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Figure 1: Extraction of normalized 
indicators.
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ABSTRACT

As the business model for selling jet engines 
evolves, it becomes useful to propose new 
systems that help the maintenance support and 
event monitoring. Automatic diagnosis 
techniques that are already well applied in 
other domains, such as manufacturing, 
chemistry, etc. may be useful in aerospace 
industry. There is not only a need to conceive 
new mathematical solutions but also to be able 
to manage them in time; to improve their 
efficiency as new data come. Every aircraft 
manufacturer, engine manufacturer or MRO 
feel this need today. This document will give a 
presentation of a solution for the management 
of HM (Health Monitoring) algorithms. The 
innovation process is stimulated by long-term 
research in university labs. The new ideas are 
converted to applications and codes that need 
to be installed in a generic framework for test 
and validation purposes. The maturation 
environment that we define here manages the 
ideas from the need definition to the validation 
of new incoming tools. Hence the 
development programs are able to know which 
are the pending innovations, understand their 
maturity levels and even look at the validation 
results. The marketing people may also 
anticipate the evolution of each tool to prepare 
the market and the business model.

1. THE ENGINE MONITORING ALGORITHM

A monitoring algorithm is a complete application that gets 
information from the engine or a fleet of engines and other 
sources, transforms data into failure indicators, detects 
abnormalities or unusual behaviors, and identifies faulty 
components. Such application is generally built from the 
combination of elementary steps, which are described in 

the OSA-CBM (Open Systems Architecture for 
Condition-Based Maintenance) layout. The input 
data are acquired from many sources and the results 
are reused in different applications. Moreover, an 
algorithm must be validated for many contexts (type 
of engine, flights-regimes, etc.) and a demonstration 
is required to validate each application.

Once selected for an engine, the algorithm is 
deployed on the adequate platform, which may be 
an embedded controller, or a ground based PLM 
(Product Life Management) application.

1.1 The algorithm layout

OSA-CBM framework defines 5 first layers, one for 
each algorithm step we used. (More layers are 
defined for decision management and alerts, but we 
will first limit ourselves with the diagnosis, 
prognostics and fault identification parts).

• The data acquisition layer: raw sensor 
observations are translated to numeric data with 
recording properties such as sensibility or 
measurement quality.

• The data manipulation layer: measurement 
inputs are used to compute specific fault 
domain indicators. At this point the engineers 
and experts select specific inputs relative to the 
monitored system. Most of the time this layer’s 
algorithms use relationships between aircraft 
flight conditions and the representative input 
data to normalize the observations, hence 
making the indicators independent of the 
acquisition context (see figure 1).
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• The state detection layer: the observed indicators are 
interpreted with some physical or empirical model. 
This lead to the definition of a distance to the unusual 
behavior.

• The health assessment layer: fault indicators are 
converted into scores of abnormalities [R. Azencott 
(2003)]. One builds an anomaly probability for each 
known system but also a generic novelty detector for 
unknown behavior.

• The prognostic assessment layer: detection 
probabilities are accumulated and fusion with other 
computed results into alert anticipation. This last layer 
uses multiple observations confirmation method to 
reach the required threshold of false alarm (PFA) 
optimizing in the same time the probability of 
detection (POD). 

This decomposition methodology is adaptable to any kind 
of monitoring. For example it may be used for inboard 
controller-embedded code for the vibration monitoring of 
the bearings but also for a ground long-term wear 
prognostic that uses the whole fleet of aircrafts to calibrate 
a supervision model.

1.2 The required measurements

The monitoring algorithms are based on observations 
acquired from the engine but also other sources. For 
context dependency analysis, aircraft information (the 
weight, the attitude), flight information (over land, sea…), 
maintenance information and manufacturing data are 
required.

The challenge is to build and validate algorithms; the 
diagnoses are calibrated on some specific data sets; some 
other data are used only to test the models. Moreover, data 
are coming from different sources: it may be operating 
aircrafts, but also bench tests or even results of simulations 
or outputs from other algorithms. Each observation (the 
measurements recorded during an experiment) is classified 
according to acquisition properties. One differentiates 
measurements from properties like the engine serial 
number, or the flight and aircraft description, etc. The 
properties are used as indexes to the measurements, which 
are stored in a relational database.

This database is capable of heterogeneous storage from 
events to raw high frequency measurements and maintains 
a high level engine-related architecture to let engineers the 
ability to build their own specific datasets for algorithms 
calibration and test.

1.3 An example list of applications

Here is a list of applications developed to improve the 
operational reliability. The goal of those algorithms is to 

limit the in-flight shutdown (IFSD), reduce delays 
and cancellations (D&C) but also helps the 
maintenance of the engine by anticipation of failures 
(logistic optimization) or cause component 
identification.

• Start sequence analysis: This algorithm 
analyses the behavior of the engine during the 
first seconds of the ignition process. It is able to 
detect abnormalities and classify them to target 
specific components [Flandrois (2009)].

• The oil consumption: a gulping phenomenon 
appears when the engine is running. Using the 
known properties of the oil and the engine 
configuration during the different flight phases, 
it is possible to compute with a good precision 
the total amount of oil in the engine. 

• Smart filters: pressures around oil and fuel 
filters are used with other context 
measurements like temperatures and flows to 
anticipate the clogging.

• Bearing analysis: at any moment a buffer of 
vibration signals (accelerometers and 
tachometers) is read. Each specific failure was 
already modeled by a list of “flexible” known 
frequencies that depend on the engine regime. 
This algorithm spots any faulty bearing and is 
even able to explain the causes of the damage. 
Moreover, the normal behavior is also known 
and any new problem (another kind of damage, 
even a fleeting event) raises an alert and 
triggers the recording of high frequency data.

• Gas path analysis: snapshots of the engine 
thermodynamic state are taken regularly. Each 
data vector is normalized as to appear 
independent of the flight conditions and the 
result is scored and compared to known failure 
signatures [Lacaille (2009a)].

• Sensor health: using redundancy or using a 
correlation analysis between measurements, 
each sensor is tested to validate its behavior and 
add some data quality value (DQV) to the 
measurements [Lacaille (2009c)].

• Actuation loops: the stator variable geometry of 
the engine is controlled by an actuation loop. 
To analyze the temporal behavior of this loop, 
an autoregressive filter is modeled at any time 
and is compared with a reference model built 
during the reception test [Lacaille (2009b)].

Ground fleet analysis is also possible from the data 
acquired during flights and recorded in the database. 
A global classification map may be drawn to 
reference the state of each engine in a fleet [Cottrell 
(2009)].
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2. STRUCTURE OF THE ENVIRONMENT

Our environment is based on algorithmic 
components (modules) that communicate using a 
unified protocol. The algorithm’s code functions 
are called from the modules. A graph scheduler 
interfaces a standard communication scheme 
between modules, using a low-level 
DCOM/Automation layer enabling cross 
communications between executable processes. 
This way a set of tools may be connected to the 
toolbox of algorithmic components.

As illustrated in figure 2 three main maturation
tools are now connected to the algorithms: 

• The maturation interface tracks the lives of 
each code component in term of quality and 
draws maturation reports. This interface also 
manages development and validation 
processes and controls possible regression of each 
algorithm.

• The database manages all datasets used for calibration 
and validation. The database comes with a data access 
object  (DAO) to mask the communication with the 
algorithms using a simple expert layer. Hence the 
database structure may be easily replaced without 
algorithm change. This feature is used to deploy 
application on operational ground monitoring 
software.

• The demonstration tool materializes each algorithmic 
module with a graphic representation. Using this tool 
engineers build new applications for new contexts just 
with some graphic manipulations. 

To complete this environment, a standard solution for code 
version control manages the codes and ensures proper 
sharing between users. Finally a specific compiler 
transfers code functions on target controllers (ACMS, 
FADEC, etc.). Even if compilation and source control are 
common tools the fact that algorithms are formalized with 
a standard interface helps to automate the compilation and 
the saving process.

Once the algorithmic module communication protocol is 
defined, it becomes possible to replace any tool with 
another one (developed with a different methodology). It is 
also easy to insert a new tool to improve the whole 
platform.

3. STANDARDIZATION

Generic algorithms are programs that compute numerical 
results depending on input observations. The results as 
well as the inputs and even some sort of computation are 
subject to random variations, inaccuracies, and acquisition 

faults. A clean methodology is required to deal with 
those imperfections when building algorithms, 
calibration processes and validation plans. Even 
when each specific task has its own aim it is 
possible to formalize a unified interface to chain and 
schedule tasks. We need such interface to let the 
code stay easy to use even after a long period of 
time. Another requirement is the automatic control 
of stability to environment changes [Lacaille 
(2004)].

Three main objects are used in our model: one for 
the data materialization (the signal), one for the code 
encapsulation (the module) and another to represent 
the flow of signals through each module (the 
dataset).

3.1 The signal

Algorithms transform input data into output data. 
The inputs or outputs for each computation are 
contained in objects called signals. The signal has a 
main value, which is a set of measurements, but it 
also contains some properties to interpret the 
numeric values. 

Technically, the value of a signal is contained in an 
array where each raw corresponds to a specific time 
or observation index (date, flight, engine, etc.) and 
each column is a measurement.

Common properties of signals are the signal name, 
the operation (where it comes from), the specific 
names of each measurement columns, the 
corresponding units (important when data are 
coming from heterogeneous sources), etc. Less 
common properties are the precision, the domain 

Figure 2: The global synoptic of the maturation environment.
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bounds, etc. Some are really important for the maturation 
process, like quality information assign to the values. This 
quality is coming either from the acquisition accuracy, or 
from a computation chain of the efficiency of any 
intermediate result.

Signal objects have also specific methods for indexation, 
plotting purpose, and even interpolation and resampling.

3.2 The dataset

An algorithm component, a module, is working on 
successive observations. For each observation it gets a list 
of signals as inputs and produces another list of signals as 
outputs. 

The observation corresponds to the result of a specific 
experiment: bench test, flight, a snapshot during a flight, 
engine of a given category in the fleet, etc. In general the 
observations belong to a set of similar objects: aircrafts 
owned by an airline company, flights, time measurements 
during a flight…

The frequency at which the output observations are 
produced may not be the same as the input observations 
frequency. Some modules produce data while others are 
waiting for events. Some others are resampling and use a 
windowing process that completely changes the 
scheduling of the chained modules.

The dataset object is an object that formalizes the flow of 
such signal lists. It manages the direct or iterative access to 
each observation and offers some dynamic plot methods.

Our environment will map each set of data through a 
named dataset object. Datasets are serialized in the 

database described hereafter.

3.3 The module

Each algorithmic function is encapsulated in a 
module object. For an application, at least one 
module exists per OSA-CBM layer, but there exists 
also other kind of “small” modules used for signal 
manipulation and graphic purposes. The module 
object acts like a state machine. It interfaces the 
calls to each task used by a generic algorithmic 
component: state initialization, parameter change, 
optional calibration, transfer operation, plot, etc.

The module mainly does not contain any 
algorithmic code, it calls specific functions 
developed in toolboxes and interfaces the 
parameters, the resources and the state memory 

Figure 4: The module is an object that embeds algorithmic functions called on each specific task.

Figure 3: The module is a state machine that 
calls algorithmic functions.
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Figure 5: Module quality.

needed to accomplish its main task (see figure 3).

But all modules must implement a specific plot function 
used for demonstration purpose. The plot task opens a 
window containing an interactive demonstration of the 
module computation.

For maturation purposes the module keeps track of the 
quality of its own treatment. A list of quality indicators are 
computed:

• An adequacy indicator (AQV) compares a new 
observation to the set of observations used during 
calibration and/or validation and gives a distance to 
the “known” distribution of the data.

• Another quality indicator is the robustness of a model 
(MQV) that may be obtained empirically by cross 
validation on test datasets. 

• The genericity (GNC) is a measure of reusability of a 
module. It is computed as the number of applications 
using the module and the genericity of the functions 
used by the module itself.

• The TRL level (Technology Readiness Level) for a 
module component is obtained from the TRL of the 
applications that use it (the readiness level of the 
application for the company). 

The module "TRL" is only a statistic (eg. the average) of 
the applications levels that use this module. Hence 
building a new application with only high-TRL modules is 
a guarantee of quality. The genericity presents another 
kind of quality information related to the code use.

With those quality indicators (see figure 5) and 
using the quality of the input data (DQV), it is 
possible for a module to define a quality indicator 
for the proposed outputs (PQV). This new 
information is stored and analyzed across time to 
detect trends of the module behavior (section 6). 

To build a new module the user needs only to reuse 
the template of a specific description file that 
already implements standard algorithmic behaviors 
and instantiates his module. The module scheduler 
use the description file (figure 4) to ordinate each 
task corresponding to events and module state.

4. DATABASE

The database stores all the data required for 
algorithm’s calibration and validation. The 
maturation environment ensures the permanence of 

Figure 6: Definition of datasets from business object properties.
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each module version and each data used for calibration and 
validation over a very long period of time (in adequacy 
with the engine's life).

The algorithms are using standard signal objects as inputs 
(and outputs) but the signal measurements comes from 
very different kind of records:

• Operational aircraft measurements.
• Vibration data.
• ACARS messages sent to the ground via satellite 

communication.
• Engine bench test measurements from other dedicated 

data repositories.
• Component data and configurations from the 

manufacturers.
• Maintenance reports.
• Etc.

But in fact all those sources produce only three sorts of 
data: the events, the summary reports and temporal raw 
measurements. All other data may be interpreted as 
object’s properties (engine, aircraft, component, factory, 
airline…).

• The events are measurements taken at random dates 
and are generally associated with a message and a 
value.

• The summaries are snapshot information taken 
regularly but at a small rate (for each flight and 
specific engine regime, each engine…). In general we 
associate summary data as result of statistical 
computation done on raw measurements.

• The temporal measurements are raw signals that are 
obtained from sensors or high volume outputs 
computed online, like spectrum.

Measurements are defined by variables and indexes:

• A variable is a data container linked to sensors or 
algorithms’ results, which carries their own properties 

like bounds, sensitivity, precision.
• The index corresponds to the temporal or 

special coordinate that refers to the value of a 
variable. It may be engine-cycles (flights) or 
temporal intervals.

A dataset is made of simple rectangles extracted 
from this relational database. Each rectangle is a 
signal, whose columns are variables indexed by 
cycle or time (see figure 6).

• ACARS messages are information taken during 
the flight. They summarize the engines states at 
specific flight regimes. Classical datasets are 
built from those snapshots: for each engine 
(observation) they collect signals indexed by 
cycle, which record temperatures, pressures, 
flows, etc.

• Vibration records are taken regularly during the 
flight. For example at maximum acceleration or 
engine cut-off. Those measurements give, for 
each engine, datasets of cycles (observations) 
that collects time-indexed signals of 
accelerometers and tachometers. 

Figure 7: A bloc that contains an algorithmic 
module with its parameters.

Figure 8: An application built from several modules.
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5. DEMONSTRATION TOOL

One of the main maturity indicators is the number of time 
an algorithmic component (here, a module) is reused in 
different applications and for different contexts (types of 
engines, category of missions). A way to facilitate this 
reuse is to present the module in a simple way. The 
demonstrator materializes each module by a graphic block 
with a simple parameterization and connection interface 
(figure 7). 

The graph scheduler must implement a specific batch 
mode (for generic signal transfer across the connections) 
able to deal with auto-adaptability and calibration. Thus 
the user only needs to draw a graph of OSA-CBM 
modules to build a new HM application. The configuration 
process resembles the way the engineers are working to 
conceive control algorithms (figure 8). 

Once a graphic block linked to an algorithmic module, it is 
possible to build as many instances of the module and 
even share the same instance by different physical block 
representations. Each block may execute the module in 
three modes: normal execution, calibration and plot. The 
sharing of the same instance allows the definition of a 
specific graph for calibration and the presence of two 
blocks for the same instance in the application graph: one 
for the computation and the other for the interactive 
display.

When a graph of blocks is drawn on the main working 

screen, it may be scheduled for calibration or 
execution. The specific display blocks will 
automatically update their graphic interfaces 
offering interactive demonstrations for each 
observation.

Executing a graph is not the only way to manage 
algorithms. Each block has a contextual menu 
(figure 9) that offers a list of actions like dynamic 
plot, display of inputs, outputs, re-execution, etc.

A first toolbox contains generic blocks: reader, 
writer, a common “module execution block”, and 
the “small” signal manipulations blocks.

Another toolbox of already prepared module 
instances is organized according to each specific 
application context (oil consumption, start sequence 
monitoring, modular performance, bearing damages, 
fleeting events…). This application toolbox has also 
a direct access to predefined datasets. Hence to get 
new data for some test a user needs only to drag and 
drop a database connected block on the screen. 

The use of a share database located on a server and 
the automatic interface to the source control tool 
facilitates the sharing of data and modules between 
users.

Figure 9: An example of interactive display interface of a module and its context menu.
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Figure 10: Hierarchy of objects in the environment.

Figure 11: Maturation Process Interface.

6. MATURATION INTERFACE

The main challenge for engine HM algorithm is to be able 
to validate the algorithms and to update their codes 
according to new observations. In fact, acquisition of new 
data, specific to a system to monitor, is certainly the major 
difficulty. A standard solution is to define a first version of 
the algorithm that is embedded for bench tests or even on 
real aircrafts owned by a friend airline company. This first 
prototype executes the current version of the algorithm but 
also register new observations. On operational flight we 
already have a communication protocol with ACMS tools 
for regular transfer of data to the maturation database. On 
ground monitoring applications we define loaders 
connecting the operational services to the database. Once 
new observations stored in the database they are used for 
an update calibration phase. The validation process of HM 
algorithm is clearly an iterative process. 

Our maturation interface is built specifically to manage 
this iterative process. It is called MPI for maturation 
process interface (figure 11). It organizes the hierarchy of 
components: datasets, functions, modules, libraries and 
applications (see figure 10 and the object hierarchy in the 

nomenclature section). At the base level are the 
algorithmic functions and the datasets. Those 
components are linked to modules and each module 
belongs to one OSA-CBM library and some high 
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level HM applications.

When a new module is registered in MPI, the code is 
analyzed and all new algorithmic functions are 
automatically registered. Then a set of pages allows the 
expert engineer to calibrate a new instance linked to the 
algorithmic graph he is working on (from the 
demonstration tool). Directly from the interface, he may 
change parameters, select datasets, execute a calibration, 
launch the code and execute the interactive plot. In this 
work, the application helps the user by providing pages 
linked to the specifications, the user guide and for each 
instance a description of the validation context. Moreover, 
code development formalism defines comment syntax so 
the online help of any code (function or module) is 
automatically generated from MPI.

Once an instance calibrated and tested, reports are 
automatically generated for the module but also for each 
used function and the current algorithmic application. The 
modules are automatically monitored and statistic 
information is transferred into the reports. The user needs 
to complete each spreadsheet with expert comments and 
more high-level information as a TRL value at application 
level.

As MPI is built on a hierarchical structure, summary 
reports are automatically computed for libraries and for 
each application that uses the module.

Each version and modification of any experiment is saved. 
This allows the design of specific dashboard with temporal 
trends as well as a description of the current state for any 
module, library or application.

7. CONCLUSION

This environment is a back-office tool for a cell of people 
dedicated to HM algorithms development. It comes with a 
process for conception, maturation, validation, test and 
support. 

The reports built by MPI use high-level statistic 
procedures to validate and score each algorithmic 
application (to monitor the health-monitoring algorithms!). 
Those procedures apply a methodology that uses a 
confirmation layer to ensure the required false alarm rate 
(PFA) while optimizing the probability of detection 
(POD). As this is only efficient at application level, our 
system also monitors each algorithm module for each 
version and each application context. 

This solution was already applied in other industries. It 
helps a team of researchers and engineers to answer 
algorithmic problems in a lot of different domains: 
automobile, chemistry, petrol, nuclear technology, and 

even finance. It is also used to design solutions for 
semiconductor micro-fabrication SPC software in 
AEC and APC domains. This is our attempt to 
transfer such methodology in the aeronautic 
industry. 

NOMENCLATURE

ACMS Aircraft Condition Monitoring System
AEC Automatic Equipment Control
APC Automatic Process Control
AQV Adequacy Quality Value
CBM Condition Based Maintenance
D&C Delay and Cancellation
DAO Data Access Object
DQV Data Quality Value
GNC Genericity (reusability)
HM Health Monitoring
IFSD In Flight Shut Down
MPI Maturation Process Interface
MQV Model Quality Value
MRO Maintenance, Repair and Overhaul
OSA Open System Architecture
PFA Probability of False Alarm
PLM Product Life Management
POD Probability Of Detection
PQV Predictive Quality Value
TRL Technology Readiness Level

Object hierarchy:

Application An algorithmic solution for a 
specific engine system or component

Context The environment where the 
application is used. It can refer to a 
specific engine category, a flight 
regime, etc.

Module An object that embeds the 
algorithmic codes developed in 
functions. The module has a specific 
interface so each module may be 
called in a unified way.

Block A graphic box that may be linked to 
a module. It gives a physical 
materialization to the module and 
can be instantiated in a graph to 
build an application.

Graph A list of chained modules that may 
be connected to data and executes 
the code of an application.

Signal An object that embeds values 
collected from different sensors or 
results of different computations. 
Modules use lists of signals as inputs 
and outputs.

Dataset A collection of lists of signals stored 
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in the database and retrieved from query 
on properties and variable names.

Observation A list of signals that represent the current 
measurements of an experiment (flight, 
bench test, …) or the intermediate results 
of computations for this same experiment.
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