
Annual Conference of the Prognostics and Health Management Society, 2009

1

Figure 1: Extraction of normalized
indicators.

A Maturation Environment to Develop and Manage Health
Monitoring Algorithms

Jérôme Lacaille1

1 Snecma expert in algorithms, PhD, Rond-Point René Ravaud, Réau, 77550 Moissy-Cramayel cedex, France
jerome.lacaille@snecma.fr

ABSTRACT

As the business model for selling jet engines
evolves, it becomes useful to propose new
systems that help the maintenance support and
event monitoring. Automatic diagnosis
techniques that are already well applied in
other domains, such as manufacturing,
chemistry, etc. may be useful in aerospace
industry. There is not only a need to conceive
new mathematical solutions but also to be able
to manage them in time; to improve their
efficiency as new data come. Every aircraft
manufacturer, engine manufacturer or MRO
feel this need today. This document will give a
presentation of a solution for the management
of HM (Health Monitoring) algorithms. The
innovation process is stimulated by long-term
research in university labs. The new ideas are
converted to applications and codes that need
to be installed in a generic framework for test
and validation purposes. The maturation
environment that we define here manages the
ideas from the need definition to the validation
of new incoming tools. Hence the
development programs are able to know which
are the pending innovations, understand their
maturity levels and even look at the validation
results. The marketing people may also
anticipate the evolution of each tool to prepare
the market and the business model.

1. THE ENGINE MONITORING ALGORITHM

A monitoring algorithm is a complete application that gets
information from the engine or a fleet of engines and other
sources, transforms data into failure indicators, detects
abnormalities or unusual behaviors, and identifies faulty
components. Such application is generally built from the
combination of elementary steps, which are described in

the OSA-CBM (Open Systems Architecture for
Condition-Based Maintenance) layout. The input
data are acquired from many sources and the results
are reused in different applications. Moreover, an
algorithm must be validated for many contexts (type
of engine, flights-regimes, etc.) and a demonstration
is required to validate each application.

Once selected for an engine, the algorithm is
deployed on the adequate platform, which may be
an embedded controller, or a ground based PLM
(Product Life Management) application.

1.1 The algorithm layout

OSA-CBM framework defines 5 first layers, one for
each algorithm step we used. (More layers are
defined for decision management and alerts, but we
will first limit ourselves with the diagnosis,
prognostics and fault identification parts).

• The data acquisition layer: raw sensor
observations are translated to numeric data with
recording properties such as sensibility or
measurement quality.

• The data manipulation layer: measurement
inputs are used to compute specific fault
domain indicators. At this point the engineers
and experts select specific inputs relative to the
monitored system. Most of the time this layer’s
algorithms use relationships between aircraft
flight conditions and the representative input
data to normalize the observations, hence
making the indicators independent of the
acquisition context (see figure 1).

This is an open-access article distributed under the terms of the Creative
Commons Attribution 3.0 United States License, which permits
unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

Annual Conference of the Prognostics and Health Management Society, 2009

2

• The state detection layer: the observed indicators are
interpreted with some physical or empirical model.
This lead to the definition of a distance to the unusual
behavior.

• The health assessment layer: fault indicators are
converted into scores of abnormalities [R. Azencott
(2003)]. One builds an anomaly probability for each
known system but also a generic novelty detector for
unknown behavior.

• The prognostic assessment layer: detection
probabilities are accumulated and fusion with other
computed results into alert anticipation. This last layer
uses multiple observations confirmation method to
reach the required threshold of false alarm (PFA)
optimizing in the same time the probability of
detection (POD).

This decomposition methodology is adaptable to any kind
of monitoring. For example it may be used for inboard
controller-embedded code for the vibration monitoring of
the bearings but also for a ground long-term wear
prognostic that uses the whole fleet of aircrafts to calibrate
a supervision model.

1.2 The required measurements

The monitoring algorithms are based on observations
acquired from the engine but also other sources. For
context dependency analysis, aircraft information (the
weight, the attitude), flight information (over land, sea…),
maintenance information and manufacturing data are
required.

The challenge is to build and validate algorithms; the
diagnoses are calibrated on some specific data sets; some
other data are used only to test the models. Moreover, data
are coming from different sources: it may be operating
aircrafts, but also bench tests or even results of simulations
or outputs from other algorithms. Each observation (the
measurements recorded during an experiment) is classified
according to acquisition properties. One differentiates
measurements from properties like the engine serial
number, or the flight and aircraft description, etc. The
properties are used as indexes to the measurements, which
are stored in a relational database.

This database is capable of heterogeneous storage from
events to raw high frequency measurements and maintains
a high level engine-related architecture to let engineers the
ability to build their own specific datasets for algorithms
calibration and test.

1.3 An example list of applications

Here is a list of applications developed to improve the
operational reliability. The goal of those algorithms is to

limit the in-flight shutdown (IFSD), reduce delays
and cancellations (D&C) but also helps the
maintenance of the engine by anticipation of failures
(logistic optimization) or cause component
identification.

• Start sequence analysis: This algorithm
analyses the behavior of the engine during the
first seconds of the ignition process. It is able to
detect abnormalities and classify them to target
specific components [Flandrois (2009)].

• The oil consumption: a gulping phenomenon
appears when the engine is running. Using the
known properties of the oil and the engine
configuration during the different flight phases,
it is possible to compute with a good precision
the total amount of oil in the engine.

• Smart filters: pressures around oil and fuel
filters are used with other context
measurements like temperatures and flows to
anticipate the clogging.

• Bearing analysis: at any moment a buffer of
vibration signals (accelerometers and
tachometers) is read. Each specific failure was
already modeled by a list of “flexible” known
frequencies that depend on the engine regime.
This algorithm spots any faulty bearing and is
even able to explain the causes of the damage.
Moreover, the normal behavior is also known
and any new problem (another kind of damage,
even a fleeting event) raises an alert and
triggers the recording of high frequency data.

• Gas path analysis: snapshots of the engine
thermodynamic state are taken regularly. Each
data vector is normalized as to appear
independent of the flight conditions and the
result is scored and compared to known failure
signatures [Lacaille (2009a)].

• Sensor health: using redundancy or using a
correlation analysis between measurements,
each sensor is tested to validate its behavior and
add some data quality value (DQV) to the
measurements [Lacaille (2009c)].

• Actuation loops: the stator variable geometry of
the engine is controlled by an actuation loop.
To analyze the temporal behavior of this loop,
an autoregressive filter is modeled at any time
and is compared with a reference model built
during the reception test [Lacaille (2009b)].

Ground fleet analysis is also possible from the data
acquired during flights and recorded in the database.
A global classification map may be drawn to
reference the state of each engine in a fleet [Cottrell
(2009)].

Annual Conference of the Prognostics and Health Management Society, 2009

3

2. STRUCTURE OF THE ENVIRONMENT

Our environment is based on algorithmic
components (modules) that communicate using a
unified protocol. The algorithm’s code functions
are called from the modules. A graph scheduler
interfaces a standard communication scheme
between modules, using a low-level
DCOM/Automation layer enabling cross
communications between executable processes.
This way a set of tools may be connected to the
toolbox of algorithmic components.

As illustrated in figure 2 three main maturation
tools are now connected to the algorithms:

• The maturation interface tracks the lives of
each code component in term of quality and
draws maturation reports. This interface also
manages development and validation
processes and controls possible regression of each
algorithm.

• The database manages all datasets used for calibration
and validation. The database comes with a data access
object (DAO) to mask the communication with the
algorithms using a simple expert layer. Hence the
database structure may be easily replaced without
algorithm change. This feature is used to deploy
application on operational ground monitoring
software.

• The demonstration tool materializes each algorithmic
module with a graphic representation. Using this tool
engineers build new applications for new contexts just
with some graphic manipulations.

To complete this environment, a standard solution for code
version control manages the codes and ensures proper
sharing between users. Finally a specific compiler
transfers code functions on target controllers (ACMS,
FADEC, etc.). Even if compilation and source control are
common tools the fact that algorithms are formalized with
a standard interface helps to automate the compilation and
the saving process.

Once the algorithmic module communication protocol is
defined, it becomes possible to replace any tool with
another one (developed with a different methodology). It is
also easy to insert a new tool to improve the whole
platform.

3. STANDARDIZATION

Generic algorithms are programs that compute numerical
results depending on input observations. The results as
well as the inputs and even some sort of computation are
subject to random variations, inaccuracies, and acquisition

faults. A clean methodology is required to deal with
those imperfections when building algorithms,
calibration processes and validation plans. Even
when each specific task has its own aim it is
possible to formalize a unified interface to chain and
schedule tasks. We need such interface to let the
code stay easy to use even after a long period of
time. Another requirement is the automatic control
of stability to environment changes [Lacaille
(2004)].

Three main objects are used in our model: one for
the data materialization (the signal), one for the code
encapsulation (the module) and another to represent
the flow of signals through each module (the
dataset).

3.1 The signal

Algorithms transform input data into output data.
The inputs or outputs for each computation are
contained in objects called signals. The signal has a
main value, which is a set of measurements, but it
also contains some properties to interpret the
numeric values.

Technically, the value of a signal is contained in an
array where each raw corresponds to a specific time
or observation index (date, flight, engine, etc.) and
each column is a measurement.

Common properties of signals are the signal name,
the operation (where it comes from), the specific
names of each measurement columns, the
corresponding units (important when data are
coming from heterogeneous sources), etc. Less
common properties are the precision, the domain

Figure 2: The global synoptic of the maturation environment.

Annual Conference of the Prognostics and Health Management Society, 2009

4

bounds, etc. Some are really important for the maturation
process, like quality information assign to the values. This
quality is coming either from the acquisition accuracy, or
from a computation chain of the efficiency of any
intermediate result.

Signal objects have also specific methods for indexation,
plotting purpose, and even interpolation and resampling.

3.2 The dataset

An algorithm component, a module, is working on
successive observations. For each observation it gets a list
of signals as inputs and produces another list of signals as
outputs.

The observation corresponds to the result of a specific
experiment: bench test, flight, a snapshot during a flight,
engine of a given category in the fleet, etc. In general the
observations belong to a set of similar objects: aircrafts
owned by an airline company, flights, time measurements
during a flight…

The frequency at which the output observations are
produced may not be the same as the input observations
frequency. Some modules produce data while others are
waiting for events. Some others are resampling and use a
windowing process that completely changes the
scheduling of the chained modules.

The dataset object is an object that formalizes the flow of
such signal lists. It manages the direct or iterative access to
each observation and offers some dynamic plot methods.

Our environment will map each set of data through a
named dataset object. Datasets are serialized in the

database described hereafter.

3.3 The module

Each algorithmic function is encapsulated in a
module object. For an application, at least one
module exists per OSA-CBM layer, but there exists
also other kind of “small” modules used for signal
manipulation and graphic purposes. The module
object acts like a state machine. It interfaces the
calls to each task used by a generic algorithmic
component: state initialization, parameter change,
optional calibration, transfer operation, plot, etc.

The module mainly does not contain any
algorithmic code, it calls specific functions
developed in toolboxes and interfaces the
parameters, the resources and the state memory

Figure 4: The module is an object that embeds algorithmic functions called on each specific task.

Figure 3: The module is a state machine that
calls algorithmic functions.

Annual Conference of the Prognostics and Health Management Society, 2009

5

Figure 5: Module quality.

needed to accomplish its main task (see figure 3).

But all modules must implement a specific plot function
used for demonstration purpose. The plot task opens a
window containing an interactive demonstration of the
module computation.

For maturation purposes the module keeps track of the
quality of its own treatment. A list of quality indicators are
computed:

• An adequacy indicator (AQV) compares a new
observation to the set of observations used during
calibration and/or validation and gives a distance to
the “known” distribution of the data.

• Another quality indicator is the robustness of a model
(MQV) that may be obtained empirically by cross
validation on test datasets.

• The genericity (GNC) is a measure of reusability of a
module. It is computed as the number of applications
using the module and the genericity of the functions
used by the module itself.

• The TRL level (Technology Readiness Level) for a
module component is obtained from the TRL of the
applications that use it (the readiness level of the
application for the company).

The module "TRL" is only a statistic (eg. the average) of
the applications levels that use this module. Hence
building a new application with only high-TRL modules is
a guarantee of quality. The genericity presents another
kind of quality information related to the code use.

With those quality indicators (see figure 5) and
using the quality of the input data (DQV), it is
possible for a module to define a quality indicator
for the proposed outputs (PQV). This new
information is stored and analyzed across time to
detect trends of the module behavior (section 6).

To build a new module the user needs only to reuse
the template of a specific description file that
already implements standard algorithmic behaviors
and instantiates his module. The module scheduler
use the description file (figure 4) to ordinate each
task corresponding to events and module state.

4. DATABASE

The database stores all the data required for
algorithm’s calibration and validation. The
maturation environment ensures the permanence of

Figure 6: Definition of datasets from business object properties.

Annual Conference of the Prognostics and Health Management Society, 2009

6

each module version and each data used for calibration and
validation over a very long period of time (in adequacy
with the engine's life).

The algorithms are using standard signal objects as inputs
(and outputs) but the signal measurements comes from
very different kind of records:

• Operational aircraft measurements.
• Vibration data.
• ACARS messages sent to the ground via satellite

communication.
• Engine bench test measurements from other dedicated

data repositories.
• Component data and configurations from the

manufacturers.
• Maintenance reports.
• Etc.

But in fact all those sources produce only three sorts of
data: the events, the summary reports and temporal raw
measurements. All other data may be interpreted as
object’s properties (engine, aircraft, component, factory,
airline…).

• The events are measurements taken at random dates
and are generally associated with a message and a
value.

• The summaries are snapshot information taken
regularly but at a small rate (for each flight and
specific engine regime, each engine…). In general we
associate summary data as result of statistical
computation done on raw measurements.

• The temporal measurements are raw signals that are
obtained from sensors or high volume outputs
computed online, like spectrum.

Measurements are defined by variables and indexes:

• A variable is a data container linked to sensors or
algorithms’ results, which carries their own properties

like bounds, sensitivity, precision.
• The index corresponds to the temporal or

special coordinate that refers to the value of a
variable. It may be engine-cycles (flights) or
temporal intervals.

A dataset is made of simple rectangles extracted
from this relational database. Each rectangle is a
signal, whose columns are variables indexed by
cycle or time (see figure 6).

• ACARS messages are information taken during
the flight. They summarize the engines states at
specific flight regimes. Classical datasets are
built from those snapshots: for each engine
(observation) they collect signals indexed by
cycle, which record temperatures, pressures,
flows, etc.

• Vibration records are taken regularly during the
flight. For example at maximum acceleration or
engine cut-off. Those measurements give, for
each engine, datasets of cycles (observations)
that collects time-indexed signals of
accelerometers and tachometers.

Figure 7: A bloc that contains an algorithmic
module with its parameters.

Figure 8: An application built from several modules.

Annual Conference of the Prognostics and Health Management Society, 2009

7

5. DEMONSTRATION TOOL

One of the main maturity indicators is the number of time
an algorithmic component (here, a module) is reused in
different applications and for different contexts (types of
engines, category of missions). A way to facilitate this
reuse is to present the module in a simple way. The
demonstrator materializes each module by a graphic block
with a simple parameterization and connection interface
(figure 7).

The graph scheduler must implement a specific batch
mode (for generic signal transfer across the connections)
able to deal with auto-adaptability and calibration. Thus
the user only needs to draw a graph of OSA-CBM
modules to build a new HM application. The configuration
process resembles the way the engineers are working to
conceive control algorithms (figure 8).

Once a graphic block linked to an algorithmic module, it is
possible to build as many instances of the module and
even share the same instance by different physical block
representations. Each block may execute the module in
three modes: normal execution, calibration and plot. The
sharing of the same instance allows the definition of a
specific graph for calibration and the presence of two
blocks for the same instance in the application graph: one
for the computation and the other for the interactive
display.

When a graph of blocks is drawn on the main working

screen, it may be scheduled for calibration or
execution. The specific display blocks will
automatically update their graphic interfaces
offering interactive demonstrations for each
observation.

Executing a graph is not the only way to manage
algorithms. Each block has a contextual menu
(figure 9) that offers a list of actions like dynamic
plot, display of inputs, outputs, re-execution, etc.

A first toolbox contains generic blocks: reader,
writer, a common “module execution block”, and
the “small” signal manipulations blocks.

Another toolbox of already prepared module
instances is organized according to each specific
application context (oil consumption, start sequence
monitoring, modular performance, bearing damages,
fleeting events…). This application toolbox has also
a direct access to predefined datasets. Hence to get
new data for some test a user needs only to drag and
drop a database connected block on the screen.

The use of a share database located on a server and
the automatic interface to the source control tool
facilitates the sharing of data and modules between
users.

Figure 9: An example of interactive display interface of a module and its context menu.

Annual Conference of the Prognostics and Health Management Society, 2009

8

Figure 10: Hierarchy of objects in the environment.

Figure 11: Maturation Process Interface.

6. MATURATION INTERFACE

The main challenge for engine HM algorithm is to be able
to validate the algorithms and to update their codes
according to new observations. In fact, acquisition of new
data, specific to a system to monitor, is certainly the major
difficulty. A standard solution is to define a first version of
the algorithm that is embedded for bench tests or even on
real aircrafts owned by a friend airline company. This first
prototype executes the current version of the algorithm but
also register new observations. On operational flight we
already have a communication protocol with ACMS tools
for regular transfer of data to the maturation database. On
ground monitoring applications we define loaders
connecting the operational services to the database. Once
new observations stored in the database they are used for
an update calibration phase. The validation process of HM
algorithm is clearly an iterative process.

Our maturation interface is built specifically to manage
this iterative process. It is called MPI for maturation
process interface (figure 11). It organizes the hierarchy of
components: datasets, functions, modules, libraries and
applications (see figure 10 and the object hierarchy in the

nomenclature section). At the base level are the
algorithmic functions and the datasets. Those
components are linked to modules and each module
belongs to one OSA-CBM library and some high

Annual Conference of the Prognostics and Health Management Society, 2009

9

level HM applications.

When a new module is registered in MPI, the code is
analyzed and all new algorithmic functions are
automatically registered. Then a set of pages allows the
expert engineer to calibrate a new instance linked to the
algorithmic graph he is working on (from the
demonstration tool). Directly from the interface, he may
change parameters, select datasets, execute a calibration,
launch the code and execute the interactive plot. In this
work, the application helps the user by providing pages
linked to the specifications, the user guide and for each
instance a description of the validation context. Moreover,
code development formalism defines comment syntax so
the online help of any code (function or module) is
automatically generated from MPI.

Once an instance calibrated and tested, reports are
automatically generated for the module but also for each
used function and the current algorithmic application. The
modules are automatically monitored and statistic
information is transferred into the reports. The user needs
to complete each spreadsheet with expert comments and
more high-level information as a TRL value at application
level.

As MPI is built on a hierarchical structure, summary
reports are automatically computed for libraries and for
each application that uses the module.

Each version and modification of any experiment is saved.
This allows the design of specific dashboard with temporal
trends as well as a description of the current state for any
module, library or application.

7. CONCLUSION

This environment is a back-office tool for a cell of people
dedicated to HM algorithms development. It comes with a
process for conception, maturation, validation, test and
support.

The reports built by MPI use high-level statistic
procedures to validate and score each algorithmic
application (to monitor the health-monitoring algorithms!).
Those procedures apply a methodology that uses a
confirmation layer to ensure the required false alarm rate
(PFA) while optimizing the probability of detection
(POD). As this is only efficient at application level, our
system also monitors each algorithm module for each
version and each application context.

This solution was already applied in other industries. It
helps a team of researchers and engineers to answer
algorithmic problems in a lot of different domains:
automobile, chemistry, petrol, nuclear technology, and

even finance. It is also used to design solutions for
semiconductor micro-fabrication SPC software in
AEC and APC domains. This is our attempt to
transfer such methodology in the aeronautic
industry.

NOMENCLATURE

ACMS Aircraft Condition Monitoring System
AEC Automatic Equipment Control
APC Automatic Process Control
AQV Adequacy Quality Value
CBM Condition Based Maintenance
D&C Delay and Cancellation
DAO Data Access Object
DQV Data Quality Value
GNC Genericity (reusability)
HM Health Monitoring
IFSD In Flight Shut Down
MPI Maturation Process Interface
MQV Model Quality Value
MRO Maintenance, Repair and Overhaul
OSA Open System Architecture
PFA Probability of False Alarm
PLM Product Life Management
POD Probability Of Detection
PQV Predictive Quality Value
TRL Technology Readiness Level

Object hierarchy:

Application An algorithmic solution for a
specific engine system or component

Context The environment where the
application is used. It can refer to a
specific engine category, a flight
regime, etc.

Module An object that embeds the
algorithmic codes developed in
functions. The module has a specific
interface so each module may be
called in a unified way.

Block A graphic box that may be linked to
a module. It gives a physical
materialization to the module and
can be instantiated in a graph to
build an application.

Graph A list of chained modules that may
be connected to data and executes
the code of an application.

Signal An object that embeds values
collected from different sensors or
results of different computations.
Modules use lists of signals as inputs
and outputs.

Dataset A collection of lists of signals stored

Annual Conference of the Prognostics and Health Management Society, 2009

10

in the database and retrieved from query
on properties and variable names.

Observation A list of signals that represent the current
measurements of an experiment (flight,
bench test, …) or the intermediate results
of computations for this same experiment.

REFERENCES

M. Young (1995), Cantata: Visual Programming
Environment for the Khoros System, Computer
Graphics, vol. 29, pp 22-24.

V. N. Vapnik (1995), The Nature of Statistical Learning,
Springer Verlag, NY.

A. Mertins (1999), Signal Analysis, wavelets, Filter Banks,
Time-Frequency Transforms and Applications, John
Wiley & Sons.

E. Lee (2003), Overview of the Ptolemy Project,
University of California, Berkeley, CA,
http://ptolemy.eecs.berkeley.edu/.

Miriad (2003), Miriad Technologies supervise en temps
réel les processus de production,
http://www.journaldunet.com/solutions/0303/030321_
miriad.shtml.

R. Azencott (2003). A method for monitoring a system
based on performance indicators, U.S. Patent
6594618B1, Miriad Technologies.

J. Lacaille (2004). Industrialisation d’algorithmes
mathématique, habilitation à diriger des recherches,
Université Paris 1, Sorbonne, France.

J. Lacaille (2005a), H. Dubus. Defectivity Analysis by a
Swarm of Intelligent Distributed Agents, AEC/APC
2005, Palm Spring, CA.

J. Lacaille (2005b), Mathematical Solution to Identify the
Causes of Yield Deterioration - A defectivity data
based solution with an emergent computing technology,
ISMI, Austin, TX.

M. Zagrebnov, J. Lacaille (2006), Building a Robust
Model for Process Control Using Advanced
Mathematical Techniques, AEC/APC tutorial 2006,
Aix en Provence, France.

J. Lacaille (2006). Advanced Fault Detection, AEC/APC
tutorial 2006, Denver, CO.

J. Lacaille, M. Zagrebnov (2006). A statistical approach of
abnormality detection and its applications, AEC/APC
2006, Denver, CO.

J. Lacaille (2007). How to automatically build meaningful
indicators from raw data”, AEC/APC Palm Spring,
CA.

J. Lacaille, M. Zagrebnov (2007). An Unsupervised
Diagnosis for Process Tool Fault Detection: the
Flexible Golden Pattern, IEEE Transactions on
Semiconductor Manufacturing, Volume 20, Issue 4,

Page(s): 355 – 363.
J. Lacaille (2008), Global Predictive Monitoring

System for a Manufacturing Facility, U.S. Patent
20080082197A1.

OSA-CBM, Open Systems Architecture for
Condition-Based Maintenance, Mimosa,
http://www.mimosa.org/downloads/45/specificat
ions/index.aspx.

J. Lacaille (2009a). Standardized Failure Signature
for a Turbofan Engine, in Proceedings of IEEE
Aerospace Conference, Big Sky, MO.

X. Flandrois (2009), J. Lacaille, et all. Expertise
Transfer and Automatic Failure Classification
for the Engine Start Capability System, in
Proceedings of AIAA Infotech, Seattle, WA.

J. Lacaille (2009b), R. N. Djiki. Model Based
Actuator Control Loop Fault Detection, in
Proceedings of Euroturbo Conference, Graz,
Austria.

S. Blanchard (2009) et all. Health Monitoring des
moteurs d’avions, les entretiens de Toulouse,
France.

M. Cottrell (2009) et all. Fault prediction in aircraft
engines using Self-Organizing Maps, in
Proceedings of WSOM, Miami, FL.

A. Ausloos (2009) et all. Estimation of monitoring
indicators using regression methods; Application
to turbofan start sequence, submitted to ESREL,
Prague, Poland.

J. Lacaille (2009c). An Automatic Sensor Fault
Detection and Correction Algorithm, accepted in
ATIO, Hilton Beach, SC.

Jérôme Lacaille is senior expert
in algorithms for Snecma. He
joined the company in 2007 with
responsibility for developing a
health monitoring solution for jet
engines. Jérôme has a PhD from
the Ecole Normale Supérieure,

France in Mathematics. Jérôme has held several
positions including scientific consultant and
professor. He has also co-founded the Miriad
Technologies Company, entered the semiconductor
business taking in charge the direction of the
Innovation Department for Si Automation
(Montpellier - France) and PDF Solutions (San Jose
- CA). He developed specific mathematic algorithms
that where integrated in industrial process. Over the
course of his work, Jérôme has published several
papers on integrating data analysis into industry
infrastructure, including neural methodologies and
stochastic modeling.

