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ABSTRACT

Diagnosing multiple-component systems is dif-
ficult and computationally expensive, as the
number of fault hypotheses grows exponentially
with the number of components in the system.
This paper describes an efficient computational
framework for statistical diagnosis featuring two
main ideas: (1) structuring fault hypotheses into
tiers, starting from low cardinality fault assump-
tions (e.g., single fault) and gradually escalating
to higher cardinality (e.g., double faults, triple
faults) when necessary; (2) at each tier, dynam-
ically partitioning the overall system into subsys-
tems, within which there is likely to be a single
fault. The partition is based on correlation be-
tween the system components and is dynamic:
when a particular partition is ruled out, a new one
is constructed based on the updated belief. When
no viable partition remains, the search proceeds
to the next tier. This approach enables the use of
single-fault diagnosis, which has only linear com-
plexity, to the subsystems avoiding exponential
hypothesis explosion. We demonstrate the con-
cepts and implementation via examples and sim-
ulation. We analyze the performance and show
that for practical systems where most components
are functioning properly, the proposed scheme
achieves a desirable tradeoff between computa-
tional cost and diagnosis accuracy.

1 INTRODUCTION
Troubleshooting a practical system to isolate broken
components can be difficult, as the number of fault
combinations grows exponentially with the number
of components. In diagnosis literature, various ideas
have been proposed to address the computational chal-
lenge. The general diagnosis engine (GDE) work(de
Kleer and Williams, 1987) finds minimal diagnoses,
isolating not the complete fault combination, but a
minimal subset of broken components that can ex-
plain the observations. Another example is the produc-
tion plant diagnosis work(Kuhn and de Kleer, 2008),
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which extends model-based diagnosis(Reiter, 1987;
de Kleer and Williams, 1987) to production systems
such as food processing plants, oil refineries, and print-
ers. The diagnosis engine(Kuhn and de Kleer, 2008)
discriminates fault assumptions based on their com-
plexity. Diagnosis starts with simple fault assumptions
(e.g., single, persistent, and/or independent faults) for
computationally efficient diagnosis, and escalates to
more complicated fault assumptions (e.g., multiple, in-
termittent, and/or interaction faults) when necessary.
This progression of diagnosis greatly reduces compu-
tation complexity.

The minimal diagnosis idea and the progressive di-
agnosis work are qualitative in nature. Can we ex-
tend similar ideas from qualitative reasoning to statis-
tical inference? Can we perform Bayesian updates in
a computationally efficient manner? This are the ques-
tions we address in this paper.

Statistical inference is now widely adopted in diag-
nosis. The basic idea is to evaluate hypotheses (fault
combinations) based on their probability given the ob-
servation data(Berger, 1995). Mathematically, for any
hypothesisx in the hypotheses spaceX , we update its
probability via the Bayes rule:

p(x|o) = αp(o|x)p(x), (1)

wherep(x) is the initial probability (prior) for the hy-
pothesisx, p(o|x) is the likelihood probability of ob-
servingo given thatx is true, andα is the normaliza-
tion factor to letp(x|o) sum up to 1. The resulting
p(x|o) is the posterior probability thatx is true given
the observationo. The diagnosis that best explains the
data is the maximum a posterior (MAP) estimate

xMAP = argmax
x∈X

p(x|o). (2)

While Bayesian update offers a coherent and quan-
titative way of incorporating observation data, it faces
the same need to search through all hypotheses inX .
In practice, a system withM components has the hy-
pothesis space

X = {000000, 000001, . . . , 111111}

Each hypothesisx ∈ X is a bit vector, wherei-th bit
is an indicator whether thei-th component has fault (0
for not having fault, 1 for having fault). The compu-
tational complexity of the Bayesian update isO(2M ).
WhenM is large, the update is prohibitively expen-
sive.
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Figure 1: Basic idea: (1) organize hypothesis into tiers
(along the vertical direction), and (2) partition compo-
nents into subgroups (along the horizontal direction),
for instance,AB are a group, andCD are a group.

In this paper, we propose two ideas to mitigate the
computational difficulty. The first is tiered inference,
illustrated in Sec. 2. The basic idea is to organize the
hypothesis spaceX into tiers with increasing fault car-
dinality. Inference is restricted to lower tiers (fewer de-
fective modules) until the lower tiers have been ruled
out by the observation data. This idea is implicit in
many diagnosis engines such as GDE(de Kleer and
Williams, 1987) and MBD(Thiebuaxet al., 1996), but
we develop it as part of a more general framework.
Our main contribution is the second idea: a divide-
and-conquer strategy presented in Sec. 3. It parti-
tions system components into single-fault subsystems.
This partitioning enables utilizing single-fault diagno-
sis, which only has linear complexity, to diagnosing a
multiple-fault system.

Figure 1 illustrates these basic concepts. In the dia-
gram, the hypothesis spaceX is represented as a ma-
trix, with columns representing components, and rows
representing the different fault assumptions. Organiz-
ing hypotheses into tiers is shown as dividing the hy-
pothesis into vertically stacked blocks. Inference starts
from the top block (no-fault tier), and progresses down
to the single-fault tierX1, then to the double-fault tier
X2, and so on. The second idea is to organize mod-
ules into groups, for instance,AB form a subsystem,
andCD forms a subsystem. This forms a horizontal
partition in the figure.

While partitioning a multiple-fault system into
single-fault subsystems is a neat idea, how to partition
is actually a tricky problem. We take a best-effort ap-
proach: given the posterior belief{p(x)}, we seek a
partition which results in subsystems that are single-
fault with maximum probability. Sec. 4 describes a
computationally efficient greedy algorithm based on
the intuition that modules within a subsystem must be
negatively correlated so that the total number of faults
remains constant (single-fault). The partitioning idea
and algorithm are the main novelty of this paper.

Many diagnosis approaches have taken advantage

of the hierarchical structure of the system being diag-
nosed(Pravan, 2001) (Srinivas, 1994). For example,
all possible combinations of faults in a subsystem can
be represented as a single component, as done in(Sid-
diqi and Huang, 2007). Similarly, if two distinct faults
are indistinguishable they can be represented as one
fault. These approaches greatly reduce computational
cost. However, they depend on one single decompo-
sition determined a priori. The approach of this paper
is quite different: it dynamically constructs and mod-
ifies the decomposition as diagnosis proceeds and is
complementary to these fixed approaches.

Sec. 5 demonstrates the application of tiered infer-
ence to production plant diagnosis. Consider a produc-
tion system, where raw material is transported through
a sequence of modules (known as an “itinerary”) and
modified to produce a product. At the end of an
itinerary, one observes a good product or a damaged
product. The product is damaged if any of the modules
in the itinerary malfunctions. Furthermore, damage
caused by a defective module cannot be repaired by
subsequent modules. In this paradigm, diagnosis aims
at isolating broken modules based on the itineraries
and observed output. For this diagnosis problem, we
analyze the tradeoff between computational cost and
inference accuracy. While we use production plant di-
agnosis as an illustration, the ideas presented in this
paper are more general and can be extended to other
diagnosis problems.

2 TIERED INFERENCE
To mitigate the computational difficulty, we further ad-
vance our prior work in(Kuhn and de Kleer, 2008)
and propose the notion oftiered inference. The ba-
sic idea is to restrict posterior computation to a subset
of hypotheses, and broaden the scope of inference only
when necessary. In the tiered inference framework, we
partition the overall hypothesis space into tiers, i.e.,

X = X0 ∪ X1 ∪ X2 ∪ · · · ∪ XM , (3)
where each tierXj is defined as the collection of hy-
potheses assuming a total ofj faults in the system, i.e.,
hypotheses with cardinalityj (

∑

i xi = j). Once the
system is observed to be malfunctioning, the need for
diagnosis arises. Inference starts with the single-fault
tier X1, assuming that the system has only one fault.
At this tier, the inference only updates the posterior for
the hypotheses inX1 and ignores all other hypotheses.
This drastically reduces the computational complexity
from O(2M ) to O(M). However, the single-fault as-
sumption is an approximation, as the system can have
multiple faults. When a conflict is detected, i.e., all the
hypotheses inX1 conflict with the observation data,
we escalate the inference to the next tierX2, assuming
a total of two faults in the system. The inference then
updates all hypotheses inX2. The process repeats until
observation data or the hypothesis space is exhausted.

Before diving into technical details, we first provide
some intuition using an example. Figure 2 shows the
computation structure in the tiered inference frame-
work. The hypothesis spaceX is partitioned into non-
overlapping tiersX1,X2, . . . ,XM as shown in Fig-
ure 2a. Figure 2b shows the computation in the tiered
inference algorithm. Imagine a sequence of observa-
tions as follows:
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Figure 2: Computational structure: (a) partition hy-
pothesis space into tiers, (b) computation in the tiered
inference framework, (c) computation in the whole hy-
pothesis space.

1. The first batch of observations is used to update
all hypotheses inX1, hence the computation is
linear in |X1|. In Figure 2b, this is shown as ver-
tical solid lines in first tier (the upper-left corner).
The length of the lines symbolizes the amount of
computation, in this case proportional to the size
of X1.

2. The last observation of the first batch rules out all
hypotheses inX1. In this case, we are forced to
escalate to the double tierX2. The observations
now need to be re-applied. This corresponds to
the solid lines in the second tier. The computation
is linear in|X2|.

3. The second batch of observations are applied to
all hypotheses inX2. The computation is shown
as the dashed lines in the second tier.

4. The last observation of the second batch further
rules out all hypotheses inX2. Now we escalate
to X3 and re-apply all the previous observations
(solid and dashed lines in the third tier). As more
observations are accumulated, the update compu-
tation (dotted lines in the figure) is restricted to
X3.

In contrast, Figure 2c shows the computation where all
observations are applied to all hypotheses. Notice that
the total vertical lines are much shorter in Figure 2b
than in Figure 2c. The computational savings are clear.
The savings are primarily due to the fact that the higher
tier hypotheses are not updated until necessary.

In this tiered inference framework, what is the price
to pay in return for the inference computational sav-
ings? First bear in mind that this is an approximation
— we have ignored the higher tiers when the lower
tiers remains consistent with the observations. There-
fore tiered inference loses optimality, for instance, the
maximum a posterior (MAP) diagnosis is only opti-
mal within the tiers that had been worked on. One
can no longer claim optimality in the overall hypoth-
esis space. Secondly, the tiered inference framework
needs to storeall past observations. In the case where
the current tier is ruled out, the past observations will

be re-applied to the new tier. This means the sys-
tem should have enough memory. The comparison
is as follows: If the computation is done sequentially
each time a new observation is made, the memory
storage requirement for updating the whole hypothesis
space is2M — only the posterior probabilities need
to be stored, the observation itself does not need to be
stored. In contrast, the memory requirement for the
tiered inference method is|Xj | + O(|observations|),
i.e., we need to store the probability of hypotheses
in the current tier, as well as all observations in the
past. When the observation history is long, the mem-
ory requirement is high. In essence, the tiered infer-
ence framework reduces the burden on computation,
but shifts the burden to memory storage. In practice
one may be able to compress the observation history
into some aggregated form.

It is important to characterize when this tiered in-
ference framework is advantageous. In practical sys-
tems, most modules are likely to be good, and the total
number of faults is likely to be small. In this case, the
single-fault tier can be much more probable than the
double-fault tier, and even more so than the triple-fault
tier, and so on. Hence it makes sense to focus compu-
tational resources to the single-fault tier, and escalate
to the higher tiers only when necessary. The higher
tier hypotheses are safely ignored because they have
minimal probability to start with. The computational
savings are tremendous. On the other hand, a patho-
logical case would be the situation where each mod-
ule has a high (close to 1) probability of having fault.
From the computational point of view, starting from
the low cardinality tiers is less attractive, since the low
cardinality hypotheses are likely to be ruled out by the
observations, and the reduction in inference computa-
tion is less significant. Furthermore, as we shall see
shortly, the tiered inference framework will incur an
overhead cost of defining the next subset or tier of hy-
potheses to work on every time an existing tier is ruled
out. This overhead cost will be high in this patholog-
ical case, making the tiered inference framework less
attractive. On the flip side, this pathological case is
rare.

3 PARTITION INTO SINGLE-FAULT
SUBSYSTEMS

Diagnosing a single-fault is computationally efficient.
If a M -module system is assumed or known to have
a single-fault, we only need compareM hypotheses,
rather than the2M hypotheses in the multi-fault case.
Given that single-fault inference is computationally ef-
ficient, it would be nice to apply this technique when-
ever applicable. This motivates us to find single-fault
subsystems although the overall system can have mul-
tiple faults.

The tiered inference idea in the previous section
suggests that we can use single-fault diagnosis in
the first tierX1 until data conflict arises. Figure 3
shows a simple example system with only 4 mod-
ules (ABCD). Figure 3a arranges the hypotheses
based on their cardinality. This defines the tiersX0,
X1, X2, and so on. In the tiered inference frame-
work, we start fromX0 andX1. When data suggests
that the system(ABCD) has more than one faults,
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Figure 3: Example of tiered inference: (a) hypothesis
space and tiers; (b) escalating to tierX2; (c) partition
X2 into two groups, each with (at most) a single fault:
top box — partition into{(AB), (CD)}; second box
— partition into{(AD), (BC)}. Other partition are
also possible.

the tiered inference escalates to the double-fault tier,

X2
△
= {x :

∑

i xi = 2}, as shown in Figure 3b. At this
point, we know that the overall system(ABCD) has
at least two faults, but it is possible that subsystems,
for instance,(AB) and(CD) each has a single fault.
In this case, we can still apply single-fault diagnosis
to subsystems(AB) andCD separately to isolate the
faults. The computation is still efficient. With this par-
tition, the update is restricted to hypotheses into the
subsetX t = {x | xA + xB ≤ 1, xC + xD ≤ 1},
shown as the hypotheses marked with check-marks in
the top box in Figure 3c. The computation is restricted
toX t, hence fast.

The question now is to seek a good partitioning
such that the partitioned subsystems are most likely
to have single fault. Formally, the partitioning prob-
lem is as follows: given an overall systemS con-
taining modules, the partitioning dividesS into two
groupsS1 andS2 such thatS1 ∪ S2 = S andS1 ∩
S2 = ∅. For instance, in the example in Figure 3,
S1 = (AB) andS2 = (CD) is a valid partition. Note
that this partitioning is not unique: we can partition
(ABCD) into {(AB), (CD)} (top box in the figure),
or {(AD), (BC)} (second box in the figure)1 or other
combinations. The next section addresses the question
of which partition to use. The basic idea is to exam-
ine the correlation between system components to find
those subsets which collectively contain only a single
fault with maximum probability.

Given a subsystem partition and the corresponding
subset of hypothesesX t assuming at most a single
fault within each subsystem, the algorithm restricts the
posterior updates to the subset, until the observation
data conflicts withX t. In this case, we backtrack to
the existing tierX2 and find a more suitable partition.
When the whole tierX2 is ruled out by observation,
we escalate to the third tierX3 (the collection of hy-
potheses with 3 fault modules) and partition the overall

1We use the bracket to denote a group within which there
is believed to be only single-fault, and the curly bracket for
a collection of groups.

system into three subsystems, each of which hopefully
contains a single fault. The whole process repeats as
more observations are made.

4 HOW TO PARTITION

4.1 Criterion for partitioning

As mentioned in the previous section, when the single-
fault assumption fails, we escalate toX2 and assume
that the overall system has two faults. We partition the
M -module system into two subsystems, or two groups,
within which there is likely to be at most one fault.

There are many ways of partitioning a system into
two groups. For example,(ABCD) can be partitioned
into C1

4 + C2
4/2 = 7 ways. Which one is more prefer-

able? What optimality criteria should we use? The
intuition is clear: we would like to make sure that the
single-fault assumption for each subsystem is true with
maximal probability.

Criterion: We favor the partition (of the
module set) which captures maximal proba-
bility mass, i.e., maximizing the probability
∑

x∈X t p(x).

For instance, in Figure 3, partitioning into
subsystems {(AB), (CD)}, shown as the top
block on the right hand side, captures hypotheses
{0101, 0110, 1001, 1010}. There are two hypotheses
{0011, 1100} that violates the single-fault assumption
in (CD) and (AB) respectively. If the probabilities
p(0011) andp(1100) are small, this means(AB) and
(CD) are likely to have single-fault, and the partition
is advantageous. On the other hand, ifp(0011) and
p(1100) are big, this mean the single-fault subsystem
assumption is questionable. To compare the two
partitions {(AB), (CD)} and {(AC), (BD)}, we
only need to compare the probability mass of missed
hypotheses, in this case,p(0011) + p(1100) and
p(0110) + p(1001). The partition with a lower
probability mass is more favorable.

4.2 A partitioning algorithm

Now with the optimality criterion, how should we de-
sign the partitioning algorithm? The straightforward
solution is to compare all partitions and see which par-
tition captures the largest probability sum, but this is
too expensive with complexity2M . Can we find a
partitioning which is good (of course suboptimal) with
much less computation time? We first discuss the case
of partitioning into two groups.

Intuition: For a group of modules to have
a single fault, i.e.,

∑

i∈P xi = 1, the xi’s
would have to be negatively correlated.

In other words, when one memberxi increases, there
must be anotherxj which decreases in order to main-
tain the constant sum. This means we should look
for modules with significant negative correlation and
group them into a group. In contrast, if two mem-
bers are positively correlated, i.e., when one in-
creases/decreases, the other one increases/decreases
too, then these two modules should not be grouped into
the same group.
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Using this heuristics we propose an algorithm,
which examines the correlation coefficient between
modules. The correlation coefficient is defined as

ρ(i, j)
△
=

Cov(xi, xj)

σiσj

=
E [(xi − µi)(xj − µj)]

σiσj

(4)

For any two modulesi and j, xi and xj are the in-
dicators of their respective health (0 if the module is
good, and 1 if the module is bad),µi andµj are the
respective mean ofxi andxj , andσi andσj are their
respective standard deviations. The correlation coeffi-
cientρ(i, j) measures the dependency betweenxi and
xj . It has the following properties: (a)−1 ≤ ρ ≤ 1;
(b) the sign ofρ shows whether the two random vari-
ables are positively or negatively correlated; (c)ρ = 1
if xi = xj , andρ = −1 if xi = −xj ; (d) symmetry:
ρ(i, j) = ρ(j, i). Given a set of hypotheses{x} and
their respective probability values, one can easily com-
pute the mean{µi}i=1,...,M , the standard deviation
{σi}, the covariance matrix{Cov(xi, xj)}i,j=1,...,M ,
and the correlation coefficientρ(i, j) for any i andj.
The computational complexity is linear in the number
of hypotheses.

The algorithm is the following:
1. From the hypotheses and their respective proba-

bilities, evaluate the correlation coefficientρ(i, j)
for any (i, j). The result is a correlation coeffi-
cient matrix of sizeM × M .

2. Find the two group seedsi1 and i2 as the mod-
ule which have the highest correlationE(x2

i ) val-
ues. This indicates that these two modules are
more likely to have a fault than the others. In the
case of a tie, we select seeds randomly. The two
groups “grow” around the seeds. Previously we
have used a random selection scheme: randomly
select the first seedi1, and then find the second
group seedi2 as the module which has the high-
est correlation withi1. Since these two are posi-
tively correlated, they should not be in the same
group. The max-correlation scheme works best in
our simulations.

3. For any remaining modulej, compare the corre-
lation coefficientsρ(i1, j) andρ(i2, j). The mod-
ule is assigned to group 1 ifρ(i1, j) < ρ(i2, j)
and to group 2 if otherwise.

Computational complexity — The computation
is primarily on the computation of{ρ(i, j)}. The
complexity if O(M2 · |# of hypotheses|) — there
areM2 correlation coefficients, and computing each
need to go through all hypotheses in the current
tier. In contrast, the “oracle” scheme of comparing
all partitioning combinations has complexityO(2M ·
|# of hypotheses|).
Performance — Despite its simplicity, this greedy al-
gorithm works well. In our simulation, we repeated
for a large number (100) of random simulations, and
compared this partitioning scheme against the enumer-
ation of2M possible partitions. Our partition selection
scheme has the following performance:

• Against the missing probability metric: our par-
tition selection method is at about the 85% per-
centile among all2M partitions, i.e., around 15%
partitions are better than our solution, and 85%
are worse. But the computational complexity is
much less.

• Compared to the “oracle” — the partition with
smallest missing probability, our partition scheme
produces a slightly larger missing probability, on
average 3–5% larger.

Example — Consider a 5-module production system
(ABCDE). The observations are as follows: (1) ob-
serving a fault with itinerary(ABCDE); (2) observ-
ing a fault with itinerary(ABC); (3) observing a fault
with (DE). At this point, the single fault assumptions
are eliminated. We assume each module is defective
with a prior probabilityr = 0.1. We further assume
all faults are persistent. In this case, the covariance
coefficient matrix is:

ρ =









1 −0.5 −0.5 0 0
−0.5 1 −0.5 0 0
−0.5 −0.5 1 0 0

0 0 0 1 −1
0 0 0 −1 1









(5)

The partitioning algorithm selectsB andD as group
seeds and partitions modules into two subsystems
(ABC) and(DE), which agrees with our intuition.

A similar problem is optimal number partitioning
(Korf, 1995), which partitions a set of integer num-
bers into two groups with equal sums. However, there
is a fundamental difference: the optimal number parti-
tioning is deterministic, while our partitioning problem
is inherently statistical and must work with uncertain-
ties. As a result, the algorithms for the two problems
are quite different.

4.3 Preparing probability distribution for
partitioning

The algorithm above requires the computation of cor-
relation coefficients{ρ(i, j)}i,j=1,2,...,M . They are
computed based on a set of hypotheses and their re-
spective probability values. Should this hypothesis
set be the entire hypothesis space (X , size2M )? or
a smaller subset? We argue that it may be sufficient
to compute the distribution for a subset. For instance,
if the first tier (the single fault hypotheses tierX1) is
ruled out, and we must escalate to double faults, we
only need to examine the double fault hypothesis tier
X2, since other hypotheses are out of the represen-
tation of two-group partition anyway. Therefore the
other hypotheses will not be covered by the partition-
ing. In our tiered inference framework, we use tier
X2 for partitioning into two groups. Likewise, ifX2
is ruled out by observations, we escalate to the triple-
fault tierX3, and partition theM -module system into
three groups. The partitioning is computed based on
the probability values of all hypotheses inX3.

An alternative method for computing
{ρ(i, j)}i,j=1,2,...,M is to treat only componenti
and j as random variables and all the other compo-
nents as deterministic. From the observations, we
can computep(xi, xj |o1, o2, . . . , oT ) using the Bayes
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rule as p(o1, o2, . . . oT |xi, xj)p(xi)p(xj). This is
computationally efficient, because it only requires
the evaluation of the second order statistics of the
pair (xi, xj), which is much simpler than evaluating
the full joint statisticsx. On the other hand, this is
an approximation — in principle the observationot

is dependent on all components, not just on the pair
(i, j). However, this approximation appears accurate
in our simulations and works well in practice.

The algorithm described above can be modified to
partitioning components into any number of groups.
The extension is straight-forward: we just select more
group seeds in Step 2, and let the seeds grow into
groups.

5 IMPLEMENTATION AND SIMULATION

As an example to illustrate the advantages and draw-
backs of the tiered inference approach, we consider di-
agnosis of a production plant. Assume that modules
are independent, and each module is defective with a
known prior probabilityr. All faults are intermittent,
i.e., a defective module damages any product passing
it with a known probabilityq, known as the intermit-
tency probability. In practice, each module may have
its ownr andq, different from the others. In our imple-
mentation, for simplicity, we assume that all modules
share the samer andq value.

Mathematically, we have the prior probability

p(x) =
(

r
P

i
xi

)

·
(

(1 − r)M−
P

i
xi

)

.

Given an itineraryw, the likelihood of observing an
outputo (0 for good, and 1 for damaged) is

p(o|x) =

{

(1 − q)k(w,x) if o = 0
1 − (1 − q)k(w,x) if o = 1

Here the exponentk(w,x) is the number of defective
modules involved in the production itineraryw given
the hypothesisx. This is actually quite intuitive: a
product is undamaged only when none of the defec-
tive modules malfunctions, hence the probability is the
module-wise good probability(1 − q) raised to the
powerk(w,x).

Now with prior and likelihood probabilities spec-
ified, we perform Bayesian updates (Equation 1).
Two diagnosis schemes are compared: (a) a baseline
scheme applying all observations sequentially to up-
date the posterior beliefp(x|o) for all x ∈ X that has
not been ruled out by previous observation data; and
(b) the tiered inference scheme described in Secs. 2–
4. To evaluate the performance, we simulate 300 ran-
dom trials, each with an observation sequence of 400
randomly generated production itineraries and corre-
sponding outputs. Performance are assessed based on
cost and accuracy:

• Computational cost: for the baseline scheme,
computational cost is measured as the accumula-
tive number of posterior updates, i.e., how many
times (Equation 1) is executed. For tiered infer-
ence, the cost is the sum of two parts: (i) the in-
ference cost, i.e., the number of posterior updates,
and (ii) the overhead cost of partitioning modules

into subsystems, measured as the number of hy-
potheses sieved through to compute the correla-
tion coefficient (Equation 4). Table 1 reports the
two terms, separated by a “;” in the third column.

• Diagnosis accuracy, measured as the total num-
ber of bits thatxMAP differ from the ground
truth. Ideally, ifxMAP recovers the ground truth,
this term should be 0. However, this is often not
achieved, even in the baseline inference scheme.
This is due to the fact that the observations may
not be sufficient, for instance, if some defective
modules are never used in production, and/or the
faults are intermittent, hence the defects are never
observed.

Table 1 reports the results for a 10-module produc-
tion system, averaged over 300 random trials. Each
row corresponds to a value ofr, ranging from 0.05 to
0.9. Smallr implies a healthy system, whiler = 0.9
corresponding to an extremely shaky system where all
modules are likely to fail. We use the extremes to pro-
vide insights. Note the following:

(1) The computational cost saving using the tiered
inference scheme is significant. For instance, withr =
0.05, the tiered inference scheme has a computation
cost less than 1% of the baseline scheme. Withr =
0.9, the tiered inference computation is around 10% of
the baseline computation.

(2) The baseline scheme is on average more accu-
rate than the tiered inference. This is expected, since
the tiered inference is an approximation.

(3) Tiered inference is most advantageous whenr
is small. The inference accuracy is almost as good as
the baseline scheme forr ≤ 0.2, and the computation
cost is 1–2 magnitudes order lower. This shows the
benefit of tiered inference. The good performance is
not surprising, as a system with smallr is what tiered
inference was originally designed for.

(4) As r increases, tiered inference incurs a increas-
ingly heavy partitioning overhead cost (second num-
ber in the third column). This is due to the fact that
the system has more defective modules, and the single-
fault assumption within subsystems is often ruled out
by observation data. In this case, the partitioning op-
erations are frequently repeated. The overhead cost
makes computational savings less dramatic. Further-
more, tiered inference becomes less accurate. For in-
stance, in the last row (r = 0.9), the tiered inference
diagnosis has roughly 5 bits flipped. It misses to de-
tect 5 defective modules. In comparison, the baseline
has 1.16 bits flipped on average. Note that this is due
to their different strategies: the baseline scheme seeks
exact inference and optimal diagnosis, while tiered in-
ference favors low-cardinality diagnosis. Tiered infer-
ence stays at lower tiers as long as the lower tiers can
explain the data. This is similar to a minimal diagno-
sis: the minimal candidate set can be quite different
from the underlying ground truth, especially when the
faults are intermittent and the number of observations
are limited.

6 CONCLUSION

This paper has presented a new framework for ef-
ficiently computing multiple fault diagnoses. This

6
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Computation cost Diagnosis accuracy
baseline tiered baseline tiered

r = 0.05 285779.7 2268.5; 63.3 0.03 0.03
r = 0.1 265003.1 2051.9; 448.3 0.17 0.13
r = 0.2 236468.3 2705.2; 1435.7 0.47 0.59
r = 0.5 175757.8 6293.7; 4610.0 1.51 2.36
r = 0.9 141973.8 7875.2; 6470.0 1.16 5.07

Table 1: Tradeoff between computational cost and diag-
nosis accuracy. This table is generated assuming the inter-
mittency probability ofq = 0.1. The second column re-
ports computation cost of the baseline scheme measured as
the number of hypotheses updated; the third column reports
the computation cost for tiered inference for Bayesian up-
date and partitioning overhead, and the last two columns re-
port diagnosis accuracy of the two schemes, measured as the
number of bits that MAP estimate differs from the ground
truth.

framework introduces the generic notion of tiered in-
ference which focuses search and inference on the
set of hypotheses most likely to contain the fault(s).
Past approaches which focus on most probable, subset-
minimal, or minimum cardinality approaches are all
instances of the more general tiered approach. In ad-
dition, this paper introduced the notion of partition-
ing the modules such that efficient, linear, single fault
inference can be used (and never requires the usual
multiple-fault inference scheme). By performing sin-
gle fault diagnosis on each partition, the potential com-
putational inference on each partition is avoided. For
smaller cardinality diagnoses, we believe the inference
saving outweighs the cost of computing partitions (in-
cluding recomputing partitions when they are discov-
ered to be unsuccessful).
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