(t), for devices until failure at time Ti.  We also 
have the observed stress of another device at time t*, 
denoted by u(t*). 

In the original formulation of the PACE, the 
remaining useful life of the new device is estimated 
according to the following three step process: 
 

1. calculate expected stresses and RULs,  
2. classify the stress according to expected values, 

and 
3. estimate the RUL. 

 
Let's now step through this process using the example 
presented in Figure 2. 

The first step in the process is to calculate expected 
cumulative stresses and RULs had the device been 
progressing along each of the four example paths.  To 
obtain the expected stresses, we evaluate the functional 
approximations at time t*.  To obtain the expected RULs 
for each of the example paths, we subtract the time t* from 
each of the failure times.  The results of these operations 
are the following vectors. 
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Here, fi( t*, θi ) is the functional approximation, θi 
are the regressed parameters, and Ti is the observed 
failure time of the ith path. 

What these vectors tell us is that had we been 
progressing along each of the example paths, then at 
time t*, we would expect to have the calculated 
stresses and remaining lifetimes. 
 

 
Figure 1. Modern BHAs (a) have typical lengths of 
50 ft, (b) can drill to depths greater than the height 
of Mt. Everest, and (c) are able to produce complex 
well geometries comparable to modern cities such as 
Houston, TX. 
 

 
Figure 2. Functional approximations and failure 
times of historical and example cumulative device 
stresses. 
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Now that we have exemplar stresses and lifetimes, we 
are ready to classify the observed stress according to the 
examples.  To accomplish this, the Gaussian kernel 
function is used (Fan and Gijbels, 1996): 
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Here, di is the Euclidean distance of the observed stress 
from the ith expected stress: 

[ ]2*)()*,( tutfd iii −= θ                         (3) 

Additionally, h is the kernel bandwidth, which controls 
how close the stress needs to be to the exemplar stress to 
be deemed similar and therefore receive large weights, wi.  
At this point, we have a vector of weights, w, whose 
elements indicate how similar the observed stress is to the 
expected stresses. 

The final step in the initial PACE model is to use the 
results of the classification to estimate the RUL.  This is 
accomplished by calculating a weighted average of the 
expected RULs where the weights are the similarities of 
the observed stress, u(t*), to the expected stresses.  For our 
example, the RUL can be estimated according to the 
following equation. 
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3.2 Shortcomings of the Initial PACE Model 

While the initial PACE was demonstrated to produce 
accurate RUL estimates, its incorporation into daily 
operations is limited.  The reason for this is that in order to 
calculate the RUL, we need to know the cumulative stress 
that a particular device has been exposed to for a given 
time in its history.  In other words, we need all of the stress 
data for a particular tool beginning after the last significant 
maintenance. 

At first glance, this requirement doesn't seem that 
demanding, but for current operations the infrastructure to 
autonomously capture and log this data is not in place.  
Furthermore, even if the infrastructure was in place, the 
data requirement significantly increases the complexity of 
the analysis and thereby limits its use in the "real world". 

For a prognostic algorithm to be viable, it needs to be 
able to analyze segments of data and produce a metric that 
can be easily communicated and compounded to assess the 
health of a device.  To accomplish this goal, the initial 
PACE was adapted to analyze a particular segment of data 
to produce a life consumption estimate.  This life 
consumption estimate can then be easily passed along and 
compounded to calculate the total life consumption of the 
tool at any given time.  In its adapted form, to estimate the 
total life consumed of a particular device only the stress 
data from the latest deployment and the running life 
consumption total is needed.  By simplifying the data 
requirements, we are able to produce a model that is more 
viable in "real world" operations. 

3.3 Modified PACE Model 

To begin, we are going to shift our previously used 
problem statement.  Rather than ask the question, 
“Can we estimate the remaining useful life?”  We’re 
going to ask, “Can we estimate the consumed life?”  
The reason that we make this shift is that if we can 
estimate the consumed life in an individual run, then 
the process of estimating the total consumed life is 
simply a matter of accumulating the consumed lives 
of the previous runs.  In other words, to assess the 
health of an individual tool we only need to carry 
around a handful of numbers and not the stress data 
for the individual tool.  Let’s now take a look at how 
we are going to do this. 

While we’re asking a fundamentally different 
question, we can still use the PACE framework.  
Mainly, we are still going to classify the path and 
then use the result of this classification to make an 
estimate of the consumed life.  The main difference 
is that instead of calculating the expected stresses 
and expected remaining lives, we calculate the 
expected life consumptions and the observed 
"shape" of the stress accumulation.  Let's step 
through our hypothetical example once more, using 
the modified PACE model. 

The first step in the process is to create 
exemplar memory vectors of the "shapes" of the 
stress accumulation and the corresponding life 
consumption fractions at time t*.  To create the 
vector of "shapes", we simply concatenate the 
regression parameters of the functional 
approximations.  To create the vector of expected 
life consumptions, we simply divide the current time 
t* by each of the failure times. 
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What these vectors tell us, is that had we been 
absorbing stress at a rate that is characterized by the 
example history's shape, we would expect to have 
consumed t* / Ti of its life at time t*. 

Before we can classify the current stress 
accumulation according to the expected values, we 
need to characterize the accumulation given its 
history for the current use.  For the current use, let's 
suppose that we have the following sequence of 
observations: 
 

{ u(t1), u(t2), u(t3),…, u(t*) }                    (6) 
 
We can then use regression to approximate the 
above sequence of observations by a function. 

)ˆ,()( θtftu ≈                                            (7) 

We are now ready to classify the device stress 
accumulation according to the expected 
accumulations.  To do this we use Eq. 2, with the 
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exception that the distance is now the Euclidean distance 
of the regressed parameter to the expected parameter had 
the device been accumulating stress in a similar manner as 
the example history.  What the distances tell us, are how 
different the "shape" of the stress accumulation is from the 
examples. 
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Here, p is the number of parameters in the regressed 
function.  As with the initial PACE, the distances are 
converted to similarities or weights via Eq. 2. 

We can finally calculate the life consumption estimate 
by calculating a weighted average of the expected life 
consumptions using the similarities of the accumulation to 
the expected accumulations as weighting parameters. 
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While the structure of the modified PACE is not 
significantly different than its original incarnation, it does 
tackle the prognostics problem in such a way that should 
increase its viability in "real world" operations.  The next 
section will demonstrate the modified PACE using data 
collected from tools that were operated worldwide. 

4. RESULTS 

Operational data was collected from a rotary steering 
system (RSS) for use in this study.  The RSS was selected 
since it has the largest impact on BHA reliability (Wand et 
al., 2006).  Lateral vibration data was collected from the 
operational data between the last significant maintenance 
until tool failure.  The vibration data was used to create 
stress paths by calculating a running sum of the vibration. 

Before continuing, let’s take a look at an example 
vibration signal and see how it is used to create a 
cumulative stress path.  An example of the lateral vibration 
over the entire history of a tool is presented in the top chart 
of Figure 3.  The cumulative sum of the lateral vibration is 
then calculated to generate the accumulated stress path 
presented in the lower plot of Figure 3.  Notice that the 
lateral vibration hovers consistently at values around 2 Gs 
(sharp drops are instances where drilling is halted).  This 
translates to a linear stress path over the history of the tool.  
The slope of the path will be seen to be very important in 
characterizing stress accumulation. 

Before the modified PACE model was trained, 
vibration data was collected from tools beginning at the 
time at which they received a specific level of maintenance 
until they either received additional maintenance or failed.  
The resulting stress paths collected from these runs are 
presented in Figure 4.  For this work, 262 histories of 
unfailed (blue) and 21 histories of failed (red) tools were 
created. 
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Figure 3. Example of lateral vibration data (top) and 
calculated accumulated stresses (bottom). 
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Figure 4. Cumulative stress paths for unfailed (blue) 
and failed (red) tools. 
 

One feature that is readily apparent from the 
curve data is that there is a consistent lumping of the 
failed tools along paths with slopes that are high 
relative to most of the unfailed paths.  This is 
corroborated by the fitted statistical distributions of 
the slopes presented in Figure 5.  While the 
distributions are not completely separable, we still 
have a consistent indication that the rate at which 
the tool absorbs vibration is helpful for inferring its 
useful life. 
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Figure 5. Fitted statistical distributions of unfailed (blue) 
and failed (red) slopes of the cumulative stress path. 

 
The modified PACE model was trained on a sample 

of 18 of the failed paths and 3 exemplary unfailed paths.  
The reason for the use of unfailed paths in the training set 
can be seen in Figure 4.  Here, we can see that the failed 
paths have a consistently high slope and therefore do not 
completely bound the overall data space.  In other words, 
the PACE needs to have the capability to estimate the life 
consumption when the slopes fall outside the range of the 
failed runs.  Furthermore, the unfailed paths were selected 
on the basis that the tool had a lifetime that exceeded 
expectations (2 examples) or had been exposed to 
excessive (i.e. largest total) vibration without failure (1 
example). 

To test the modified PACE model, it was used to 
predict the life consumptions for the 3 failed paths not 
included in the training set.  The accuracy was measured in 
terms of how closely the life consumption estimates met 
the target.  The uncertainty was estimated by analyzing the 
variance and biases of the life consumption estimates for 
different random samples of the training paths. 

Before discussing the results, it is important to take a 
step back and briefly discuss the uncertainty analysis 
technique implemented in this work.  The Monte Carlo 
based uncertainty analysis technique discussed in Hines et 
al. (2008) is used.  For this work, 50 individual PACE 
models are created by bootstrap sampling (Efron and 
Tibshirani, 1994) the training paths.  Next, these models 
were used to estimate the life consumptions of the test 
paths.  The 95% confidence interval of the i

th life 
consumption estimate can be approximated by the 
following equation: 

2
,,, )]ˆ([)ˆ(2ˆ
icicic lBiaslVarl +±                (10) 

The variance was calculated by simply taking the variance 
of the 50 model estimates for the ith observation.  The bias 
was calculated via the bias-variance decomposition of the 
mean squared error (Tamhane and Dunlop, 2000). 

)ˆ()ˆ()ˆ( ,,, icicic lVarlMSElBias −=           (11) 

The results of the modified PACE model are 
presented in Table 1.  In the table, the accuracy of 
the model is quantified by the mean absolute error 
(MAE) and the uncertainty is quantified by the 
mean uncertainty over each of the test estimates.  
Notice that while the model is able to predict the life 
consumption with an accuracy on the order of 90%, 
the uncertainties are quite large.  This result is 
expected since we are training on relatively few 
examples.  As additional histories are collected, the 
uncertainties should decrease.  Furthermore, the 
accuracies should continue to improve. 

Table 1. Modified PACE Model  
Accuracy and Uncertainty Test Metrics 

Test Path MAE 
Mean 

Uncertainty 
1 11% ±27% 
2 4% ±15% 
3 12% ±35% 

 
To help visualize these results, refer to the 

charts of the life consumption estimates and their 
corresponding uncertainties presented in Figure 6 
for the three test paths.  Notice that for all three test 
paths the estimates (solid black line) track the actual 
values (dashed black line) to a high degree of 
accuracy.  Also notice that the uncertainties begin 
small, but progressively increase throughout the run.  
What this means is as we progress, our life 
consumption estimates become increasingly 
uncertain.  As discussed earlier, the large 
uncertainties can be largely attributed to the sparse 
training set where sampling can have a significant 
impact on the accuracy of the model estimates.  The 
uncertainty bounds are expected to decrease as 
additional data is used to train the model. 

5. CONCLUSION 

Prognostics can be very valuable if it fits into 
current practices and is able to accurately predict 
failures.  This paper has described a technique has 
been demonstrated to meet these two goals.  The 
developed life consumption model was show to be 
able to estimate the life consumped of an individual 
drilling tool to within 4-12% with uncertainties of 
±15-35%.  The accuracy and uncertainty metrics for 
the developed model are expected to decrease as 
additional examples of device stress are used to train 
the model. 
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Figure 6. Modified PACE model estimates and 
uncertainties for the (a) first, (b) second, and (c) third test 
paths. 
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