
Benchmarking Diagnostic Algorithms on an Electrical Power
System Testbed

Tolga Kurtoglu 1, Sriram Narasimhan 2, Scott Poll 3, David Garcia 4, Stephanie Wright 5

1 Mission Critical Technologies @ NASA Ames Research Center, Moffett Field, CA, 94035, USA
tolga.kurtoglu@nasa.gov

2 University of California, Santa Cruz @ NASA Ames Research Center, Moffett Field, CA, 94035, USA
Sriram.Narasimhan-1@nasa.gov

3 NASA Ames Research Center, Moffett Field, CA, 94035, USA
scott.poll@nasa.gov

4 Stinger Ghaffarian Technologies @ NASA Ames Research Center, Moffett Field, CA, 94035, USA
david.garcia@nasa.gov

5 Vanderbilt University, Nashville, TN, 37203, USA
stephanie.l.wright@vanderbilt.edu

ABSTRACT
Diagnostic algorithms (DAs) are key to enabling
automated health management. These algorithms
are designed to detect and isolate anomalies of
either a component or the whole system based
on observations received from sensors. In recent
years a wide range of algorithms, both model-
based and data-driven, have been developed to
increase autonomy and improve system reliabil-
ity and affordability. However, the lack of sup-
port to perform systematic benchmarking of these
algorithms continues to create barriers for effec-
tive development and deployment of diagnostic
technologies. In this paper, we present our efforts
to benchmark a set of DAs on a common plat-
form using a framework that was developed to
evaluate and compare various performance met-
rics for diagnostic technologies. The diagnosed
system is an electrical power system, namely the
Advanced Diagnostics and Prognostics Testbed
(ADAPT) developed and located at the NASA
Ames Research Center. The paper presents the
fundamentals of the benchmarking framework,
the ADAPT system, description of faults and
data sets, the metrics used for evaluation, and
an in-depth analysis of benchmarking results ob-
tained from testing ten diagnostic algorithms on
the ADAPT electrical power system testbed.

1 INTRODUCTION
Fault Diagnosis in physical systems involves the de-
tection of anomalous system behavior and the identi-
fication of its cause. Key steps in the diagnostic in-
ference are fault detection (is the output of the system

This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States Li-
cense, which permits unrestricted use, distribution, and re-
production in any medium, provided the original author and
source are credited.

incorrect?), fault isolation (what is broken in the sys-
tem?), fault identification (what is the magnitude of
the failure?), and fault recovery (how can the system
continue to operate in the presence of the faults?). Ex-
pert knowledge and prior know-how about the system,
models describing the behavior of the system, and sen-
sor data from the system during actual operation are
used to develop diagnostic inference algorithms. This
problem is non-trivial for a variety of reasons includ-
ing:

• Incorrect and/or insufficient knowledge about
system behavior
• Limited observability
• Presence of many different types of faults

(system/supervisor/actuator/sensor faults, addi-
tive/multiplicative faults, abrupt/incipient faults,
persistent/intermittent faults)
• Non-local and delayed effect of faults due to dy-

namic nature of system behavior
• Presence of other phenomena that influence/mask

the symptoms of faults (unknown inputs acting on
system, noise that affects the output of sensors,
etc.)

Several communities have attempted to solve the
diagnostic inference problem using various methods.
Some typical approaches have been:

• Expert Systems - These approaches encode
knowledge about system behavior into a form that
can be used for inference. Some examples are
rule-based systems (Kostelezky et al., 1990) and
fault trees (Kavcic and Juricic, 1997).
• Model-based Systems - These approaches use an

explicit model of the system configuration and
behavior to guide the diagnostic inference. Some
examples are “FDI” methods (Gertler and Inc.,

1

Annual Conference of the Prognostics and Health Management Society, 2009

1998), statistical methods (Basseville and Niki-
forov, 1993), “AI” methods (Hamscher et al.,
1992).

• Data-driven Systems - These approaches use only
the data from representative runs to learn parame-
ters that can then be used for anomaly detection or
diagnostic inference for future runs. Some exam-
ples are IMS (Iverson, 2004), Neural Networks
(Sorsa and Koivo, 1998), etc.

• Stochastic Method - These approaches treat the
diagnosis problem as a belief state estimation
problem. Some examples are Bayesian Networks
(Lerner et al., 2000), Particle Filters (de Freitas,
2001), etc.

Despite the development of such a variety of nota-
tions, techniques, and algorithms, efforts to evaluate
and compare the different diagnostic algorithms (DA)
have been minimal (discussed in Section 2). One of the
major deterrents is the lack of a common framework
for evaluating and comparing diagnostic algorithms.
Such a framework would consist of the following:

• Define a standard representation format for the
system description, sensor data, and diagnosis re-
sults

• Develop a software run-time architecture that can
run specific scenarios from actual system, simu-
lation, or other data sources such as files (indi-
vidually or as a batch), execute DAs, send sce-
nario data to the DA at appropriate time steps, and
archive the diagnostic results from the DA

• Define a set of metrics to be computed based on
the comparison of the actual scenario and diagno-
sis results from the DA

Some initial steps in developing such a framework
are presented in (Kurtoglu et al., 2009b) as part of the
DX Competition initiative (Kurtoglu et al., 2009a). In
this paper, we present our efforts to benchmark a set
of DAs on the NASA Ames Electrical Power System
testbed (ADAPT) using the DXC framework. Sec-
tion 2 describes other work related to benchmarking
of DAs. Section 3 presents the DXC framework in
brief. Section 4 describes how the benchmarking was
performed including a description of the ADAPT sys-
tem, the faults injected, the DAs tested and the metrics
computed. Section 5 presents the results and detailed
analyses of the benchmarking activity. Section 6 lists
the limitations and plans for future work. Lastly, sec-
tion 7 presents the conclusions.

2 RELATED WORK
Several researchers have attempted to demonstrate
benchmarking capability on different systems. Among
these, (Orsagh et al., 2002) provided a set of 14 met-
rics to measure the performance and effectiveness of
prognostics and health management algorithms for US
Navy applications (Roemer et al., 2005). (Bartys et

al., 2006) presented a benchmarking study for actua-
tor fault detection and identification (FDI). This study,
developed by the DAMADICS Research Training Net-
work, introduced a set of 18 performance indices used
for benchmarking of FDI algorithms on an industrial
valve-actuator system. Izadi-Zamanabadi and Blanke
(1999) presented a ship propulsion system as a bench-
mark for autonomous fault control. This benchmark
has two main elements. One is the development of an
FDI algorithm, and the other is the analysis and imple-
mentation of autonomous fault accommodation. Fi-
nally, (Simon et al., 2008) introduced a benchmarking
technique for gas path diagnosis methods to assess the
performance of engine health management technolo-
gies.

The approach presented in this paper uses the DXC
Framework (Kurtoglu et al., 2009b) (described in Sec-
tion 3) which adopts some of its metrics from the
literature (Society of Automotive Engineers, 2007;
Orsagh et al., 2002; Simon et al., 2008) and extends
prior work in this area by 1) defining a number of
new benchmarking indices, 2) providing a generic,
application-independent architecture that can be used
for benchmarking different monitoring and diagnos-
tic algorithms, and 3) facilitating the use of real pro-
cess data on large-scale, complex engineering systems.
Moreover, it is not restricted to a single fault assump-
tion and enables the calculation of benchmarking met-
rics for systems in which each fault scenario may con-
tain multiple faults.

3 FRAMEWORK OVERVIEW
The framework architecture employed for benchmark-
ing diagnostic algorithms is shown in Figure 1. Ma-
jor elements are the physical system (ADAPT EPS
testbed), diagnostic algorithms, scenario-based exper-
iments, and benchmarking software. The physical sys-
tem description and sample data (nominal and faulty)
are provided to algorithm and model developers to
build DAs. System documentation in XML format
specifies the components, connections, and high-level
mode behavior descriptions, including failure modes.
A diagram with component labels and connection in-
formation is also provided. The documentation de-
fines component and mode identifiers DAs must re-
port in their diagnoses for proper benchmarking. The
fault catalog, part of the system documentation, estab-
lishes the failure modes that may be injected into ex-
perimental test scenarios and diagnosed by the DAs.
Benchmarking software is used to quantitatively eval-
uate the DA output against the known fault injections
using predefined metrics.

Execution and evaluation of diagnostic algorithms
are accomplished with the run-time architecture de-
picted in Figure 2. The architecture has been designed
to interface DAs with little overhead by using minimal-
istic C++ and Java APIs or by implementing a sim-
ple ASCII-based TCP messaging protocol. The Sce-
nario Loader is the main entry point for DAs; it starts

2

Annual Conference of the Prognostics and Health Management Society, 2009

B
en

ch
m

ar
ki

ng

1

Physical System under Evaluation

Fault
Injection

Fault Catalog

Test
Scenarios

Diagnostic Algorithm

Algorithm A

.....

Benchmarking Software

Diagnostic
Data

Output

Diagnostic
Algorithm
Scorecard

Metric 1
Metric 2
Metric 3
....

Fault
Data
XML

ADAPT
XML System
Description

M
od

el
in

g
&

 D
A

 D
ev

el
op

m
en

t
E

xp
er

im
en

ta
tio

n

Performance
Metrics

ADAPT
XML System
Description

Algorithm B
Algorithm C

Figure 1: Benchmarking Framework Architecture

and stops other processes and cleans up upon comple-
tion of all scenarios. The Scenario Data Source pub-
lishes archived datasets containing commands and sen-
sor values following a wall-clock schedule specified
by timestamps in the scenario files. The DA uses the
diagnostic framework messaging interface to receive
sensor and command data, perform a diagnosis, and
publish the results; it is the only component that is im-
plemented by DA developers. The Scenario Recorder
timestamps each fault injection and diagnosis message
upon arrival and compiles it into a Scenario Results
file. The Evaluator takes the Scenario Results File and
calculates metrics to evaluate DA performance.

Messages in the run-time architecture are exchanged
as ASCII text over TCP/IP. DAs may use provided API
calls for parsing, sending, and receiving messages or
choose to use the underlying TCP/IP. The DA output
is standardized to facilitate benchmarking and includes
a timestamp indicating when the diagnosis has been is-
sued; a detection signal that indicates whether the DA
has detected a fault; an isolation signal that indicates
whether a DA has isolated a candidate or set of can-
didates with associated probabilities; and a candidate
fault set that has one, or multiple candidates – each
with a single or multiple faults. More details about the
framework can be found in (Kurtoglu et al., 2009b).

Diagnostic

Algorithm

Scenario

Data Source

Scenario

Recorder

Scenario

Results
Evaluator

sends diagnosis

Outputs

Processed

by

sends sensor values,

commands

sends sensor values,

commands, fault data

Scenario

Loader
loads Data Source,

Algorithm, Recorder

Figure 2: Run-time Architecture

4 BENCHMARKING ON ADAPT EPS
TESTBED

4.1 ADAPT EPS
System Description
The physical system used for benchmarking is the
Electrical Power System testbed in the ADAPT lab at
NASA Ames Research Center (Poll et al., 2007). The
ADAPT EPS testbed provides a means for evaluat-
ing diagnostic algorithms through the controlled inser-
tion of faults in repeatable failure scenarios. The EPS
testbed incorporates low-cost commercial off-the-shelf
(COTS) components connected in a system topology
that provides the functions typical of aerospace vehi-
cle electrical power systems: energy conversion /gen-
eration (battery chargers), energy storage (three sets
of lead-acid batteries), power distribution (two invert-
ers, several relays, circuit breakers, and loads) and
power management (command, control, and data ac-
quisition). The EPS delivers AC (Alternating Cur-
rent) and DC (Direct Current) power to loads, which
in an aerospace vehicle could include subsystems such
as the avionics, propulsion, life support, environmen-
tal controls, and science payloads. A data acquisition
and control system commands the testbed into differ-
ent configurations and records data from sensors that
measure system variables such as voltages, currents,
temperatures, and switch positions. Data is presently
acquired at a 2 Hz rate.

The scope of the ADAPT EPS testbed used in the
benchmarking study is shown Figure 3. Power stor-
age and distribution elements from the batteries to the
loads are within scope; there are no power generation
elements. In order to encourage more DA developers
to participate in the benchmarking effort, we also in-
cluded a simplified scope of the system called ADAPT-
Lite, which included a single battery to a single load as
indicated by the dashed lines in the schematic (Figure
3). The characteristics of ADAPT-Lite and ADAPT
are summarized in Table 1. The greatest simplifica-
tion of ADAPT-Lite relative to ADAPT is not the re-
duced size of the domain but the elimination of nom-
inal mode transitions. The starting configuration for
ADAPT-Lite data has all relays and circuit breakers
closed and no nominal mode changes are commanded
during the scenarios. Hence, any noticeable changes
in sensor values may be correctly attributed to faults
injected into the scenarios. By contrast, the initial
configuration for ADAPT data has all relays open and
nominal mode changes are commanded during the sce-
narios. The commanded configuration changes re-
sult in adjustments to sensor values as well as tran-
sients which are nominal and not indicative of injected
faults. Finally, ADAPT-Lite is restricted to single
faults whereas multiple faults are allowed in ADAPT.

Fault Injection and Scenarios
ADAPT supports the repeatable injection of faults into
the system in three ways:

3

Annual Conference of the Prognostics and Health Management Society, 2009

E265

ST

265

CB136

CB236

CB336

CB266

CB166

ESH

170

EY160

ESH

160A
E161

IT161

E165

ST

165
EY171

E167

IT167

ESH

171

EY172

ESH

172

EY170

EY174

ESH

174

EY175

ESH

175

EY173

ESH

173

EY183

ESH

183

EY184

ESH

184

L1A

L1B

L1C

L1D

L1E

L1F

L1G

L1H

Load Bank 1

120V AC >>

24V DC >>

Battery Cabinet
TE

133

BAT1

TE

128

E135

EY141

E140

EY144

IT140

ESH

141A

ESH

144A
TE

129

ISH

136

ISH

162

CB162

ISH

166

ISH

180

CB180

ESH

270

EY260

ESH

260A
E261

IT261
EY271

E267

IT267

ESH

271

EY272

ESH

272

EY270

EY274

ESH

274

EY275

ESH

275

EY273

ESH

273

EY283

ESH

283

EY284

ESH

284

L2A

L2B

L2C

L2D

L2E

L2F

L2G

L2H

Load Bank 2

120V AC >>

24V DC >>

ISH

262

CB262

ISH

266

ISH

280

CB280

BAT2

TE

228

E235

EY241

E240

EY244

IT240

ESH

241A

ESH

244A
TE

229

ISH

236

BAT3

TE

328

E335

EY341

E340

EY344

IT340

ESH

341A

ESH

344A
TE

329

ISH

336

E142

E242

XT167

XT267

IT181

IT281

TE

500

TE

501

TE

502

LT

500

TE

505

TE

506

TE

507

LT

505

ST

515

FT

525

TE

511

FT

520

TE

510

ST

516

LGT400

LGT401

LGT402

LGT405

LGT406

LGT407

FAN415

FAN480

LGT481

PMP425

LGT411

DC482

PMP420

LGT410

FAN483

LGT484

FAN416

DC485

E181

E281

INV

1

INV

2

ADAPT-Lite

ESH

ISHE

IT

FT LT

ST

TE

XT

Voltage

Relay Position

Feedback

Circuit Breaker

Position Feedback

Current

Flow Light

Speed

Temperature

Phase Angle

Sensor Symbols

Figure 3: ADAPT EPS Schematic

Table 1: ADAPT EPS Benchmarking System Charac-
teristics

Aspect ADAPT-Lite ADAPT
#Comps/Modes 37/93 173/430
Initial State Relays

closed; cir-
cuit breakers
closed

Relays
open;
circuit
breakers
closed

Nominal mode
changes?

No Yes

Multiple faults? No Yes

Hardware-Induced Faults: These faults are physi-
cally injected at the testbed hardware. A simple ex-
ample is tripping a circuit breaker using the manual
throw bars. Another is using the power toggle switch
to turn off the inverter. Faults may also be introduced
in the loads attached to the EPS. For example, the valve
can be closed slightly to vary the back pressure on the
pump and reduce the flow rate.

Software-Induced Faults: In addition to fault in-
jection through hardware, faults may be introduced
via software. Software fault injection includes one or
more of the following: 1) sending commands to the

testbed that were not intended for nominal operations;
2) blocking commands sent to the testbed; and 3) al-
tering the testbed sensor data.

Real Faults: In addition the aforementioned two
methods, real faults may be injected into the system
by using actual faulty components. A simple exam-
ple includes a blown light bulb. This method of fault
injection was not used in this study.

For the results presented in this paper, only abrupt
discrete (change in operating mode of component) and
parametric (step change in parameter values) faults are
considered. Distinct faults types that are injected into
the testbed for benchmarking are shown Table 2.

The diagnostic algorithms are tested against a num-
ber of diagnostic scenarios consisting of nominal or
faulty data of approximately four minutes in length.
Some key points and intervals of a notional sce-
nario are illustrated in Figure 4, which splits the sce-
nario into three important time intervals: ∆startup,
∆injection, and ∆shutdown. During the first inter-
val ∆startup, the diagnostic algorithm is given time
to initialize, read data files, etc. Note that this is
not the time for compilation; compilation-based al-
gorithms compile their models beforehand. Though
sensor observations may be available during ∆startup,
no faults are injected during this time. Fault injec-
tion takes place during ∆injection. Once faults are in-

4

Annual Conference of the Prognostics and Health Management Society, 2009

Table 2: Fault types used for ADAPT and ADAPT-Lite

Component Fault Description
Battery Degraded

Boolean Sensor Stuck at Value

Circuit Breaker Failed Open
Stuck Closed

Inverter Failed Off

Relay Stuck Open
Stuck Closed

Sensor Stuck at Value
Offset

Pump(Load) Flow Blocked
Failed Off

Fan(Load)
Over Speed

Under Speed
Failed Off

Light Bulb(Load) Failed Off
Basic Load Failed Off

jected they persist until the end of the scenario. Multi-
ple faults may be injected simultaneously or sequen-
tially. Finally, the algorithms are given some time
post-injection to send final diagnoses and gracefully
terminate during ∆shutdown. The intervals used in this
study are 30 seconds, 3 minutes, and 30 seconds for
∆startup, ∆injection, and ∆shutdown, respectively.

Below are some notable points for the example di-
agnostic scenario from Figure 2:
• tinj - A fault is injected at this time;
• tfd - The diagnostic algorithm has detected a

fault;
• tffi - The diagnostic algorithm has isolated a

fault for the first time;
• tfir - The diagnostic algorithm has modified its

isolation assumption;
• tlfi - This is the last fault isolation during

∆injection.

Figure 4: Key time points, intervals, and signals

Nominal and failure scenarios were created using
hardware and software-induced fault injection meth-

ods according to the intervals specified above and us-
ing the faults listed in the fault catalog (Table 2). As
shown in Table 3, nominal scenarios comprise roughly
half of the ADAPT-Lite and one-third of the ADAPT
test scenarios. The ADAPT-Lite fault scenarios are
limited to single faults. Half of the ADAPT faults sce-
narios are single faults; the others are double or triple
faults.

Table 3: Number of sample and test scenarios for
ADAPT and ADAPT-Lite

Sample Competition
#Scenarios ADAPT ADAPT ADAPT ADAPT

-Lite -Lite
Nominal 32 39 30 40
Single-
fault

27 54 32 40

Double-
fault

0 19 0 30

Triple-
fault

0 1 0 10

Diagnostic Challenges
The ADAPT EPS testbed offers a number of chal-
lenges to DAs. It is a hybrid system with multiple
modes of operation due to switching elements such
as relays and circuit breakers. There are continuous
dynamics within the operating modes and components
from multiple physical domains, including electrical,
mechanical, and hydraulic. It is possible to inject mul-
tiple faults into the system. Furthermore, timing con-
siderations and transient behavior must be taken into
account when designing DAs. For example, when
power is input to the inverter there is a delay of a
few seconds before power is available at the output.
For some loads, there is a large current transient when
the device is turned on. System voltages and cur-
rents depend on the loads attached, and noise in sensor
data increases as more loads are activated. Measure-
ment noise occasionally exhibits spikes and is non-
Gaussian. The 2 Hz sample rate limits the types of
features that may be extracted from measurements. Fi-
nally, there may be insufficient information and data
to estimate parameters of dynamic models in certain
modeling paradigms.

4.2 Diagnostic Metrics
A set of 8 metrics has been defined for assessing
the performance of the diagnostic algorithms. This
set is categorized as temporal, technical, or compu-
tational performance metrics. The temporal metrics
measure how quickly an algorithm responds to faults
in a physical system. The technical metrics measure
non-temporal features of a diagnostic algorithm like
accuracy. Finally, computational metrics are intended
to measure how efficiently an algorithm uses the avail-
able computational resources.

5

Annual Conference of the Prognostics and Health Management Society, 2009

In addition, we divide the metrics into 2 main cate-
gories:

Detection metrics which deal with temporal, tech-
nical, and computational metrics associated with only
detection of the fault.

Isolation metrics which deal with temporal, techni-
cal, and computational metrics associated with isola-
tion of the fault.

The notation used for the definition of the metrics is
as follows:
S - The set of scenarios for a given system description

Sn - The set of nominal scenarios for a given system
description

Sf - The set of faulty scenarios for a given system
description

tfd - The time when the fault detection signal has been
asserted for the first time

tfi - The time when the last persistent fault isolation
signal has been asserted

ωact - The true component mode vector (ground truth)

ωpre - The predicted component mode vector (repre-
sents the set of candidate diagnoses by the DA)

Td - Total computation time

Md - Peak amount of allocated memory

Finally, using the aforementioned notation, the 8
metrics are defined as:

Fault Detection Time (Mfd): The reaction time for
a diagnostic engine in detecting an anomaly (Kurtoglu
et al., 2008)

Mfd = tfd (1)

Fault Isolation Time (Mfi): The time for isolating a
fault (Kurtoglu et al., 2008). In many applications this
metric is less important than the diagnostic accuracy,
but it is important in sequential diagnosis, probing, etc.

Mfi = tfi (2)

False Positive Rate (Mfp): The metric that penal-
izes diagnostic algorithms which announce spurious
faults (Kurtoglu et al., 2008). The false positive rate
is defined as:

Mfp =
∑

s∈S mfp(s)
|S|

(3)

where for each scenario s the “false positive” func-
tion mfp(s) is defined as:

mfp(s) =
{

1, if tfd < tinj

0, otherwise (4)

where tinj =∞ for nominal scenarios.

False Negative Rate (Mfn): The metric that mea-
sures the ratio of missed faults by a diagnostic algo-
rithm (Kurtoglu et al., 2008).

Mfn =
∑

s∈S mfn(s)
|Sf |

(5)

where for each scenario s the “false negative” func-
tion mfn(s) is defined as:

mfn(s) =
{

1, if tfd =∞
0, otherwise (6)

Detection Accuracy (MFDA): The fault detection
accuracy is the ratio of number of correctly classified
cases to the total number of cases (Kurtoglu et al.,
2008). It is defined as:

MFDA = 1−
∑

s∈S mfp(s) + mfn(s)
|S|

(7)

Classification Errors (Mia): Isolation classification
error metric measures the accuracy of the fault isola-
tion by a diagnostic algorithm and is defined as the
Hamming distance (The Hamming distance between
two strings of data values is the number of positions
for which the corresponding data values are different)
between the true component mode vector ωact and the
predicted component mode vector ωpre.

In the calculation of the classification error metric,
the data values for the Hamming distance are the re-
spective modes of components comprising a system
description. For example, if the true component mode
vector of the system is [1,0,0,1,0] and the predicted
component mode vector is [1,1,0,0,0], the classifica-
tion error is 2. If more than one predicted mode vec-
tor is reported by a DA, (meaning that the diagnostic
output consists of a set of candidate diagnoses), then
the classification error is calculated for each predicted
component mode vector and weighted by the candidate
probabilities reported by the DA.

CPU Load (Mcpu): This is the average CPU load
during the experiment

Mcpu = ts +
∑
q∈Td

q (8)

where ts is the startup time of the diagnostic engine
and Td is a vector with the actual CPU time spent by
the diagnostic algorithm at every time step in the diag-
nostic session.

6

Annual Conference of the Prognostics and Health Management Society, 2009

Memory Load (Mmem): This is the maximum
memory size at every step in the diagnostic session.
CPU load during the experiment

Mmem = max
m∈Md

m (9)

where Md is a vector with the maximum memory
size at every step in the diagnostic session.

4.3 Diagnostic Algorithms
A total of ten DAs were tested, nine in full ADAPT
and six in ADAPT-Lite. Brief descriptions of each of
these algorithms are provided below.

1. FACT - a model-based diagnosis system that uses
hybrid bond graphs, and models derived from
them, at all levels of diagnosis, including fault
detection, isolation, and identification. Faults
are detected using an observer-based approach
with statistical techniques for robust detection.
Faults are isolated by matching qualitative devia-
tions caused by fault transients to those predicted
by the model. For systems with few operating
configurations, fault isolation is implemented in
a compiled form to improve performance (Roy-
choudhury et al., 2009).

2. Fault Buster - is based on a combination of multi-
variate statistical methods, for the generation of
residuals. Once the detection has been done a
neural network performs classification for doing
isolation.

3. HyDE-A - HyDE (Hybrid Diagnosis Engine) is
a model-based diagnosis engine that uses con-
sistency between model predictions and obser-
vations to generate conflicts which in turn drive
the search for new fault candidates. HyDE-A
uses discrete models of the system and a dis-
cretization of the sensor observations for diagno-
sis (Narasimhan and Brownston, 2007).

4. HyDE-S - uses the HyDE system but runs it on
interval values hybrid models and the raw sensor
data (Narasimhan and Brownston, 2007).

5. ProADAPT - processes all incoming environment
data (observations from a system being diag-
nosed), and acts as a gateway to a probabilistic
inference engine. It uses the Arithmetic Circuit
(AC) Evaluator which is compiled from Bayesian
network models. The primary advantage to using
ACs is speed, which is key in resource bounded
environments (Mengshoel, 2007).

6. RacerX - is a detection-only algorithm which de-
tects a percentage change in individual filtered
sensor values to raise a fault detection flag.

7. RODON - is based on the principles of the Gen-
eral Diagnostic Engine (GDE) as described by de
Kleer and Williams and the G+DE by Heller and
Struss. RODON uses contradictions (conflicts)

between the simulated and the observed behav-
ior to generate hypotheses about possible causes
for the observed behavior. If the model contains
failure modes besides the nominal behavior, these
can be used to verify the hypotheses, which speed
up the diagnostic process and improve the results
(Karin et al., 2006).

8. RulesRule - is a rule-based isolation-only algo-
rithm. The rule base was developed by analyz-
ing the sample data and determining character-
istic features of fault. There is no explicit fault
detection though isolation implicitly means that a
fault has been detected.

9. StanfordDA - is an optimization-based approach
to estimating fault states in a DC power system.
The model includes faults changing the circuit
topology along with sensor faults. The approach
can be considered as a relaxation of the mixed es-
timation problem. We develop a linear model of
the circuit and pose a convex problem for estimat-
ing the faults and other hidden states. A sparse
fault vector solution is computed by using l1 reg-
ularization (Zymnis et al., 2009).

10. Wizards of Oz - is a consistency-based algorithm.
The model of the system completely defines the
stable (static) output of the system in case of nor-
mal and faulty behavior. Given a new command
or new observations, the algorithm waits for a sta-
ble state and computes the minimum diagnoses
consistent with the observations and the previous
diagnoses.

5 RESULTS AND DISCUSSION
The benchmarking results for ADAPT-Lite and
ADAPT are shown in Tables 4 and 5, respectively.
Figures 5 - 8 are graphical depictions of data in Table
4 and Figures 13 - 16 are graphical depictions of data
in Table 5. No DA dominated over all metrics used
for benchmarking. For ADAPT-Lite, seven of the nine
algorithms tested were best or second best with respect
to at least one of the metrics. For ADAPT, five of six
algorithms fit this description.

We discuss the ADAPT-Lite results next. Figure 5
shows the false positive rate, false negative rate, and
detection accuracy. As is evident from the definition
of the metrics in section 4.2, an algorithm that has
lower false positive and negative rates will have higher
detection accuracy. False positives were counted in the
following two situations: for nominal scenarios where
the DA declared a fault; and for faulty scenarios where
the DA declared a fault before any fault was injected.
An error in the rule base of RulesRule led to more false
positive indications for the faulty scenarios than for the
nominal scenarios and also resulted in a large number
of classification errors. Other false positives were due
to noise in the data. Figure 9 shows a nominal run
in which a current sensor exhibited a spike at approx-
imately 73 seconds. Seven out of nine DAs issued a

7

Annual Conference of the Prognostics and Health Management Society, 2009

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
O

D
O

N

W
iz

ar
d

sO
fO

z

Fa
u

lt
B

u
st

er

P
ro

A
D

A
P

T

H
yD

E-
A

H
yD

E-
S

R
u

le
sR

u
le

FA
C

T

R
ac

er
X

R
at

e
 o

r
A

cc
u

ra
cy

FP Rate

FN Rate

Det Acc

Figure 5: ADAPT-Lite false positive rate, false nega-
tive rate, and detection accuracy by DA.

0

10

20

30

40

50

60

70

80

R
O

D
O

N

W
iz

ar
d

sO
fO

z

Fa
u

lt
B

u
st

er

P
ro

A
D

A
P

T

H
yD

E-
A

H
yD

E-
S

R
u

le
sR

u
le

FA
C

T

R
ac

er
X

To
ta

l N
u

m
b

e
r

o
f

C
la

ss
if

ic
at

io
n

 E
rr

o
rs

Errors

Figure 6: ADAPT-Lite classification errors by DA.

false positive for this run, only HyDE-A and Wizards
of Oz did not declare a fault.

Many false negatives were caused by scenarios in
which a sensor reading was stuck within the nominal
range of the sensor. Figure 10 shows a voltage sensor
that freezes its reading at 118 seconds. Only ProAD-
APT correctly detected this fault.

The number of classification errors for each DA is
shown in Figure 6. ProADAPT was the only DA to
correctly detect and classify sensor-stuck faults of the
type shown in Figure 10. Furthermore, aside from
one run, it also correctly distinguished between sensor-
stuck and sensor-offset faults, examples of which are
shown in Figure 11. The distinction in the fault be-
havior is that stuck has zero noise while offset has
the noise of the original signal. Also, the sensor-stuck
faults were set to the minimum or maximum value of
the sensor or held at its last reading. However, we
did not specify to DA developers that the stuck val-
ues would be limited to these cases. Figure 12 shows
number of faults injected and aggregate classification
errors for all DAs by component/fault type. The cate-
gory ‘Sensor’ includes faults in current, voltage, tem-

0

2000

4000

6000

8000

10000

12000

14000

16000

R
O

D
O

N

W
iz

ar
d

sO
fO

z

Fa
u

lt
B

u
st

er

P
ro

A
D

A
P

T

H
yD

E-
A

H
yD

E-
S

R
u

le
sR

u
le

FA
C

T

R
ac

er
X

Ti
m

e
 (

m
se

c)

T_det

T_iso

Figure 7: ADAPT-Lite detection and isolation times
by DA.

0

5000

10000

15000

20000

25000

30000

R
O

D
O

N

W
iz

ar
d

sO
fO

z

Fa
u

lt
B

u
st

er

P
ro

A
D

A
P

T

H
yD

E-
A

H
yD

E-
S

R
u

le
sR

u
le

FA
C

T

R
ac

er
X

Ti
m

e
(m

s)
 o

r
R

A
M

(k
b

)

Mean CPU Time (ms)

Mean Peak Memory
Usage (kb)

Figure 8: ADAPT-Lite CPU time and peak memory
usage by DA.

perature, phase angle, and switch position sensors. Be-
cause of this grouping, the figure shows more sensor
faults injected than other types. The number of classi-
fication errors in sensor fault scenarios is quite high.
Part of the reason is due to the fact that most DAs
reported either stuck or offset consistently or they re-
ported both with equal weight. In this benchmarking
study, no partial credit was given for correctly naming
the failed component but incorrectly isolating the fail-
ure mode. We realize however, that isolating to a failed
component or line-replaceable-unit (LRU) in mainte-
nance operations is sometimes all that is required. We
plan to revisit this metric in future benchmarking work.

In several instances DAs reported component mode
IDs which did not match the names specified in the
system catalog. For these cases the diagnosis was
treated as an empty candidate. This could either nega-
tively or positively impact the classification error met-
ric depending on whether the DA had a correct or in-
correct isolation.

The detection and isolation times are shown in Fig-
ure 7. RacerX did not have an isolation time as
it was a detection-only DA. Second, note the some-

8

Annual Conference of the Prognostics and Health Management Society, 2009

0 50 100 150 200 250
6

6.5

7

7.5

8

8.5

9

Time (s)

C
ur

re
nt

 (
A

)

Figure 9: A nominal run with spike in sensor IT240,
battery 2 current.

0 50 100 150 200 250
22.88

22.9

22.92

22.94

22.96

22.98

23

23.02

Time (s)

V
ol

ta
ge

 (
V

)

Figure 10: An example of sensor-stuck failure mode
for voltage sensor E261, the downstream voltage of
relay EY260.

what confusing result that the mean isolation time for
RulesRule was less than the mean detection time. This
has to do with the way the metrics are calculated. The
detection time is undefined for scenarios with a false
positive; however, the isolation time is not necessar-
ily undefined and is calculated as discussed in section
4.2. The intent is to account for the situation where
a DA retracts a spurious detection signal and subse-
quently isolates to the correct component. In this case
the scenario is declared a false positive but the accu-
racy and timing of the isolation are calculated with re-
spect to the last persistent diagnosis. Consequently,
for DAs with many false positives the detection time
may be calculated for fewer scenarios than the isola-
tion time with the result that the mean isolation time
for all scenarios could be less than the mean detection
time. However, in any scenario where both times are
defined, the DA isolation time is always greater than
or equal to the detection time, as would be expected.

Note that the same DA was implemented by two

0 50 100 150 200 250
0

100

200

300

400

500

600

700

800

900

Time (s)

F
an

 S
pe

ed
 (

R
P

M
)

Offset
Stuck

Figure 11: Fan speed sensor ST516 with sensor-offset
and sensor-stuck faults.

0

10

20

30

40

50

60

70

80

B
at

te
ry

R
el

ay

C
ir

c
B

re
ak

Se
n

so
r_

st
u

ck

Se
n

so
r_

o
ff

se
t

In
ve

rt
er

Fa
n

N
u

m
b

e
r

o
f

Fa
u

lt
 I

n
je

ct
io

n
s

o
r

C
la

ss
if

ic
at

io
n

 E
rr

o
rs

#Faults Injected

Errors

Figure 12: ADAPT-Lite classification errors by com-
ponent/fault type.

different modelers for ADAPT-Lite. HyDE-A was
modeled primarily with the larger and more com-
plex ADAPT in mind and had a policy of waiting
for transients to settle before requesting a diagnosis.
The same policy was applied to ADAPT-Lite as well,
even though transients in ADAPT-Lite corresponded
strictly to fault events; this prevented false positives
in ADAPT but negatively impacted the timing met-
ric in ADAPT-Lite. On the other hand, HyDE-S was
modeled only for ADAPT-Lite and did not include a
lengthy time-out period for transients to settle. HyDE-
S had dramatically smaller mean detection and isola-
tion times (Figure 7) with roughly the same number
of classification errors (Figure 6) as HyDE-A. This il-
lustrates the impact that modeling and implementation
decisions have on DA performance. While this gives
some insight into trade-offs present in building mod-
els, in this work we did not define metrics that directly
address the ease or difficulty of building models of suf-
ficient fidelity for the diagnosis task at hand.

Figure 8 shows the CPU and memory usage.
Note that significant differences were evident in the

9

Annual Conference of the Prognostics and Health Management Society, 2009

peak memory usage metric when run on Linux ver-
sus WindowsTM. The cause for this was not explored
due to time constraints, as the method used on Win-
dows for calculating peak memory usage involved a
WindowsTMAPI system call, the analysis of which was
deemed too expensive. RODON was the only Java DA
that was run on Windows, which adversely affected its
memory usage metric.

We now discuss the benchmarking results for the
larger ADAPT system. Figure 13 shows the false pos-
itive rate, false negative rate, and detection accuracy.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
O

D
O

N

W
iz

ar
d

sO
fO

z

Fa
u

lt
B

u
st

er

P
ro

A
D

A
P

T

H
yD

E

St
an

fo
rd

R
at

e
 o

r
A

cc
u

ra
cy

FP Rate

FN Rate

Det Acc

Figure 13: ADAPT false positive rate, false negative
rate, and detection accuracy by DA.

0

20

40

60

80

100

120

140

160

180

R
O

D
O

N

W
iz

ar
d

sO
fO

z

Fa
u

lt
B

u
st

er

P
ro

A
D

A
P

T

H
yD

E

St
an

fo
rd

To
ta

l N
u

m
b

e
r

o
f

C
la

ss
if

ic
at

io
n

 E
rr

o
rs

Errors

Figure 14: ADAPT classification errors by DA.

The comments in the ADAPT-Lite discussion about
noise and sensor stuck apply here as well. Addition-
ally, false positives also resulted from nominal com-
manded mode changes in which the relay feedback did
not change status as of the next data sample after the
command. Here is an extract from one of the input
scenario files that illustrates this situation:

command @120950 EY275 CL = false;
sensors @121001 {...ESH275 = true, ...}
sensors @121501 {...ESH275 = false, ...}
A command is given at 120.95 seconds to open re-

lay EY275. The associated relay position sensor does
not indicate open as of the next sensor data update 51

0

10000

20000

30000

40000

50000

60000

R
O

D
O

N

W
iz

ar
d

sO
fO

z

Fa
u

lt
B

u
st

er

P
ro

A
D

A
P

T

H
yD

E

St
an

fo
rd

Ti
m

e
 (

m
se

c)

T_det

T_iso

Figure 15: ADAPT detection and isolation times by
DA.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

R
O

D
O

N

W
iz

ar
d

sO
fO

z

Fa
u

lt
B

u
st

er

P
ro

A
D

A
P

T

H
yD

E

St
an

fo
rd

Ti
m

e
(m

s)
 o

r
R

A
M

(k
b

)

Mean CPU Time (ms)

Mean Peak Memory
Usage (kb)

Figure 16: ADAPT CPU time and peak memory usage
by DA.

milliseconds later. This is nominal behavior for the
system. A DA that does not account for this delay will
indicate a false positive in this case.

The number of classification errors for each DA is
shown in Figure 14. There were significantly more
errors when compared to ADAPT-Lite. One reason is
simply because there were more fault scenarios over-
all, resulting in more than four times as many faults in-
jected in ADAPT compared to ADAPT-Lite. Another
reason is because of the presence of multiple faults.
Figure 17 shows the breakdown of classification errors
by the number of faults in the scenario. The errors in
the no-fault scenarios were obviously due to false pos-
itives. The double and triple faults are lumped into one
multiple fault category. Note that there were an equal
number of single fault and multiple fault scenarios, 40.
Counting the number of faults injected in the scenar-
ios, there were 40 total faults in the single fault scenar-
ios and 90 total faults in the multiple fault scenarios.
A DA that did not return any diagnoses at all would
have 40 errors for single fault case and 90 errors for
multiple faults. This is essentially what happened with
FaultBuster because the diagnoses returned were not
consistent with the fault catalog and they were treated
as empty candidates (the same was true for FaultBuster

10

Annual Conference of the Prognostics and Health Management Society, 2009

ADAPT-Lite). Figure 18 shows the errors by fault
type.

0

10

20

30

40

50

60

70

80

90

100
R

O
D

O
N

W
iz

ar
d

sO
fO

z

Fa
u

lt
B

u
st

er

P
ro

A
D

A
P

T

H
yD

E

St
an

fo
rd

To
ta

l N
u

m
b

e
r

o
f

C
la

ss
if

ic
at

io
n

 E
rr

o
rs

Errors-No Fault

Errors-Single Fault

Errors-Multiple Faults

Figure 17: ADAPT classification errors per number of
faults by DA.

0

50

100

150

200

250

R
el

ay

C
ir

c
B

re
ak

Se
n

so
r_

st
u

ck

Se
n

so
r_

o
ff

se
t

In
ve

rt
er

Lo
adN
u

m
b

e
r

o
f

Fa
u

lt
 I

n
je

ct
io

n
s

o
r

C
la

ss
if

ic
at

io
n

 E
rr

o
rs

Faults Injected

Errors

Figure 18: ADAPT classification errors by fault type.

The errors in the multiple fault scenarios were
evenly divided among the faults; for example, if there
were four classification errors in a scenario where two
faults were injected, each fault was assigned two er-
rors. We also did a more thorough assessment in which
each diagnosis candidate was examined and classifi-
cation errors were assigned to fault categories based
on an understanding of which sensors are affected by
the faults. The results are similar to evenly dividing
the errors among the faults and are not shown here.
The category ‘Loads’ includes faults in the fan, lights,
pumps, and resistors. The category ‘Sensor’ includes
faults in current, voltage, light, temperature, phase an-
gle, and switch position sensors. Once again, there
were many errors due to not distinguishing between
offset and stuck faults and not detecting stuck faults
that were within the nominal range of the sensor.

Figure 15 shows the detection and isolation times.
The times are within the same order of magnitude for
the different DAs. Some DAs have isolation times that
are similar to its detection times while others show
isolation times that are much greater than the detec-
tion times. This could reflect differences in reasoning

strategies or differences in policies for when to declare
an isolation based on accumulated evidence.

The CPU and memory usage are shown in Fig-
ure 16. The same comment for RODON mentioned
previously in regards to memory usage applies here.
The convex optimization approach applied in the Stan-
ford DA(Gorinevsky and Poll, 2009) and the compiled
arithmetic circuit in the ProADAPT DA (Ricks and
Mengshoel, 2009) lead to very low CPU usages.

6 LIMITATIONS AND FUTURE WORK

We would like to extend the benchmarking efforts
in several directions. Some obvious candidates are
adding new systems, new DAs, and new metrics to the
scope. The primary goal of the work described in this
paper was to benchmark the available set of DAs on the
ADAPT system. As a result we made several simpli-
fying assumptions. We also ran into several issues dur-
ing the course of this implementation that could not be
addressed. In this section, we try to present those as-
sumptions and issues, which we hope can be addressed
in future work.

6.1 ADAPT System Scenarios
We intentionally limited the scope of the scenarios
used in the benchmarking in order to focus on the
performance of the DAs. Although we would like
to include variable loads in future experiments, there
were none used in this benchmarking activity. We lim-
ited ourselves to abrupt parametric and discrete faults.
Faults were inserted assuming uniform probabilities
and included component and sensor faults only. We
plan to introduce other fault types (incipient, intermit-
tent, and noise) in the future. We also understand that
a true test would simulate operating conditions of the
real system, i.e. the system operates nominally for
long periods of time and failures occur periodically
following the prior probability of failure distribution.
It was also assumed that all sensor data was available
to the DAs at all time steps. In the future we would
like to relax this assumption and provide only a subset
of the sensor data, possibly at differing sampling rates.

6.2 Metrics
Selecting the set of metrics to be used for benchmark-
ing was a challenging job. We based our decision on
the system and kinds of faults we were dealing with. In
reality we also need to design metrics more closely as-
sociated with the context of use. One common metric
is to minimize total cost of repair where cost includes
down time to the customer, diagnostician’s time, parts,
etc. In addition, since we were dealing with abrupt,
persistent, and discrete faults, metrics associated with
incipient, intermittent, and/or continuous faults were
not considered. The metrics listed in this paper do not
capture the amount of effort necessary to build models
of sufficient fidelity for the diagnosis task at hand. Fur-
thermore, we did not attempt to investigate the ease or

11

Annual Conference of the Prognostics and Health Management Society, 2009

Table 4: ADAPT-Lite DA Results
RODON Wizards

Of Oz
Fault
Buster

Pro-
ADAPT

HyDE-
A

HyDE-
S

Rules-
Rule

FACT RacerX

FP Rate 0.0645 0.0000 0.1333 0.0333 0.0000 0.2000 0.8246 0.2813 0.0645
FN Rate 0.0968 0.5000 0.3438 0.0313 0.4688 0.0741 0.0000 0.0667 0.1613
Det Acc 0.9194 0.7419 0.7581 0.9677 0.7581 0.8548 0.2419 0.8226 0.8871
Class Errors 10.000 24.000 32.000 2.000 26.649 26.000 76.000 25.000 32.000
Tdet(ms) 218 11530 1893 1392 13223 130 1000 373 126
Tiso(ms) 7205 11626 9259 4084 13840 653 282 9796 999999
CPU(ms) 11766 1039 2039 1601 24795 513 117 1767 139
Mem(kb) 26679 1781 2539 1680 5447 5795 3788 4340 3572

Table 5: ADAPT DA Results
RODON Wizards

Of Oz
Fault
Buster

Pro-
ADAPT

HyDE Stanford

FP Rate 0.5417 0.5106 0.8143 0.0732 0.0000 0.3256
FN Rate 0.0972 0.0959 0.2400 0.1392 0.3000 0.0519
Det Acc 0.7250 0.7417 0.4250 0.8833 0.8000 0.8500
Class Errors 84.067 159.248 130.000 76.000 121.569 110.547
Tdet(ms) 3490 30742 14099 5981 17610 3946
Tiso(ms) 36331 47625 37808 12486 21982 14103
CPU(ms) 80261 23387 5798 3416 29612 963
Mem(kb) 29878 7498 10261 6539 20515 5912

difficulty of updating models with new or changed sys-
tem information. The art of building models is an im-
portant practical consideration which is not addressed
in the current work.

In future work, we would like to determine a set
of application-specific use cases (maintenance, au-
tonomous operation, abort decision etc.) that the DA
is supporting and select metrics that would be relevant
to that use case. For example, in an abort decision-
support use case the detection time would be of utmost
importance, however in an autonomous operation use
case isolation accuracy would be more important.

6.3 Runtime Architecture
Some practical issues arose in the execution of exper-
iments. Much effort was put into ensuring stable, uni-
form conditions on the host machines; however, due
to time constraints and the unpredictable element in-
troduced by running DAs developed externally, it was
necessary to take measures that may have caused slight
variability.

7 CONCLUSION
We presented the results from our effort to benchmark
a set of diagnostic algorithms on the ADAPT electri-
cal power system testbed. We learned some valuable
lessons in trying to complete this effort. One major
takeaway is that there is still a lot of work and dis-
cussion needed to determine a common comparison
and evaluation framework for the diagnosis commu-

nity. The other key observation is that no DA was able
to be best in a majority of the metrics. This clearly
indicates that the selection of DAs would necessarily
involve a trade-off analysis between various prefor-
mance metrics.

As outlined in the previous section we have iden-
tified some of the limitations of our work. We are
already in the process of planning continued exper-
iments on the ADAPT system. We are also trying
to identify other real systems that might be used for
benchmarking since we believe that the performance
of the DAs is also tied the system being diagnosed.
Our long-term goal is to create a database of bench-
marking results which presents the performance of a
growing set of DAs on a growing set of application
domains. We hope that such a database would help
mission managers and operations personnel perform
trade-off studies to determine which DAs they could
consider for deployment on their systems.

ACKNOWLEDGMENTS

We extend our gratitude to Johan de Kleer (PARC),
Alexander Feldman (Delft University of Technology),
Lukas Kuhn (PARC), Serdar Uckun (PARC), Peter
Struss (Technical University Munich), Gautam Biswas
(Vanderbilt University), Ole Mengshoel (Carnegie
Mellon University), Kai Goebel (University Space Re-
search Association), Gregory Provan (University Col-
lege Cork), and many others for valuable discussions
in establishing the benchmarking framework. In ad-

12

Annual Conference of the Prognostics and Health Management Society, 2009

dition, we extend our gratitude to David Nishikawa
(NASA), David Jensen (Oregon State University),
Brian Ricks (University of Texas at Dallas), Adam
Sweet (NASA), David Hall (Stinger Ghaffarian Tech-
nologies), and many others for supporting the bench-
marking activity reported here.

REFERENCES

(Bartys et al., 2006) M. Bartys, R. Patton, M. Syfert,
S. de las Heras, and J. Quevedo. Introduction to the
DAMADICS actuator FDI benchmark study. 2006.

(Basseville and Nikiforov, 1993) M. Basseville and
I. Nikiforov. Detection of Abrupt Changes.
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1993.

(de Freitas, 2001) N. de Freitas. Rao-blackwllised
particle filtering for fault diagnosis. In Proceedings
of IEEE Aerospace Conference (AEROCONF’01),
2001.

(Gertler and Inc., 1998) Janos J. Gertler and NetLi-
brary Inc. Fault detection and diagnosis in engi-
neering systems[electronic resource]. New York:
Marcel Dekker, 1998.

(Gorinevsky and Poll, 2009) D. Gorinevsky and
S. Poll. Estimation of faults in dc electrical power
system. In Proceedings of American Control
Conference, 2009.

(Hamscher et al., 1992) W. Hamscher, L. Console,
and J. de Kleer. Readings in Model-Based Diag-
nosis. Morgan Kaufmann, San Mateo, Ca, 1992.

(Iverson, 2004) D. Iverson. Inductive system health
monitoring. In Proceedings of The 2004 Interna-
tional Conference on Artificial Intelligence (ICAI),
2004.

(Karin et al., 2006) L. Karin, R. Lunde, and
B. Münker. Model-based failure analysis with
RODON. In Proceedings 17th European Con-
ference on Artificial Intelligence (ECAI’06),
2006.

(Kavcic and Juricic, 1997) M. Kavcic and D. Juricic.
A prototyping tool for fault tree based process di-
agnosis. In Proceedings of 8th International Work-
shop on Principles of Diagnosis (DX’1997), 1997.

(Kostelezky et al., 1990) W. Kostelezky, W. Krautter,
R. Skuppin, M. Steinert, and R. Weber. The rule-
based expert system Promotex I. Technical Re-
port 2, ESPRIT-Project #1106, Stuttgart, 1990.

(Kurtoglu et al., 2008) T. Kurtoglu, O. J. Mengshoel,
and S. Poll. A framework for systematic bench-
marking of monitoring and diagnostic systems. In
Annual Conference of the Prognostics and Health
Management Society (PHM’08), 2008.

(Kurtoglu et al., 2009a) T. Kurtoglu, S. Narasimhan,
S. Poll, D. Garcia, L. Kuhn, J. de Kleer, A. van

Gemund, and A. Feldman. A framework for sys-
tematic benchmarking of monitoring and diagnos-
tic systems. In Proceedings of 20th International
Workshop on Principles of Diagnosis (DX’09),
pages 383–396, 2009.

(Kurtoglu et al., 2009b) T. Kurtoglu, S. Narasimhan,
S. Poll, D. Garcia, L. Kuhn, J. de Kleer, A. van
Gemund, and A. Feldman. Towards a framework
for evaluating and comparing diagnosis algorithms.
In Proceedings of 20th International Workshop on
Principles of Diagnosis (DX-09), pages 373–382,
2009.

(Lerner et al., 2000) U. Lerner, R. Parr, D. Koleer,
and G. Biswas. Bayesian fault detection and diag-
nosis in dynamic systems. In Proceedings of The
Seventeenth National Conference on Artificial In-
telligence (AAAI’00), pages 531–537, 2000.

(Mengshoel, 2007) O. J. Mengshoel. Designing
resource-bounded reasoners using bayesian net-
works: System health monitoring and diagnosis.
In Proceedings of 18th International Workshop on
Principles of Diagnosis (DX’07), pages 330–337,
2007.

(Narasimhan and Brownston, 2007) S. Narasimhan
and L. Brownston. HyDE - a general framework
for stochastic and hybrid modelbased diagnosis.
In Proceedings of 18th International Workshop on
Principles of Diagnosis (DX’07), pages 162–169,
2007.

(Orsagh et al., 2002) R. Orsagh, M. Roemer, C. Sav-
age, and M. Lebold. Development of preformance
and effectiveness metrics for gas turbine diagnos-
tic techniques. In Proceedings of IEEE Aerospace
Conference (AEROCONF’02), pages 2825–2834,
2002.

(Poll et al., 2007) S. Poll, A. Patterson-Hine,
J. Camisa, D. Garcia, D. Hall, C. Lee, O. J.
Mengshoel, C. Neukom, D. Nishikawa, J. Os-
senfort, A. Sweet, S. Yentus, I. Roychoudhury,
M. Daigle, G. Biswas, and X. Koutsoukos. Ad-
vanced diagnostics and prognostics testbed. In
Proceedings of 18th International Workshop on
Principles of Diagnosis (DX’07), 2007.

(Ricks and Mengshoel, 2009) B. Ricks and O. Meng-
shoel. The diagnostic challenge competition: Prob-
abilistic techniques for fault diagnosis in electri-
cal power systems. In Proceedings of 20th In-
ternational Workshop on Principles of Diagnosis
(DX’09), pages 415–422, 2009.

(Roemer et al., 2005) M. Roemer, J. Dzakowic,
R. Orsagh, C. Byington, and G. Vachtsevanos.
Validation and verification of prognostic health
management technologies. In Proceedings of IEEE
Aerospace Conference (AEROCONF’05), 2005.

(Roychoudhury et al., 2009) I. Roychoudhury,
G. Biswas, and X. Koutsoukos. Designing

13

Annual Conference of the Prognostics and Health Management Society, 2009

distributed diagnosers for complex continuous
systems. 2009.

(Simon et al., 2008) L. Simon, J. Bird, C. Davison,
A. Volponi, and R. E. Iverson. Benchmarking gas
path diagnostic methods: A public approach. In
Proceedings of the ASME Turbo Expo 2008: Power
for Land, Sea and Air, GT, 2008.

(Society of Automotive Engineers, 2007) E-32 Soci-
ety of Automotive Engineers, 2007. Health and Us-
age Monitoring Metrics, Monitoring the Monitor,
February 14, 2007, SAE ARP 5783-DRAFT.

(Sorsa and Koivo, 1998) T. Sorsa and H. Koivo. Ap-
plication of artificial neural networks in process
fault diagnosis. 29(4):843–849, 1998.

(Zymnis et al., 2009) A. Zymnis, S. Boyd, and
D. Gorinevsky. Relaxed maximum a posteriori fault
identification. 2009.

Tolga Kurtoglu is a Research Scientist with Mission
Critical Technologies at the Intelligent Systems Divi-
sion of the NASA Ames Research Center working for
the Systems Health Management group. His research
focuses on the development of prognostic and health
management systems, model-based diagnosis, design
automation and optimization, and risk and reliability
based design. He received his Ph.D. in Mechanical
Engineering from the University of Texas at Austin
in 2007 and has an M.S. degree in the same field
from Carnegie Mellon University. Dr. Kurtoglu
has published over 40 articles and papers in various
journals and conferences and is an active member
of ASME, ASEE, AIAA, and AAAI. Prior to his
work with NASA, he worked as a professional design
engineer at Dell Corporation in Austin, Texas.

Sriram Narasimhan is a Computer Scientist
with University of California, Santa Cruz working
as a contractor at NASA Ames Research Center in
the Discovery and Systems Health area. His research
interests are in model-based diagnosis with a focus on
hybrid and stochastic systems. He is the technical lead
for the Hybrid Diagnosis Engine (HyDE) project. He
received his M.S and Ph.D. in Electrical Engineering
and Computer Science from Vanderbilt University. He
also has a M.S in Economics from Birla Institute of
Technology and Science.

Scott Poll is a Research Engineer with the National
Aeronautics and Space Administration (NASA) Ames
Research Center, Moffett Field, CA, where he is the
deputy lead for the Diagnostics and Prognostics Group
in the Intelligent Systems Division. He is co-leading
the evolution of a laboratory designed to enable
the development, maturation, and benchmarking of
diagnostic, prognostic, and decision technologies
for system health management applications. He was
previously the Associate Principal Investigator for
Prognostics in the Integrated Vehicle Health Manage-

ment Project in NASA’s Aviation Safety Program. He
received the BSE degree in Aerospace Engineering
from the University of Michigan in 1994, and the
MS degree in Aeronautical Engineering from the
California Institute of Technology in 1995.

David Garcia is a Computer Programmer with
Stinger Ghaffarian Technologies, working at NASA
Ames Research Center in the Diagnostics and Prog-
nostics Group (Intelligent Systems Division). He
received his BS in Mathematics from Santa Clara
University in 2006. He is the software lead for the
ADAPT project, and designed and implemented the
DXC Framework.

Stephanie Wright obtained her BS degree in
Physics from Seattle University in 2008 and is cur-
rently a graduate student at Vanderbilt University in
the EECS department. At Vanderbilt University she
is a research assistant in the MACS (Modeling and
Analysis of Complex Systems) group and her research
interests are in diagnostics and health management of
complex systems.

14

