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ABSTRACT 

Anomaly detection is the identification of abnormal 
system behavior, in which a model of normality is 
constructed, with deviations from the model identified as 
“abnormal”. Complex high-integrity systems typically 
operate normally for the majority of their service lives, and 
so examples of abnormal data may be rare in comparison 
to the amount of available normal data. Anomaly detection 
is particularly suited for Intelligent Fault diagnosis of such 
systems since it allows previously-unseen or poorly-
understood modes of failure to be correctly identified. In 
this paper, we propose a novel Least Squares Support 
Vector Machine (LSSVM) based Anomaly Detector for 
efficiently and accurately detecting imminent faults in 
complex non-linear systems. The Anomaly Detector is 
supplemented with a Bayesian Inference Framework in 
order to allow for a probabilistic interpretation of the 
classification results. Experiments conducted on data from 
real test cases discussing crack growth on a planetary 
gearplate on board a UH-60 BlackHawk Aircraft and 
bending fan blades aboard a chiller show that the Bayesian 
LSSVM (B-LSSVM) Anomaly Detector can give high 
identification rates for both the prescribed ‘unknown’ fault 
samples and the known fault samples. 

1. INTRODUCTION 

Condition monitoring and diagnosis of machinery is an 
important field of engineering study (Antoni, 2002). It 
includes signal measurement, feature extraction, condition 
recognition and diagnosis decision-making. In substance, 
condition monitoring is a pattern recognition or 
classification problem which typically requires training 
data including samples both from healthy and faulted 
systems. It is possible, however, that novel faults are 
evolving while a monitored machine is running. These 
faults are different from those that have been trained to the 

diagnostic system and need to be promptly detected. 
Therefore, it is desirable that such diagnostic 
systems should not only correctly discriminate all 
trained faults, but also detect unseen faults. For a 
machine learning system the ability to identify a 
novel pattern class is known as novelty detection 
(Markou, 2003). If this “novel” data deviates from a 
well defined notion of “normal behavior”, the 
process is referred to as Anomaly detection. 
 
Statistical pattern recognition techniques, including 
density estimation, k-nearest neighbor algorithm and 
Artificial Neural Networks (ANNs) have been 
explored extensively for machinery fault 
classification and diagnosis in the last decade. One 
of the simplest approaches to anomaly detection is 
based on thresholding output of Multi-layer 
perceptrons and radial basis function networks 
(Stephano, 2000). While ANNs are useful black box 
approaches, capable of approximating any 
continuous function without assuming any 
hypothesis about the underlying model, they suffer 
from the problems of local optima and difficulty in 
solution interpretation in traditional analytic terms 
and thus require extensive training data and training 
time. 
 
An alternate approach to anomaly detection is to 
define the “normal” data through bounded regions 
that contain (almost) all data, and use restricted 
shapes such as hyperspheres for their class 
boundaries. Support Vector Machine (SVM) 
classifiers based on the principles of Structural Risk 
Minimization (SRM) seem to give a flexible and 
tight data description among these boundary 
approaches (Tax, 2004). Unlike ANNs, the solution 
to an SVM classification is well interpreted, and 



Annual Conference of the Prognostics and Health Management Society, 2009 

 2 

unique. The computational complexity does not depend on 
the dimensionality of the input space and the SRM 
principle makes them less prone to over-fitting. For these 
reasons, SVMs often outperform ANNs and have been 
successfully applied to many practical problems in recent 
years (Dehmeshki, 2004), (Soman, 2003), (Hu, 2005).  
 
A one-class classifier for anomaly detection was first 
proposed by Scholkopf and Smola (Schölkopf, 2000). 
With this algorithm, one can compute a set of contours 
enclosing the data points by estimating an optimal 
separating hyperplane. These contours can be considered 
as normal data boundaries. The data outside the boundaries 
are interpreted as anomalies. Many reformulations of the 
problem have since been derived in an attempt to improve 
the performance of Scholkopf’s Novelty Detector. Ming-
Qing Pan et al., for instance, derived the Support vector 
data description (SVDD) single class classifier based on 
the premise that as opposed to a hyper-plane, an optimal 
(minimal volume) sphere containing all the objects 
belonging to the base class is sufficient (Pan, 2005). 
 
Algorithmically, SVM formulations lead to a quadratic 
programming (QP) problem, which has the important 
advantage that the obtained solution is always globally 
optimal. However, solving a QP problem also implies 
using more computational time. Indeed the size of the 
matrix in the QP problem is directly proportional to the 
number of training samples which limits the application of 
SVM classifiers in real-time applications. Furthermore, 
SVMs produce an uncalibrated value which is thresholded 
to obtain a binary classifier. As such, Novelty Detectors 
based on SVMs also produce a 0/1 output similar to 
traditional classifiers. As notions of uncertainty, 
vagueness, randomness evolve and methods for 
quantification and management of these notions mature, 
the utility of designing a classifier that produces a 
posterior probability P(class) at its output becomes evident 
specially in the case of modern diagnostics and 
prognostics systems. For example, a posterior probability 
allows decisions that are based on a user-specified 
confidence level. Posterior probabilities are also required 
when a classifier is making a small part of an overall 
decision and the classification outputs must be combined 
for the overall decision.  
 
In this paper, we propose a comprehensive scheme for 
detecting Anomalous behavior in complex non-linear 
systems based on a Least Squares formulation for SVMs 
(LSSVM) proposed by Suykens et. al. (Suykens, 1999). 
The scheme reformulates the SVM problem such that the 
solution requires solving a Linear Programming (LP) 
problem as opposed to the QP problem thereby relaxing 
the computational burden for huge datasets. Additionally, 
a Bayesian Inference scheme designed for the LSSVM 
(Van Gestel, 2002) classifier is adapted and incorporated 

in the framework so that the Anomaly Detector 
outputs a posterior probability for the detected class. 
The rest of the article is organized as follows. We 
start with a brief discussion of LSSVMs and 
Bayesian Inference modeling in Section II. The 
proposed LSSVM Novelty Detector and its 
Bayesian extensions are explained in Section III. In 
Section IV, vibration data acquired from a growing 
crack on a planetary gearplate and proximity data 
from the fan blades aboard a chiller are analyzed 
using this scheme and the diagnosis results are 
presented. Finally, concluding remarks and future 
research vision is presented in Section V. 

2. LEAST SQUARES SVM AND BAYESIAN 
INFERENCE 

Support vector machines are a type of hyperplane 
classifier which attempt to find an optimal 
separating hyperplane for binary classification of the 
input training data given by the following Equation: 

( ) [ ( ) ]Ty x sign w x bϕ= +  
(2-1) 

where w is a d-dimensional vector and b is a scalar. 
The non-linear function (.)ϕ  maps the input space 
to a so-called higher dimensional feature space 
where the classification is assumed to be linearly 
separable. When formulated under SVMs the 
optimal hyperplane is the decision boundary that 
attains the maximum margin of separation between 
the two (linearly separable) classes in the feature 
space. According to the structural risk minimization 
principle, finding a hyperplane such that the risk 
bound is minimized is cast as the following 
quadratic optimization problem (Boser, 1992): 
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(2-2) 

The positive real constant C should be considered as 
a tuning parameter in the algorithm. The variables ξi 
are slack variables which are needed in order to 
allow misclassifications in the set of inequalities 
(e.g., due to overlapping distributions). Finally, φ(x) 
represents a non-linear function that maps the input 
space into a higher dimensional kernel space where 
a linear separation is exhibited and separation 
margins, M,  can be drawn. This is illustrated in 
Figure 2-1. The optimization problem given in 
Equation (2-2) is solved in its dual Lagrangian form 
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the resulting classifier is evaluated in its dual 
representation. 

 
Figure 2-1 A linearly non-separable two-class problem with optimal 

margin, Mmax 
 
LSSVMs are an efficient reformulation of the traditional 
SVMs which solve a Linear Programming (LP) problem as 
opposed to a Quadratic Programming (QP) problem in the 
dual Lagrangian form. The LSSVM defines a least squares 
cost function and replaces the inequality constraints in 
Equation (2-2) with equality constraints (Suykens, 1999) 
as shown in Equation (2-3) for the case of a binary 
classifier:  
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Both μ and ζ should be considered as hyperparameters in 
order to tune the amount of regularization versus the sum 
squared error (ek). The primal problem stated above is 
transformed into its Lagrangian dual and can be simplified 
to an elegant solution based on a set of linear equations 
given in Equation (2-4). 
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where ζγ μ= , 1[ ;...; ]NY y y= , 1 [1;...;1]= , 1[ ;...; ]Ne e e=  

and ( ) ( )1 1[ ;...; ]TT
N NZ x y x yϕ ϕ= . where i Rα ∈  are 

the Lagrange multipliers. In short, LSSVMs are 
reformulations to the standard SVMs which lead to solving 
simpler linear programming problem. LSSVMs are closely 
related to regularization networks and Gaussian Processes 
but additionally emphasize and exploit primal-dual 
interpretations. Links between kernel versions of classical 
pattern recognition algorithms such as kernel Fisher 
discriminant analysis and extensions to unsupervised 

learning, recurrent networks and control are 
available (Van Gestel, 2002).  
 
Bayesian learning methods have been successful for 
the training and understanding of classical neural 
networks (Bishop, 1995), (MacKay, 1992). In (Van 
Gestel, 2000), a Bayesian framework has been 
developed for LSSVMs with three levels of 
inference. At the first level of inference one 
considers a probability distribution on w  (in a 
potentially infinite dimensional space) where the 
prior corresponds to the regularization term Tw w  
and the least squares cost function to the likelihood. 
This interpretation allows for probabilistic 
interpretations of the LSSVM. At the second level 

of inference one infers the hyperparameters ζ
γ

μ
= . 

Finally, at the third level of inference one obtains 
model comparison criteria after computation of the 
Occam factor. The kernel width σ  is selected at 
this level. 
 
In the following section, we derive a one-class 
classifier based on the LSSVM which can be easily 
incorporated as a diagnostician in an online PHM 
system. The application of Bayes rule allows us to 
evaluate the class posterior probability ( | )p y x  
and also allows the algorithm to self tune itself by 
adjusting the hyper-parameters μ  and ζ . 
 

3. BAYESIAN LSSVM ANOMALY 
DETECTOR 

The proposed LSSVM Anomaly Detector modifies 
the LSSVM formulation given in Equation (2-3) in 
order to make it feasible for one-class classification 
problem. The modified LSSVM problem is thus 
given by Equation (3-1): 
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Similar to the original LSSVM formulation, we 
have equality constraints which result in a set of 
linear equations similar to Equation (2-4). The 
motivation for such a formulation is derived from 
Chen and Scholkopf’s paper on Novelty Detection 
using SVMs (Chen, 2005) where the goal is to try to 
estimate a function ( )f x  which is positive on the 
base class and negative on the complement. The 

Mmax

Input Space Kernel Space

Support Vectors 
ξ 

( )x xφ→
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form of ( )f x  is given by a kernel expansion in terms of a 
potentially small subset of the training data; it is 
regularized by controlling the length of the weight vector 
in an associated feature space. This function takes the 
value +1 in a “small” region capturing most of the training 
data points, and -1 elsewhere. This is accomplished by 
mapping the data into the feature space corresponding to 
the kernel, and to separate them from the origin with 
maximum margin. 
 
For a new point x , the value ( )f x  is determined by 
evaluating which side of the hyperplane it falls on, in 
feature space. Via the freedom to utilize different types of 
kernel functions, this simple geometric picture corresponds 
to a variety of nonlinear estimators in input space. 
Formulating the classification scheme in the dual space 
and minimizing the cost function according to Appendix 
A, the solution can be written in matrix form as a set of 
linear equations as follows: 
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(3-2) 

where ( ) ( )T
kl k lx xϕ ϕΨ = . The Lagrange multipliers kα  

are proportional to the errors at the data points so that the 
solution is no longer sparse as in the original SVM 
formulation. 
 
A probabilistic framework has been related to the LSSVM 
classifier, which, under the assumption of a separable 
Gaussian prior independent of ζ  and a Gaussian 

distribution for the errors ke , suggests the following 
expression for the posterior distribution: 
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The maximum a posteriori estimates MPw  and MPb  are 
then obtained by minimizing the negative logarithm of 
Eqation (3-3). In the dual space, this corresponds to 
solving the linear set of equations given by (3-2). Given 
the posterior probability of the model parameters w  and 
b , we can then integrate over all w  and b  values in 
order to obtain the posterior class probability 
( )| ,P y x D  according to Bayes Rule as follows: 
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The term 1ζ −
+  represents the variance from the 

target noise while the additional variance 2
eσ +

 is due 
to the uncertainty in the parameters w . The reader is 
encouraged to refer to (Van Gestel, 2002) for 
detailed derivations of the expressions. Results 
presented in the next section suggest that the 
Bayesian LSSVM Anomaly Detector is simple, 
efficient and has excellent generalization 
capabilities. 

4. TEST CASE: APPLICATION TO 
PLANETARY GEARPLATE VIBRATION 
DATA 

A UH-60 Blackhawk gearbox with a growing axial 
crack fault on the gearplate was chosen as a real-
world test case at the Intelligent Controls System 
Laboratory (Wu, 2004). The research team designed 
a Finite Element ANSYS model of the plate, 
generated artificial vibration data based on the 
model and inferred several features from it which 
could reflect the growth pattern of a simulated fault. 
An overview of the system Finite Element Model 
(ANSYS) and its equivalent mechanical layout is 
shown in Figure 4-1. 
 
 
 
 
 
 
 
 
 
 Figure 4-1 (a) ANSYS model of the gearbox plate (b) Mechanical 

layout 
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A developing crack close to one of the planetary gears as 
shown in Figure 4-1(a) can lead to a critical failure 
condition in the aircraft. With the purpose of testing the 
feasibility and efficiency of such algorithms a seeded fault 
test was conducted to collect fault data under a fixed 
known loading profile. A ground-air-ground cycle (GAG) 
is defined to accommodate different operating conditions. 
For testing purposes, GAG cycles correspond to time 
samples.  
 
Raw vibration signals were first denoised to get rid of 
artifacts and environmental noise (Zhang and Khawaja, 
2007). Features identified during the modeling phase were 
used to extract fault growth patterns from the denoised 
data. The Sideband Ratio (SBR) feature is well correlated 
with the actual fault evolution and is therefore selected in 
this research work. The feature varying over time (GAG 
Cycles) and the training samples are highlighted in Figure 
4-2. 

 
Figure 4-2 Feature correlated with evolving fault. 30 samples of initial 

feature data are used for training 
 

Thresholded and Probabilistic results from the detection 
module are given in Figure 4-4 and Figure 4-4. With the 
proposed LSSVM Anomaly Detector, a fault is detected 
with 100% accuracy around GAG-cycle 124. 
 

 
Figure 4-3 Feature correlated with evolving fault. 30 samples of initial 

feature data are used for training 
 
When appended with the Bayesian Inference scheme, one 
notices that the detection capability is enhanced (GAG-
cycle 115 with 95% confidence) and the results can be 
interpreted in terms of probabilities and confidence level.  
 

 
Figure 4-4 B-LSSVM:95% + confidence detection is possible at 

GAG Cycle 115 
 
5. TEST CASE: DETECTION OF CRACKS 

IN BLADES OF A TURBINE ENGINE 

Consider the case where the proposed methodology 
is applied to detect cracks in the blades of a turbine 
engine.  

 
Figure 5-1 Picture of turbine engine under study 

 
Light probes on both the leading and the trailing 
edge of the blades have been installed in order to 
provide with the Time-of-Arrival (TOA) for each 
blade. Since this is the only available piece of 
information in this application example, some pre-
processing techniques were needed in order to 
generate a feature that can be used for detection 
purposes (Tangential Blade Position, TBP) (Marcos, 
2003).  
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Figure 5-2 Feature correlated with evolving fault. 59 samples of 

initial feature data are used for training 
 
The first few samples of the feature were used as 
Baseline training data as shown in Figure 5-2. Note 
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that a sparse number of samples from the baseline are 
required in order to train the B-LSSVM Anomaly 
Detector. Results of the detection module for the case of 
one particular blade are shown in Figure 5-3 and Figure 
5-4. Although it is possible to observe some changes in the 
probability of failure condition around the 200th cycle of 
operation, it is clear from both the classifier and the PoF 
plots that only after the 245th cycle that we can claim the 
existence of a fault with high confidence. 
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Figure 5-3 Feature correlated with evolving fault. 59 samples of initial 

feature data are used for training 
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Figure 5-4 Feature correlated with evolving fault. 59 samples of initial 

feature data are used for training 
 

6. CONCLUSION 

A novel Anomaly Detector is suggested for one-class 
classification. The classifier is based on LSSVM machines 
suggested by Suykens and Vandewalle which they used 
for supervised binary learning. The proposed method 
requires only baseline data from the healthy system in 
order to train itself. Any novel phenomenon is then 
classified as an anomaly. It has the additional advantage of 
having very low runtime overhead, the robustness to 
handle feature vectors as input and the ability to represent 
the diagnostics results probabilistically. Therefore, it is 
especially efficient in real-time diagnostics. Results from 
diagnosis of a crack on a Blackhawk aircraft gearplate and 
bending blades on the fan of a turbine generator are 
presented in this paper. Diagnostic results show 
encouraging advantages in using the one-class LS-SVM 

classifiers in terms of lowering the detection 
threshold while managing the region-of-uncertainty. 
This scheme is part of ongoing research at ICL labs. 
A more rigorous treatment of the proposed scheme 
including performance evaluation and comparisons 
with other contemporary Anomaly Detection 
approaches is in order and will be a part of future 
publications. 
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APPENDIX A 

The primal one-class LSSVM anomaly detector problem is 
defined according to Equation A.1: 
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Like all other SVM formulations an equivalent problem is 
constructed and solved used Lagrange multipliers as 
follows. 
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where kα  are the Lagrange multipliers, which can be 
either positive or negative due to the equality constraints 
as follows from the Kuhn-Tucker conditions. The 

conditions of optimality lead us to the following 
expressions: 

( )

( )

1

1

1

0 0

0 1 0

0 0

0 0

N
d

k k
k

N
d

k
k

d
k k

k
N

Td
k k

k k

d
w x

dw

d
d

d
e

de

d
w x e

d

α ϕ

α
ρ

α γ

ϕ ρ
α

=

=

=

= ⇒ − =

= ⇒ − =

= ⇒ − =

= ⇒ − + =

∑

∑

∑

L

L

L

L

 
(A.3) 

  
for 1, ...,k N= . These equations can be written in 
matrix form according Equation A.4. 
 

0 0 0
0 0 0 1
0 0 0

0 0

I w
I

I I e
I I

ϕ
ρ

γ
ϕ α

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (A.4) 

  
This matrix formalization can be further simplified 
by eliminating   and   from Equation A.4 which 
leads us to the condensed Equation A.5 where 

( ) ( )T
kl k lx xϕ ϕΨ = . 

 

1

0 1 1
01 I

ρ

αψ γ −
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
− + ⎣ ⎦⎢ ⎥ ⎣ ⎦⎣ ⎦

 (A.5) 
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