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ABSTRACT 

The Cutty Sark is undergoing major conservation to slow 
down the deterioration of the original Victorian fabric of 
the ship. The conservation work being carried out is “state 
of the art” but there is no evidence at present for 
predictions of the effectiveness of the conservation work 
50 plus years ahead. A Prognostics Framework is being 
developed to monitor the “health” of the ship’s iron 
structures to help ensure a 50 year life once restoration is 
completed. This paper presents the prognostics framework 
being developed using three prognostics approaches: 
Physics-of-Failure (PoF) models, Data-driven methods and 
a fusion approach integrating both former approaches. 
“Canary” and “Parrot” devices have been designed to 
mimic the actual mechanisms that would lead to failure of 
the iron structures.  A PoF model based on decrease of 
corrosion rate over time is used to predict the remaining 
life of an iron structure. Mahalanobis Distance (MD) is 
used as a precursor monitoring technique to obtain a single 
comparison metric from multiple sensor data to represent 
anomalies detected in the system which could lead to 
failures. Bayesian Network models integrating remaining 
life predictions from PoF models with information of 
possible anomalies from MD analysis, are used to obtain 
more accurate predictions of remaining life.  As a 
demonstration, PoF models and MD analysis are applied to 
a pair of “canary” and “parrot” devices for which 

corrosion data was generated using temperature, 
humidity and time as the factors causing corrosion.*  

1. INTRODUCTION 
The Cutty Sark is a composite-built vessel with a 
wrought iron frame and teak and rock elm strakes 
fastened to it. Conservation work is currently being 
carried out due to extensive deterioration of the 
wrought iron frame and timber planking (Campbell, 
2005). On completion of the conservation work, a 
decision support system will be put in place to 
monitor and predict the “health” of the ship’s iron 
structures in the future. The decision support system 
will be built upon the prognostics framework to 
achieve these aims. Corrosion is the main cause of 
deterioration of the wrought iron framework. 
Various forms of corrosion are prevalent on Cutty 
Sark and monitoring of the rates of these different 
corrosion types is a challenge. Common intrusive 
measurement techniques have high risk of damage 
to the Victorian fabric of Cutty Sark structures. 
Additionally, information on the corrosion of 
wrought iron structures in the literature is scarce. 
There is are few models that attempt to predict 
corrosion rate due to different influencing factors 
such as relative humidity, temperature, time of 
                                                
* This is an open-access article distributed under the terms 
of the Creative Commons Attribution 3.0 United States 
License, which permits unrestricted use, distribution, and 
reproduction in any medium, provided the original author 
and source are credited. 
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wetness, chloride concentration and other contaminants in 
the environment.    

The aim of this paper is to present the prognostics 
framework being developed for the iron structures of the 
Cutty Sark. This paper is organized into the two main 
sections. The first section describes the prognostics 
framework along with the different methodologies 
integrated within. The second section provides a 
demonstration of the prognostics framework developed. 

2. PHM APPROACH FOR CUTTY SARK IRON 
STRUCTURES 

The prognostics and diagnostics terminologies are used to 
describe the broad range of processes which aim to 
determine material condition at present time and also at a 
later predetermined time. Diagnostics is the process of 
determining the current state of a system (Hess et al., 
2005) while prognostics is the process of predicting its 
future state. 

2.1 Overview of Prognostic Methodologies  
The environmental conditions and lifecycle loads under 
which a system is subjected to are not usually taken into 
account by commonly used reliability prediction methods. 
Prognostics and health management approach accounts for 
environmental conditions and lifecycle loads subjected to a 
system to assess the current and future “health” of a 
system (Pecht et al., 2007). The prognostic techniques 
employed for the Cutty Sark can be classified into the 
following (Kumar and Pecht, 2007): 
 
1. Canary Devices: These are prognostic devices integrated 

into a specific system incorporating the same failure 
mechanisms as the embedded system, but failing at a 
faster rate than the actual system.  

2. Physics-of-Failure(PoF): Failures in a system are 
usually due to the processes occurring within and around 
the system. The PoF methodology aims to carry out 
prognostics by first calculating the cumulative damage 
accumulation due to various failure mechanisms within 
a particular environment of a system and then analyzing 
this information to give predictions of remaining life of 
the system.  

3. Precursor Monitoring and Data Trend Analysis: Two 
main steps are involved: (i) FMEA to identify the 
precursor variables for monitoring, (ii) Development of 
a reasoning algorithm to correlate the change in the 
precursor variable with the impending failure. 

4. Data-Driven Methods: These methods are typically 
derived from machine learning techniques such as (i) 
models that establishes a set of interconnection 
relationships between input and output where the 
parameters of the relationship are adjusted with more 
information, (ii) detection algorithms that learn a model 
of the nominal behaviour of a system and the indicates 
an anomaly when new data fails to match that model 
(Vichare and Pecht, 2006). 

2.2 Prognostic Framework for Cutty Sark Iron 
Structures  

The Prognostic Framework for Cutty Sark Iron 
Structures is based on the model shown in Figure 1. 
Descriptions and details of how the three main 
prognostics approaches, as mentioned in section 2.1, 
will be used to predict the “Health” of Cutty Sark 
iron structures are discussed in Sections 3-6. 

 
Figure 1: Prognostics Framework for Cutty Sark 

Iron Structures 
 
3. CANARY AND PARROT DEVICES 

3.1 Origin of Canary Devices 
The word “canary” is derived from one of the coal 
mining’s earliest systems for warning of the 
presence of hazardous gas using the canary bird. 
Because the canary is more sensitive to hazardous 
gases than humans, the death or sickening of the 
canary was an indication to the miners to get out of 
the shaft. The canary thus provided an effective 
early warning of catastrophic failure that was easy 
to interpret (Vichare and Pecht, 2006). In PHM, the 
same idea is used such that canary devices are used 
in the actual systems providing advance warning of 
failures. Canary devices are accelerated devices 
which will fail according to similar failure 
mechanisms to that of the actual system being 
monitored and will fail faster than the actual system 
under the same environmental and operational 
loading conditions, thus providing an early warning 
of failure. 

3.2 Design of Canary and Parrot Devices for 
Cutty Sark and HMS Warrior 

A similar methodology will be implemented for the 
prognostics framework of Cutty Sark iron 
structures, the main purpose of which is to provide 
an awareness of the onset of degradation 
mechanisms before any major failure of the iron 
structures occurs. Along with Canary devices, Parrot 
devices have been introduced to be used in 
situations where the quantitative measurements on 
the actual system are hard to obtain. The parrot 
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devices are built with similar material and represent the 
same configurations of the actual iron structures.  

Trials of the Canary and Parrot Devices are currently 
being commissioned on HMS Warrior for a one year 
period. These Canary and Parrot devices will be placed in 
pairs in locations experiencing different environmental 
conditions within HMS Warrior.  

The degradation of the canary devices will be 
assessed using accelerated testing and the degradation 
levels will be calibrated and correlated to the degradation 
levels of the parrot devices which in turn will be calibrated 
and correlated to the actual failure levels of the iron 
structures. 
 
4. PHYSICS OF FAILURE MODEL FOR CUTTY 

SARK IRON STRUCTURES 
Physics-of-Failure methodology is based on the principle 
that failures result from fundamental mechanical, 
chemical, electrical, thermal and radiation processes. The 
Physics-of-Failure model used here predicts remaining life 
with regard to deterioration due to corrosion. Corrosion is 
the main cause of failure for Cutty Sark iron structures.  
PoF models for Cutty Sark would ideally incorporate most 
of the environmental and operational loads identified as 
influencing factors causing corrosion (e.g. environmental 
loads, relative humidity, temperature, chloride ion 
concentration, external support structure, operational 
loads, material properties and geometry). However there 
are few such models which have been investigated and 
developed to date. Hence the generic “Linear Bi-
logarithmic Law” for atmospheric corrosion (Pourbaix, 
1982) is used as a starting point for the PoF model for 
Cutty Sark structures. 
 
4.1 Linear Bilogarithmic Law for Atmospheric 

Corrosion  
The Linear Bilogarithmic Law for Atmospheric Corrosion 
first introduced by Pourbaix (Pourbaix, 1982), represents 
corrosion rate as a function of time based on the 
understanding that the buildup of corrosion products often 
tends to reduce the corrosion rate over time according to 
Eq. (1), 

P = AtB              (1) 

Where P is corrosion penetration, t, exposure time, A, 
corrosion during the first year and B, a measure of long 
term decrease in corrosion. 

5. DATA-DRIVEN METHOD: MAHALANOBIS 
DISTANCE ANALYSIS 

5.1 Overview of Data Driven Methods 
Data-driven methods encompass algorithms that learn 
models directly from the data rather than using a hand-
built model based on human expertise. (Schwabacher, 
2005) Common approaches feature the following: (i) 
variants of neural networks, (ii) fuzzy logic, (iii) Bayesian 
networks, (iv) Support Vector Machines and (v)various 
types of anomaly detection algorithms. While application 
of these approaches in industry have been successful to a 

certain degree for diagnostics purposes, 
implementation of these approaches for prognostics 
purposes is still very much at an exploratory stage. 

5.2 Precursor Monitoring using Mahalanobis 
Distance Analysis  

A precursor indication is usually a change in a 
measurable variable that can be associated with 
subsequent failure. (Vichare and Pecht, 2006) 
Failures can then be predicted by using a causal 
relationship between a measured variable that can 
be correlated with subsequent failure. Prediction of 
remaining life using PoF models very often 
encompasses significant uncertainties due to 
inaccuracy of the model itself, inaccuracy in 
measurement processes and varying environmental 
and operational loads which might not have been 
taken into account in the model. Precursor 
monitoring becomes an essential tool in determining 
the current “health” of a system and also providing 
an indication of anomaly developing which can 
affect remaining life.   

For the scope of this work, the following 
precursor variables have been identified: weight 
change, dimension change and electrical resistance. 
Data Trend Analysis is carried out to predict any 
impending failure using Mahalanobis Distance 
analysis (MD). It is a distance measure based on 
correlation between two or more variables from 
which patterns can be identified and analysed. Using 
Mahalanobis Distance, a single metric can be 
obtained from data from multiple sensors for 
various performance factors to represent anomaly 
from a system.  

6. BAYESIAN NETWORK MODELS FOR 
PROGNOSTICS FRAMEWORK 

Bayesian Network (BN) is currently being 
investigated as a tool for integrating information 
processed from model-based and data-driven 
techniques used for this work into the prognostics 
framework. A Bayesian network is a probabilistic 
graphical model that represents a set of variables 
and their probabilistic independencies. Bayesian 
networks are usually used to represent the 
probabilistic relationships between cause and effect. 
Nodes represent the various variables of the system 
(defined over all its possible states) and the 
connecting arrows indicate the causality between 
these variables. Bayesian Networks are based on the 
Bayes’ Rule in Eq. (2): 

          
(2) 

An integration of model-based and data-driven 
prognostics is proposed for the prognostics 
framework with the aim of addressing the following 
issues. A certain degree of uncertainty in the 
prediction of remaining life from PoF models for 
corrosion prevails due to the lack of understanding 
of the complex processes involved in corrosion of 
iron structures. Calibration of the canary and parrot 
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device devices will not always be possible. Good training 
data is required for data trend analysis of precursors to 
deliver reliable results of anomaly detection. Bayesian 
Network models have been developed for the 
canary/parrot device pairs. Further description follows in 
section 7. 

7. DEMONSTRATION OF PROGNOSTICS 
FRAMEWORK UNDER DEVELOPMENT 

The following subsections describe an example which has 
been set up to demonstrate the methods described in the 
previous sections.  
 
7.1 Setup for Demonstration 

A dataset of corrosion rates based on a range of relative 
humidity, temperature and time was generated (Figure 2) 
and is used to test the prognostics framework as shown in 
Figure 3. 
 

 
 

Figure 2: "Real" Corrosion Dataset generated 
 
 

 
Figure 3: Using generated "Real" Corrosion Data to 

develop and test the Prognostics Framework 
 

The prognostics methodologies are tested for a 
parrot device (L= 20000 µm, W= 10000 µm, D= 
12000 µm, wrought iron material) and a canary 
device (L= 20000 µm, W= 10000 µm, D= 6000 µm, 
wrought iron material) as shown in Figure 7, under 
two scenarios: 
 Scenario 1 (Normal): normal relative humidity 

and temperature conditions provide 20 years of 
life for the parrot and 5 years for the canary. 

 Scenario 2 (Mixed): normal conditions during 
the first 8 years, then harsher conditions after 8 
years, resulting in 16 years life for the parrot 
device 

 
7.2 PoF Model: Linear Bilogarithmic Law to 

determine remaining life of Canary and 
Parrot devices 

The PoF model discussed in Section 4.1 is used to 
predict remaining life of Canary (Scenario 1) and 
Parrot (Scenario 1 and 2) devices. Corrosion data 
generated for the first year is used to determine A 
and B using linear regression on Eq. (3): 

ln(P) = ln(A)+Bln(t)                 (3) 

For this demonstration, assuming failure in a canary 
or parrot device is defined as the corrosion 
penetration being more than 3% of the initial depth 
of the device, the predicted remaining life of the 
device can then be calculated using Eq. (4): 

t= e(ln(0.03*D)-lnA)/B              (4) 

This process is repeated each year to update the 
predicted remaining life of the devices. In Figure 4, 
the first few years show predictions of remaining 
life considerable lower than expected which is due 
to the higher rates of corrosion occurring in the first 
few years, thus predicting a shorter remaining life. 
Afterwards, the predicted remaining life is very 
close to the “actual” life for the parrot. In Figure 5, 
the predicted remaining life changes trend after 8 
years reflecting the changes in environmental 
conditions causing failure in the parrot earlier than 
predicted earlier. 

 
Figure 4: PoF for Canary and Parrot Devices under 

Scenario 1 
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Figure 5: PoF for Parrot Device under Scenario 2 

 
7.3 Mahalanobis Distance Analysis of precursors for 

Canary and Parrot devices 
Mahalanobis Distance analysis is carried out for both 
canary and parrot devices using the following precursors: 
(i) dimension change rate, (ii) weight change rate, (iii) 
electrical resistance change rate and (iv) time. Equation (5) 
calculates the square of the Mahalanobis Distance: 

         (5) 
 

Where D2 is Mahalanobis distance, x, of data from 
sensors for observed parameters , m, vector of mean values 
of independent variables from training set and C-1 , inverse 
covariance matrix of independent variables from training 
set.  

The data from the four precursors obtained from the 
dataset for scenario 1 (considered to represent ideal 
environmental conditions) over a year is used as training 
sets for parrot and canary device to obtain a threshold MD 
value. MD Analysis of precursor values for Scenario 2, for 
both canary and parrot devices is carried out. MD Values 
higher than the threshold value indicates anomalies in the 
system. 

Figure 6 shows the graph of MD values over time for 
the training set for canary device where a threshold value 
of 7 was selected.  
 

 
Figure 6: MD Analysis of Training Set for Canary Device 

 
Figure 7 shows how the MD value stays within the MD 

threshold limit as expected during the first year (Scenario 

2). But after the first year, the MD values are 
consistently above the MD threshold value due to 
harsh conditions (Scenario 2) resulting into higher 
values from precursors for the canary device. 
 

 
Figure 7: MD Analysis of Canary under Scenario 2 

 
7.4 Using Bayesian Network models to update 

predicted remaining life of iron structures 
A Bayesian Network model has been built with the 
aim of integrating information processed from 
model-based and data-driven prognostics to obtain 
updated predicted remaining life of the iron 
structures. Remaining life predictions from PoF 
models provide input for the top layer nodes 
representing the causes of failure. Mahalanobis 
Distance Analysis results provide information for 
the bottom layer presenting the effects of failure. 
The nodes in the middle layer represent the 
remaining life prediction of the canary and parrot 
device as well as that of the ship iron structure. Two 
additional nodes are representing time are include 
into the model to account for the point in time at 
which the model will be run.  

Figure 8 shows a Bayesian network model for 
Cutty Sark. The distribution of predicted remaining 
life from the PoF models represents the factors 
influencing the remaining life prediction for the 
canary and parrot devices. The sensor data 
indicating the current “health” of the canary and 
parrot devices are processed using MD analysis of 
which the distribution of MD values are fed into the 
Bayesian network. 

 
Figure 8: Bayesian Network Model for Cutty Sark 

Iron Structures 
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The following two graphs show preliminary results of 
the Bayesian Network model built. At a predefined time 
interval, the updated probability distributions (for nodes 
representing PoF and MD for Canary/Parrot devices) are 
fed into the BN model. The BN model then computes the 
new probability distributions for (i) canary failure 
prediction, (ii) parrot failure prediction and (iii) ship iron 
structure failure prediction. Figure 9 shows the graph of 
the probability distribution of remaining life of a “healthy” 
iron structure (experiencing normal environmental 
conditions throughout its life) over time.  Figure 10 shows 
the graph of the probability distribution of remaining life 
of an “unhealthy” iron structure (experiencing harsh 
environmental conditions throughout its life) over time.  

 

 

8. CONCLUSION AND FUTURE WORK 
A prognostics framework using the model-based and data-
driven prognostics as well as a fusion of both has been 
presented. The concept of canary and parrot devices have 
been introduced with the aim of gathering useful 
information on the behaviour of Cutty Sark iron structures 
in different environmental conditions.  The main methods 
used within the prognostics framework has been 
demonstrated: a Physics-of-Failure model based on rate of 
decrease of corrosion rate over time was used to predict 

remaining life of the canary and parrot devices and 
Mahalanobis Distance Analysis was carried out on 
failure precursors for both canary and parrot devices 
to detect high corrosion rates of the iron structures. 
Various complex corrosion processes contribute to 
the deterioration of iron structures. Thus the 
prediction of remaining life of iron structures would 
benefit best from a prognostic framework that can 
capture the different forms of failure that can occur 
as well as make predictions of the future “health” of 
the iron structures with consideration of the many 
influencing factors contributing to those failures. 
Bayesian Network has been used to integrate 
remaining life prediction from PoF models and 
anomaly detection from data trend analysis of 
precursors to give more accurate predictions while 
handling the uncertainty in those predictions in a 
mathematically rigorous manner. Future work 
involves extending the PoF models and the 
reasoning algorithms used for the data trend analysis 
of the failure precursors. A dynamic version of the 
current Bayesian Network model will also be 
investigated. 

ACKNOWLEDGMENT 

The authors would like to acknowledge the support 
of this work by the Cutty Sark Trust and HMS 
Warrior. 

REFERENCES 

S. A.Campbell, S.P. Gillard, I.B. Beech, W. Davies, 
G. Monger and P. Lawton. (2005). “The s.v. 
Cutty Sark: electrochemistry in conservation”, 
T.Inst.Met.Fin., 83, 19-26. 

A. Hess et al, Challenges. (2005). Issues and 
Lessons Learned Chasing the “Big P”: Real 
Predictive Prognostics Part 1, Aerospace 
Conference, March 2005 IEEE, pp 3610-3619. 

S. Kumar and M Pecht. (2007, November). Health 
Monitoring of Electronic Products Using 
Symbolic Time Series Analysis, AAAI Fall 
Symposium on Artificial Intelligence for 
Prognostics, pp.73-80, Arlington, VA. 

M. Pecht, B. Tuchband, N. Vichare and Q.Ying. 
(2007). Prognostics and Health Monitoring of 
Electronics, Proceedings of Thermal, Mechanical 
and Multi-Physics Simulation Experiments in 
Microelectronics and Micro-Systems. 

M. Pourbaix. (1982), Atmospheric Corrosion, New 
York, Wiley. 

M. Schwabacher. (2005, September). A Survey of 
Data-Driven Prognostics, Proceedings of the 
AIAA Infotech, Reston, VA. 

N. Vichare & M. Pecht. (2006, March). Prognostics 
and Health Management of Electronics, IEEE 
Transactions on Components and Packaging 
Technologies, Vol.29, No.1. 

 

Figure 9: Probability Distribution of Remaining Life of 
“Healthy” Iron Structure over time 

Figure 10: Probability Distribution of Remaining Life of 
“Unhealthy” Iron Structure over time 


