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ABSTRACT

Profitability and rentability are two key features
for industrial companies that exploit complex en-
gineered systems. One way to improve these
features is the maintenance. Indeed, companies
need to keep and improve equipments availabil-
ity while reducing the maintenance costs. The
maintenance optimization is now more than ever
an industrial concern. The goal is to avoid fail-
ure and to have the right equipment with the right
person at the right moment, at the right place.
In the Prognostics and Health Management cy-
cle, a prognostic function is used to predict the
future system damage states in order to improve
the maintenance plan. This paper addresses the
prognostic domain by presenting a generic frame-
work for prognostic. This framework allows to
make a prediction of the system damage state
by taking into account how and where the sys-
tem will be used. The framework is described
by a specific formalism and methodology to ana-
lyze the system damage dynamic of elementary
resources and to trace the subsystem and sys-
tem damage state according to the system struc-
ture. The framework is based on the system de-
composition according to three levels: Environ-
ment, Mission, Process. This paper introduces
the maintenance plan and a systemic view in the
framework.

1 INTRODUCTION
Maintenance optimization consists to find the right
balance between preventive and corrective mainte-
nance while respecting an objective set in term of pro-
ductivity and profitability. Maintenance action dates
are then computed in order to optimize one criterion
that can be the maintenance costs, the equipment avail-
ability, the safety or a compromise between the three.

Figure 1 depicts the induced costs by the mainte-
nance and the failure of systems. The green line is
the global maintenance costs according to the observed
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Figure 1: The maintenance costs

number of failure occurrence on the system. This
means that if equipments are often maintained, there
will be few failures but lot of money is needed. To
the contrary, if equipments are never maintained few
financial resources are needed but a lot of failures will
be observed. It seems clear that the failure costs, repre-
sented by the red line, are inversely proportional to the
maintenance costs. Indeed the unspent money will be
used for the restoration actions on the system. More-
over, the system will be unavailable. The sum of the
maintenance costs, given by the blue line, represents
the total costs to maintain a system in operation. The
optimal maintenance is a maintenance that minimizes
the routine maintenance costs and costs associated to
restoration actions after failure. One way to have an
optimal maintenance policy is to use an automated aid
system for the maintenance in order to identify the
equipments to maintain and to know when the main-
tenance needs to be do.

From this first analysis, it is clear that there are a
growing interest in the intelligent maintenance where
the monitoring has a fundamental part(Racoceanu,
2006). Condition Based Maintenance (CBM) uses
real-time information to evaluate the damage state of
a system and to know if there needs to a maintenance
action. To extend CBM, Prognostics and Health Man-
agement (PHM) techniques have emerged to predict
the evolution of the system damage state(Vachtse-
vanoset al., 2006). PHM is a system engineering dis-
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cipline focusing on detection, prediction, health man-
agement of complex system.

Various prognostic approaches have been developed
ranging from a simple historical failure rate models
to a complex physics-based model.(Byington et al.,
2003) and (Lebold and Thurston, 2001) have classi-
fied these approaches according to their applicability
on complex systems and their economic viability. The
three main classes are: model based, data driven and
experienced based approaches. Most works in litera-
ture are on damage indicator evolution, where the dam-
age indicator is an image of the health indicator of a
system. More details and references on the review of
prognostic approaches in the literature can be found in
(Peyssonet al., 2008b).

This paper addresses the prognostic domain of the
PHM discipline by presenting a generic framework for
prognostics. Formalism and methodology for prognos-
tics are detailed in section 2. Then a modeling for
maintenance plan is presented in section 3. Finally
how to estimate the damage of a complex system from
basic equipment damage is discussed in section 4.

2 PROGNOSTIC FRAMEWORK

The implementation of an intelligent maintenance pol-
icy requires the formalization of a prognostic process
that are able to predict the evolution of the damage
state of a complex system according to the operational
and environmental conditions to which the system is
submit and to maintenance operation plan. Figure 2
depicts the proposed prognostic process over the Mis-
sionk of duration∆t. Prognostics of the damage vari-
ables is based on the study of their dynamics defined
from damage behavioral model.

To provide a start of answer of the prognostic prob-
lematic, we have introduced in a first time a formalism
to describe a complex system and in a second time we
have designed a methodology to analyze and to predict
the system damage dynamics i.e. damage trajectories.
Our approach is based on a system description accord-
ing to three levels(Peyssonet al., 2009b). Predictions
are performed via a sequence of known mission pa-
rameters, and environmental conditions. This allows
for mission and maintenance planning by taking into
account the predicted system damages over time.

2.1 Formalism for prognostic
This formalism allows to describe a complex system
S in order to analyze its temporal trajectories of its

damage state over a mission and thus to predict the
mission success. We defined the systemS as:

S = 〈 P , E , M 〉 (1)

whereP is theProcesslevel that gives means to ac-
complish a mission,E is the Environmentlevel that
represents areas where the mission is accomplished,
andM is theMission level that defines the use of the
system during a time period. Figure 3 is an overview of
the proposed generic prognostic framework. The three
levels of description are depicted by the Venn diagram
on the top of the figure.

One of the main goals of the proposed formalism
is to model the influence of the mission and of the
environment on the damage evolution of the process.
Indeed, in the real world there are some exchange be-
tween these three levels like the pollution between the
process and the environment. Even if these exchanges
can be important, they do not interest us in term of
damage prognostics. As our goal is to prognostic the
system damage we kept in the formalism only the bidi-
rectional exchange between mission and process be-
cause how the system is used impact its damage dy-
namic and system damage state is a determining fac-
tor for the mission progress. We also kept the unidi-
rectional exchange between environment and process
because environmental conditions where the system
evolves also impact the damage dynamics.

Another main advantages of the formalism is the
genericity. This formalism are completely indepen-
dent of the system nature. In a prognostic goal, an
electronic card will have the same model structure as
an actuator or a Diesel engine. Universal models that
will be used to analyze the damage dynamics.

Process level
The processP is decomposed by a hierarchical way in
order to obtain basic equipments. These equipments
are called resources and are deteriorated in use. Thus,
resources are equipements for which the damage state
must be predicted. Resources correspond to the leaves
of the process tree, cf. section 4. ProcessP is defined
by:

P = 〈 SPr, R, PS , B 〉 (2)

whereSPr is the root sub-process of the process tree,
R is the set of the system resources,PS is the system
sub-process set andB is the set of structural relation
between the element ofR andPS .

Resources are identified from the functional de-
scription and maintenance actions ofS. Indeed, it is
not useful to analyze the damage trajectory of a en-
gine part, if in case of failure, the complete engine is
replaced. A resourceri ∈ R is characterized by the
7-tuple:

ri = 〈 τri , δri , Uri , Xri , Φri , Dri , Ψri 〉 (3)

whereτri represents the operating time ofri because
all resources are not used in the same time on a com-
plex system,δri corresponds to the damage state, this
is a damage feature that evolves between 0 and 1 when
it reaches oneri is considered as unavailable.Uri is
the operating profile set. An operating profile defines
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Figure 3: Damage trajectory based prognostic framework fora complex systemS
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a constant solicitation constraints imposed to the re-
source.Uri is given by a space discretization of oper-
ating variable setXri :

Φri : Xri −→ Uri (4)
Dri is the damage behavioral model set. Behavioral
models can be in various form as: differential equa-
tions, stochastic automata, damage abacus. . . A dam-
age model defines the damage dynamic for a given op-
erating mode ofri. In working, the appropriate dam-
age model is given by the functionΨri:

Ψri : Uri −→ Dri (5)
PS andB are detailed in section 4.

Mission level
The mission levelM characterizes the working ofS
during a finite time period.M is given by the 3-tuple:

M = 〈 L, T , M 〉 (6)
whereL is a set of known places whereS can operate,
T is the set of tasks thatS can accomplished andM is
a specific mission i.e. a dated sequence of known tasks
in known places.M is defined by:







M =

(

(

Tj , tij , t
f
j , Lj

)

j

)

j ∈ N
∗, ∀j > 1, tij ≥ t

f
j−1, Lj ⊆ L

(7)

with Tj a task,tij andt
f
j respectively the start and end

dates of the taskTj. Lj is the set of place whereTj is
realized.

A taskTj is a list of resourcesrk associated with an
operating profileuk. Tj is defined by:

T j = { (rk, uk)k } , k ∈ N, rk ∈ R, uk ∈ Urk
(8)

Environment level
The environment describes the conditions where the
process is working. These conditions are independents
of the process solicitation. The environment represents
meteorological, climatical phenomena. . . The goal of
this level is to create a feature called environmental
context that characterizes the environment impact on
system damage dynamic. The environment is defined
by:

E = 〈 V , G, Γ, C 〉 (9)
whereV is the set of characteristic variables of the en-
vironment,G the combination set of the environmental
impact features computed for each environmental vari-
able andΓ the passage function fromG to C, the set of
the environmental context. For a given environmental
context, the constraints impose toS by the environ-
ment is considered as constants.

Γ : G −→ C (10)
Γ is the aggregation block on figure 3.

To model the impact on damage dynamic of each
variablevk ∈ V . A environmental variable is charac-
terized by:

vk = ( vk(t), Ivk
, ρvk

, Λvk
) (11)

wherevk(t) is the value time series ofvk, Ivk
is its

definition domain,ρvk
its number of impact degree and

Λvk
its space discretization function according to its

impact on damage dynamic.
More information on each level are available in

(Peyssonet al., 2008a), (Peyssonet al., 2008b) and
(Peyssonet al., 2009a).

2.2 Damage trajectories
The damage trajectories prediction is made by sim-
ulation of the previously obtained model for a mis-
sion from the initial state of resources, tasks to accom-
plish, environmental forecasts and the maintenance
plan. The simulation is based on the analysis of the
resource damage evolution i.e. their temporal damage
trajectory. The prognostics is thus the damage state of
the model at the end of the simulation. As uncertainty
is central to any prognostic definition, the prognostic
result for each element is given by a interval that rep-
resents its possible damage state.

In section 2.1, we established the description for-
malism of a complex system in order to prognose
its damage trajectories. The prognostic methodology
principle is depicted on the bottom of the figure 3. The
methodology goal is to make a piecewise analysis to
built the damage trajectoriesFq.















Fq :
[

ti, tf
[

−→ [0, 1]
2

t 7−→

(

F+
q (t)

F−

q (t)

)

q ∈ R ∪ PS

(12)

where
[

ti, tf
[

is the mission time interval.F+
q andF−

q

are respectively the fast and slow damage trajectories
of the elementq. They represent the extreme trajecto-
ries that the damage ofq could track i.e. that all the
possible damage trajectories ofq are betweenF+

q and
F−

q . The prognostic methodology is decomposed in
three steps.

Load model computation
The first step is the construction of the load modelLM
that characterizes the sequence of operating modes of
the systemS during the missionM. An operating
modeOM is defined as a constant constraint imposed
to S i.e. by the couple:

OM = ( T, c ) , T ∈ T , c ∈ C (13)
LM is then given by:

LM = ( ( OMk, dk )k ) , k ∈ N
∗, dk ∈ R

∗

+ (14)

with dk the duration of the operating modeOMk. Be-
fore theLM computation, the timed sequencesM and
C respectively of tasks and contexts need to be com-
pute fromM (Peyssonet al., 2008b).

Resource damage trajectories analysis
The next step of the prognostic is to analyze all the
ressource trajectories according the load modelLM.
On eachOMk the adequate damage model for each
ressource is simulated during a time ofdk. The
ressource damage state at the end of theOMk−1 is used
as the initial condition for the analyze ofOMk. In this
analysis, the maintenance planP is also taken into ac-
count, cf. section 3.

This step output is the functionsFr(t) with r ∈ R.

Sub-process damage trajectories estimation
The last step allows to estimate the damage evolution
of sub-process from the structural relation between re-
sources and/or sub-process. This means that we have
a systemic approach of the damage evolution.

This step is detailed in section 4 , its output is the
functionsFSP(t) with SP∈ PS .
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3 MAINTENANCE
To have a more realistic prognostics for system that
made mission of several month as a ship. It is nec-
essary to introduce the maintenance in our analysis.
In this paragraph we defined the formalization of the
maintenance action and maintenance plan applied to a
complex systemS.

3.1 Maintenance action
As said resources are identified from the maintenance
action. This means a maintenance action is performed
to the resource level.

The goal of a maintenance action is to improve the
resource health state thus to reduce its damage state. In
general, a maintenance actiona is defined by a func-
tion to evaluate the action performancema and by a
belief rateηa. A is the set of maintenance action.

{

A =
{

ai
}

, ai = (mai(δ), ηai)
i ∈ N

∗, ηai ∈ [0, 1]
(15)

No duration is associated to a maintenance action be-
cause our objective is to model the maintenance plan
that in order to provide be optimal anticipate the main-
tenance when resources are not working.

If δ ∈ [δ+, δ−] is the resource damage state before
the maintenance actionai, its damageδ′ after the ac-

tion will be δ′ ∈
[

δ′
+
, δ′

−

]

defined by:

{

δ′
+

= min ( (2− ηai) mai(δ+), 1 )
δ′

−

= max ( ηai mai(δ−), 0 )
(16)

As example formai function we can cite a threshold
or a gain function.

Maintenance plan
The maintenance plan for a mission represents the se-
quence of all timed maintenance actions on all re-
sources. The maintenance planP is thus defined by:

{

P =
(

(ak, Rak
, tk)k

)

k ∈ N
∗, ak ∈ A, Rak

⊆ R
(17)

wheretk is the action date andRak
is the sub-set of

resources which the action is applied.

4 SYSTEMIC VIEW OF PROCESS
We defined the process in (2) as a decomposition tree
of basic resources. But according to objectives, it can
be interesting to have a damage feature of the complete
systemS or of one part i.e. sub-processSP. PS =
{

SPj
}

is the set of sub-process, aSPj is characterized
by the couple:

SPj = ( QSPj , BSPj ) (18)

whereQSPj is the element set of the sub-processj and
BSPj its structure.

QSPj = { qk } , k ∈ N
∗+, qk ∈ R ∪ PS (19)

A sub-process is thus a node of the process treeP .
Resources and Sub-process have only one root sub-
process.

qu qv

(a) SR1 : Series, Cascade

qu

qv

(b) SR2 : Parallel, Bypass

Figure 4: Simple binaries structural relations

4.1 Structure and damage of sub-process
To estimate a metric of the sub-process damage from
this elements i.e.QSPj , it is necessary to know how
these elements are interconnected. We called a struc-
tural relationSRan interconnection model between el-
ements.B denotes the set ofSR:
B = {SRk} = { (bk, hk)k } , k ∈ N

∗, bk ∈ B (20)
wherebk is an n-ary relation to defineSRk betweenn
elements andhk is an n-ary function to estimate the
damage metrics ofSRk. B is the set ofbk. bk andhk

are defined by applications:

bk : (PS ∪R ∪B)
n −→ B

{qi} 7−→ bk ({qi})
(21)

hk : [0, 1]n −→ [0, 1]
{δqi
} 7−→ δSRk

= hk ({δqi
})

(22)

The structureBSPj of SPj is thus defined by a imbri-
cation of the structural relationsSRk between elements
ofQSPj .

4.2 Structural relations definition example
Whether in electrical, mechanical or hydraulic when
two components are connected, two possibilities are
most often offered: a combination series (cascade) or
a combination parallel (bypass).

In the proposed formalization, these two structure
examples can be represented by two binaries relations
respectivelySR1 andSR2 for series and parallel. These
relations are depicted on 4. The plain lines define the
necessary connections to characterize the relation.

In term of availability, when the elementsqu et qv

are in series, if one of them are unavailable the function
is not realized. Thus, the damage metric associated to
the relationb1 (qu, qv) is given by the more damaged
elements:

h1 = max (δqu
, δqv

) (23)
Whenqu andqv are in bypass, they form a redun-

dant structure. So if one of them becomes unavailable
the function is always realized. The damage metric as-
sociated tob2 (qu, qv) is thus:

h2 = min (δqu
, δqv

) (24)

When structural relations are binaries, theSPj struc-
ture can be represented as an abstract syntaxic tree
where the node are the relations and the leaves are the
element ofQSPj .
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Figure 5: ProcessP example

Process example
Figure 5 shows an academic example of functional and
structural decomposition of a simple system in two
sub-process and four resources. In our prognostic for-
malism the process of this system is written by:



























R =
{

r1, r2, r3, r4
}

PS =
{

SP1, SP2
}

B = { (b1, h1), (b2, h2) }
SP1 = ( QSP1 , BSP1 )
SP2 = ( QSP2 , BSP2 )
P =

〈

SP1,R,PS ,B
〉

(25)

with:














QSP1 =
{

SP2, r3, r4
}

BSP1 = b1(SP2, b2(r
3, r4))

QSP2 =
{

r1, r2
}

BSP2 = b1(r
1, r2)

(26)

whereh1 andh2 are the previously defined structural
relations.

The SRdamage metric allows to estimate the sub-
process damage as:

{

δSP1 = max(δSP2 , min(δr3 , δr4))
δSP2 = max(δr1 , δr2) (27)

4.3 Sub-process damage estimation algorithm

The algorithm 1 gives theFSP routine estimation. This
algorithm is based on depth tree algorithm, the imple-
mentation of recurrent function allows to begin by es-
timate the damage trajectories of low level sub-process
i.e. composed only by resources, and then to back by

level to the functionFSPr
of the root sub-process. Tra-

jectories are computed fromBSP where each n-ary re-
lation bk is replaced by its associated damage metric
hk.

Algorithm 1 Sub-process damage trajectories
Require: P
Ensure: FS for S ∈ PS

FSPr
(t)← SPDAMAGE (SPr)

function SPDAMAGE (p)
Q = Qp ∩ PS

if Q 6= ∅ then
for all q ∈ Q do

Fq(t)← SPDAMAGE (q)
end for

end if
δp ← Bp

δp ← REPLACE (δp,R∪ PS , Fq(t))
δp ← REPLACE (δp, B, hk)
Fp(t)← EVALUATE δp

return Fp(t)
end function

5 CONCLUSION

In this we presented the main lines of a novel generic
framework for prognostics, some complementary in-
formations can be found in cited publications. The
framework is composed by a formalism to describe
all kind of complex system and by a methodology to
estimate damage trajectories over mission. Accord-
ing to objective and knowledge about the mission, this
framework can be used to make a prognostics before
or during the mission. But also after, if any parameters
of the mission can be known a priori.

Yet most of the parameters that are need to build
the prognostic model must be extracted from experts
interview. Our future works are focused on use data-
driven techniques such as machine learning to extract
automatically the knowledge from an historical data
set. These works requires, in a first time, to define what
are the data that we need to have enough knowledge for
a good prognostics.
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