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ABSTRACT 
This project will demonstrate that a thermal age tag, 
incorporating two capacitive sensors of different activation 
energy, can be used to determine the effective temperature 
(Teff) of complex thermal environments to predict the 
condition of a wide range of thermally degradable products 
and materials. Correlation of the thermal age of the tag at the 
monitored product’s degradation activation energy provides 
estimated remaining thermal life of the product. The thermal 
age tag requires no batteries or electronic memory required 
in data-logging approaches, resulting in reduced size, weight 
and cost resulting in a totally passive tag. These passive tags 
are potentially maintenance free for the life of the product. 
The capacitive thermal age (CTA) sensors incorporated in the 
tag consist of a polymeric dielectric between two conductive 
plates to create a tiny capacitor. Capacitance of the sensor 
increases during thermal aging due to shrinkage of the 
polymer. Additives such as catalysts are used to adjust the 
activation energy (Ea) of the capacitance changes with 
thermal age. By incorporating two CTA sensors of different 
activation energies in the tag the effective temperature of a 
complex thermal environment can be determined at any (or 
multiple) target activation energies for products or 
materials.  This paper describes the development of a 
universal thermal age (UTA) tag incorporating capacitive 
thermal age sensors and presents preliminary co-aging trials 
data with a variety of selected polymeric products to 
demonstrate feasibility of this approach. 
 
 
 
 

INTRODUCTION 

Identifying when a product will fail in a real-world 
environment is a complex and daunting task. Environmental 
conditions including; temperature, humidity, chemicals, 
atmospheric pressure, and radiation may affect materials and 
components during transport, storage and operations. This 
may significantly decrease expected product life. Knowledge 
of the current properties of these products without the need to 
perform difficult and/or destructive testing, as well as the 
prediction of remaining life under known or assumed thermal 
environments is a valuable tool in many industries from 
pharmaceutical to defense applications. Use of Arrhenius 
methodology for prediction of target product condition in 
variable thermal environments is a common approach. This 
approach requires monitoring of the product thermal 
environment throughout product life, and traditionally is 
done with thermal data logging. 

Substantial progress in prognostic methodology has vastly 
improved prognostic health monitoring (PHM) capabilities in 
regards to finding the remaining useful life (RUL) of 
products. (Vichare et al., 2006) New types of sensors, 
computation models and algorithms, as well as destructive 
and non-destructive testing capabilities have vastly improved 
PHM. Unfortunately, the sheer magnitude of comprehensive 
monitoring remains impractical for many products and 
materials. Shelf-life dating remains one of the most common 
PHM methods for determining the RUL of products and 
materials is a testament to this. Long term accelerated aging 
studies are still very normal for determining expected life of 
materials but no matter how many studies are conducted this 
does not simulate the true use environment in most cases. 
Many items and products in the field cannot be monitored for 
actual thermal aging and are returned and refurbished before 
the end of their lifetime based on accelerated aging studies 
that are usually more extreme than actual conditions. 
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Even single-environmental stressor monitoring of products 
such as thermal history can become complex when 
monitoring large numbers of individual products. In the cases 
of individual food or pharmaceutical products, or for products 
with long lifetimes such as munitions, propellants, and 
explosives the complexity makes producers continue to rely 
on highly accelerated aging data and assumed environments. 
In order to monitor actual environmental conditions, data 
loggers require batteries and/or energy harvesting means with 
incumbent battery life and experience replacement issues. 
Data storage and handling issues including memory size, 
sample rates, data storage location and retrieval become 
cumbersome and make this approach impractical.  

Measuring thermal exposure provides a relatively simple and 
effective means to adjust RUL based on integrated time and 
temperature. For example, “smart tags” incorporating 
thermal data-loggers are small enough to monitor many 
individual products. The thermal exposure sensed by the tag 
is incorporated into kinetic models to project remaining 
thermal life based on thermal age testing of the product or 
material being monitored (Roduit et al., 2019).  

A passive thermal age sensor significantly simplifies product 
thermal life monitoring since data logging and energy needs 
disappear. A handheld reader provides the electrical power 
required to read the tag sensor and provide a present 
indication of remaining thermal life of the product. A pass/ 
fail reader such as a simple red/green light is easily used in 
the field. 

A resistive thermal age (TA) sensor and method to project 
remaining thermal life (Watkins, 2018) discloses such a 
passive monitoring tag. The resistive thermal age sensor 
comprises a conductive composite sensor element consisting 
of a polymeric matrix and conductive particle filler.  As the 
polymeric matrix shrinks during aging, due to crosslinking or 
other chemical or physical mechanisms, the resistance 
decreases. Selection of an appropriate matrix and filler 
provides a change in resistance with thermal exposure that 
follows Arrhenius behavior. The resistance of the TA sensor 
always represents the current integrated time-temperature of 
its environment at the sensor’s characteristic activation 
energy. Correlation of sensor resistance to multi-temperature 
thermal aging data of target materials or products provides a 
means to project RUL. 

The TA sensor is incorporated into a tag that is attached to, 
or thermally associated with a product or material that is to 
be monitored.  The tag acts as a surrogate of the material from 
a thermal aging perspective. Tags incorporating passive TA 
sensors are smaller, lighter and reduce the initial and service 
life costs when compared to thermal data loggers in 
projecting RUL. 

This paper describes a TA sensor which uses capacitance 
change in a thermal environment to predict remaining 
thermal life.  This capacitive thermal age (CTA) sensor 

consists of a polymeric dielectric between conductive plates.  
As the dielectric shrinks from thermal aging, the plate 
separation decreases, thus increasing capacitance measured 
between the plates. As in the resistive thermal age sensor, the 
electrical property (capacitance in this case) always 
represents the integrated time-temperature of its environment 
at its characteristic activation energy. Arrhenius behavior of 
the capacitance in a variable thermal environment allows 
correlation modeling of RUL for materials and products for 
which thermal aging data is available.   

Advantages of CTA sensors include the elimination of 
conductive fillers in the process. Addition of conductive 
particles in the resistive thermal age (RTA) sensor affects the 
chemical reactions which in turn affect matrix shrinkage. 
This shrinkage due to fillers therefore changes activation 
energy (Ea) of the sensor. Adjustment of the Ea of a 
capacitive TA sensor may use virgin polymers, or 
polymer/additive combinations can be chosen based on Ea 
and desired reaction rates alone. The conductive plates of a 
CTA sensor also provide good hermetic sealing, reducing 
sensitivity to humidity or corrosive gasses as compared to 
RTA sensors. And most importantly, CTA sensors appear to 
retain their aging sensitivity longer in thermal life than their 
RTA counterparts.  Retention of aging sensitivity is 
important to provide reasonable resolution of aged properties 
near the end of life, especially in product having long thermal 
life. 

Use of tags incorporating CTA sensors will be shown by 
analysis of the aging response of several CTA sensors, and 
correlation of CTA sensor capacitance with the condition of 
materials co-aged with the sensors.  A method of predicting 
condition of multiple materials or products with a single tag 
comprising two CTA sensors will be demonstrated. 

2.  CAPACITIVE THERMAL AGE SENSORS 

Figure 1 shows a prototype CTA sensor comprising a 
thermoplastic polyurethane (TPU) dielectric and copper top 
and bottom plates. 

 
Figure 1. Prototype capacitive thermal age (CTA) sensor. 
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The capacitance of the sensor is shown in Eq. 1 by the 
following relationship: 

   𝐶 = 𝑘 ∗ !
"
  (1) 

Where:  

C = capacitance, k = dielectric constant of the dielectric 
between the plates, A = surface area of the plates, and    d = 
the spacing between the plates. 

The capacitance of the sensor is directly proportional to 
changes in dielectric constant and surface area and inversely 
proportional to changes in the film thickness of the dielectric 
during aging. If the surface area of the dielectric between the 
plates is assumed to be constant, shrinkage of the dielectric 
decreases the thickness between the plates, increasing the 
capacitance.  Changes in dielectric constant can be calculated 
by use of thickness and capacitance measurements during 
aging. 

In order for CTA sensors to be of practical use in projecting 
target property condition from thermal aging, the sensors 
must show good Arrhenius behavior data derived from 
empirical multi-temperature aging data. The example below 
shows thermal aging data of a CTA tag comprising a 
commercial printed circuit board (PCB) as a bottom plate, a 
copper film top plate, and TPU resin as the dielectric. The use 
of a PCB as the bottom plate allows multiple capacitive 
sensors on a common tag platform. In Figure 2, two 
capacitive sensors are formed by the outside electrodes of the 
tag for the bottom of the sensor using a common ground top 
plate connector pad.  

 
Figure 2. CTA tag bottom plate for two CTA sensors  

 
A copper foil top plate covers the sensor (Figure 3). The top 
plate foil is electrically connected to the middle electrode of 
the PCB. Capacitance is easily measured as demonstrated in 
the image.  

 
Figure 3. Measuring capacitance of a two-sensor CTA tag 

with a common copper top plate. 

Figure 4 shows the correlation trial measuring capacitance of 
one of the thermal age sensors (C1A) of CTA Tag (C1) 
during thermal aging. Included are the error bars for each data 
point. The sensor/sensor variation is believed to be caused by 
the variability in the current prototype sensor manufacturing 
process and will be evaluated at later date to attempt to 
minimize the variability.  The CTA tag, similar to that of  

Figure 2, utilizes dielectric films comprising a TPU matrix 
(comprised of Estane 5703) between the PCB bottom plate 
and a copper film top plate. The C1A sensor utilizes a catalyst 
identified as CAT 2 (dibutyltin dilaurate), which provides a 
higher reaction rate of the sensor as compared to virgin 
polymeric dielectric.  The catalyst also provides a means of 
adjusting the effective activation energy of the capacitance 
response to thermal aging of the sensor. 

Figure 4. Normalized capacitance of C1A sensor of C1 tag 
vs. time at 70C, 64C and 57C aging. Note: error bars are +/- 

one standard deviation. 

Time-Temperature-Superposition (TTS) disclosed by Gillen 
et al. (Gillen, K., Bernstein, R., & Celina, M., 2017) is used 
to determine the acceleration factor for each aging 
temperature as compared to a reference temperature.  TTS is 
a preferred method of determining the acceleration factors 

Dielectric pads 

Electrical plug 
connectors 

Common ground 
connector pad 
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(AFs) since it includes all of the data instead of single point 
determination as is common in other methods. Figure 5 
shows a TTS graph of the aging data with normalized 
capacitance used to determine the AFs for the C1A sensors 
for the TTS for each aging temperature. 

 

Figure 5. Time Temperature Superposition (TTS) graph of 
70C, 64C and 57C temperature aging capacitance of C1A 

sensors. 

Table 1 summarizes the calculated AFs for the C1A sensors 
determined by TTS for each aging temperature based on 
Figure 5. 

Table 1. Acceleration Factors (AFs) for normalized C1A 
sensor capacitance for each aging temperature. 

Temperature (C) Acceleration factor 

57 1.0 

64  3.2 

70 6 

 

  Although fewer data points are available for the lower 
temperature analysis during early aging as compared to the 
higher trial temperatures, less extrapolation to typical 
operating temperatures makes selection of the lowest aging 
temperature more representative of expected real-time aging. 
Therefore the 57C data was used as the reference temperature 
for determination of acceleration factors and sensor 
activation energy. 

 Figure 6 shows the natural logarithm of the reaction rate of 
the sensors (represented by the AF of normalized 
capacitance) vs. the inverse absolute temperature of aging.  
The linear correlation value calculated using the three 
temperature data (R2 > 0.98) demonstrates the Arrhenius 

behavior of the sensor is consistent over the tested 
temperature range.  The activation energy (Ea), related to the 
slope of the line, was determined to be 31 kcal/mol. 

 

Figure 6. Linearity of the natural logarithm of acceleration 
factors with respect to inverse absolute temperature 
demonstrates Arrhenius behavior of the C1A sensor. 

3. TARGET MATERIAL PROPERTY ANALYSIS 

In order to determine aging through use of a thermal sensor a 
property that changes over time is selected that shows 
repeatable change. Most products comprising polymers 
generally have at least one trait that demonstrates aging of the 
material. For example, most polymeric adhesives, coatings 
and encapsulants demonstrate significant changes in 
mechanical properties, hardness, or molecular weight 
changes during thermal curing and thermal degradation 
during life.  

In a constant thermal environment such as a laboratory oven, 
prediction of thermally-induced properties of a product can 
be accomplished by a simple correlation of time in the 
environment to measured properties of the material at 
selected intervals. 

Most products and materials in consumer, industrial and 
military applications are subject to a more complex thermal 
history from the time of manufacture, including 
transportation, storage and operation.  Since product 
condition properties are affected by chemical reactions, 
which by their nature are non-linear, simple time predictions 
are inadequate. 

Since the capacitive thermal age sensors of this method 
follow Arrhenius behavior as discussed in the previous 
section, determination of the Arrhenius behavior of a product 
to be monitored for thermally-induced properties provides a 
means to correlate sensor reading with current product 
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condition.  With assumed future product conditions, such as 
continuation of the historical environment, prediction of 
remaining thermal life can be made. 

In the current method, characterization of the target thermal 
property behavior is similar to that used in characterization of 
the thermal age sensors. Product or product materials are 
thermally aged under multiple constant temperature 
environments.  Product properties of interest are measured 
periodically during aging. Arrhenius behavior properties are 
determined by TTS or other methods. A minimum of two 
temperature aging is required for this analysis, but a 
minimum of three is needed to demonstrate Arrhenius 
behavior. 

Several target components for correlation with thermal age 
were selected for this project.  O-rings and gasket samples of 
several different materials were thermally co-aged together 
with the capacitive thermal age sensors discussed in the 
previous section.  Durometer (Shore A hardness) was 
selected and measured during aging at each temperature since 
durometer is a property frequently used to evaluate the 
suitability for O-rings, gaskets, hoses and other elastomeric 
products. 

Figure 7 shows the increase in durometer reading (Shore A 
hardness) of nitrile O-rings during aging at the same 
temperatures as the CTA tags.  Note the indicator line at the 
5 point Shore A hardness increase, indicating a common end-
of-life condition for O-rings. Error bars of one standard 
deviation are included to show the error within the early 
stages of the study. End of life indicator in the figure shows 
a hardness increase of 5 Shore A units.  

Figure 7. Increase of Shore A hardness with thermal aging 
for nitrile O-rings measured during co-aging with CTA 

sensors at three temperatures. 

 

The same TTS approach was used with the Nitrile O-ring 
hardness increase as with the sensors.  The superposition 

chart (Figure 8) shows reasonable overlay and similar shapes 
of the target material at each temperature. 

 

Figure 8. Time-temperature-superposition (TTS) results of 
multi-temperature aging of Nitrile O-rings. 

The acceleration factors for each temperature determined by 
the TTS chart of Figure 8 is shown in Table 2. 

Table 2.Acceleration Factors (AF) for nitrile O-ring 
hardness increase vs. age time for each aging temperature. 

Temperature (C) Acceleration factor 

57 1.0 

64 2.3 

70 3.6 

 

Utilizing the acceleration factors (AF) from the table above, 
an Arrhenius chart of the natural logarithm of the acceleration 
factors at inverse absolute temperature is created as shown in 
Figure 9. Linearity (R2 > 0.95) of the data indicates 
Arrhenius behavior of hardness increase with Nitrile O-ring 
aging, and suggests the ability to correlate thermal age sensor 
readings with thermal aging of nitrile O-rings. 
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Figure 9. Arrhenius chart of Nitrile O-ring hardness change 
during thermal aging using the acceleration factors obtained 

from Figure 8. 

 

4. EMPIRICAL CORRELATION MODELS 

Several empirical correlation models used in this project 
provide a projected target condition based on capacitive 
thermal age sensor readings. These include direct correlation, 
effective temperature (Teff) and multi sensor Teff correlation 
and will be discussed in the following sections.  

4.1 Direct Correlation 

Direct correlation is a best-fit curve of thermal age sensor 
capacitance, representing the integrated time and temperature 
of the product it is associated with, to product condition.  The 
correlation requires product and sensor aging data at the same 
times and temperatures.   

As discussed previously, the sensor is co-aged with the target 
product to provide the aging data.  However, where co-aging 
data is not available, Arrhenius methodology may be used to 
adjust the times and temperatures of either the product or 
sensor aging data so that the same data points on the 
correlation curve define points of equivalent thermal age. 

Figure 10 is a direct correlation model for nitrile O-ring 
hardness increase as a function of thermal age as measured 
by the C1A capacitive thermal age sensor discussed in section 
2.  These sensors were co-aged with nitrile O-rings discussed 
in Section 3.  Average values of normalized sensor 
capacitance were correlated with average values of O-ring 
hardness increase at the same thermal exposure (same time at 
each temperature).  

It is worth noting that results of Figure 10 demonstrate 
reasonable correlation despite a significant difference in the 
Ea of the sensor (31 kcal/mol) and Ea of the target 
degradation mode (22 kcal/mol). 

Figure 10. Direct correlation of C1A thermal age sensor 
normalized capacitance with Nitrile O-Ring hardness 

increase. 

 

Three temperature (70C, 64C, 57C) data was used in this 
correlation model.  A straight line curve fit provided 
reasonable fit (R2 > 0.90), and the dotted line continuation of 
the correlation curve provides predicted values to end-of-life. 

This trial is still in process, and will be continued until the 
highest temperature data reaches or exceeds end-of-life 
conditions.  The correlation curve is expected to become non-
linear later in life as the reaction rate of the sensors, 
represented by the normalized capacitance rate of change, 
begins to decrease with increasing thermal age. 

A significant advantage of the direct correlation method is 
that once the correlation model is established for a target 
product or material, only the sensor reading of a CTA sensor 
associated with the target material is needed to predict the 
condition of the product. 

4.2 Teff Correlation Model 

A second approach to correlate CTA sensor reading with 
product condition is to utilize the sensor capacitance reading 
to determine the effective or kinetic temperature of the 
environment it has been in since sensor association with the 
product. (Harrah et al, 1980) 

Teff is defined as the single constant temperature that will 
provide the same product degradation over the monitored 
time period as a variable temperature profile does over that 
same period. Teff is different from average temperature in that 
chemical reactions that drive most degradation processes are 
highly non-linear.  A relatively short temperature excursion 
may have a significant effect on overall degradation due to 
the non-linearity in reaction rate mechanisms.  The only time 
that that Teff is equal to average temperature is when the 
temperature is constant throughout the period, or when the 
activation energy of the degradation reaction that is being 
monitored is zero.  
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Teff can be found using the acceleration factor of the calendar 
time to reach the present sensor value and the time required 
to reach the same value at a selected sensor reference 
temperature.  The Teff is then found by entering the sensor 
Arrhenius curve with the calculated sensor AF which 
provides Teff of the sensor environment at the effective 
activation energy of the sensor.  This Teff is then used to 
project the product condition from the reference degradation 
curve of the target at the target Ea.  An example utilizing 
sensor (C1A) utilizing target aging data from 70C, 64C and 
57C is shown in Figure 11, Figure 12 and Figure 13. 

 

Figure 11. Nitrile O-ring hardness increase as a function of 
70C age time, Teff method. 

 
 

 
Figure 12. Nitrile O-ring hardness increase as a function of 

64C age time, Teff method. 
 

Figure 13. Nitrile O-ring hardness increase as a function of 
57C age time, Teff method. 

The Teff method improves projection accuracy as compared 
to the direct correlation method at the temperature extremes 
when the difference of activation energy between sensor and 
target is significant.  However, calendar time (the elapsed 
time from sensor association with target) is required in 
calculating Teff. Calendar time is not required for direct 
correlation models. 

4.3 Multi-Sensor Teff Correlation Model 

Good accuracy of a modeling method for real-world (variable 
temperature) aging will necessitate adjusting Teff for the 
target Ea.  A large difference between the sensor Ea and the 
product Ea will result in large projection errors in product 
condition, especially when the environmental temperature 
change is significant, as might occur during transportation, 
storage and operation. Designing sensors to achieve a specific 
thermal age Ea response is presently a trial-and-error process. 
Designing, manufacturing and deployment of the large 
number of different sensors required to match a wide range 
of target products represents a significant commitment of 
time and resources. 

When sensor Ea and target degradation Ea are not similar, a 
multi-sensor Teff approach can overcome this issue.  In this 
project, multiple sensor types and target materials were co-
aged in a variable temperature environment in order to 
demonstrate a model which adjusts the Teff based on the Ea 
of the target degradation parameter.  

The method correlates the activation energy of the sensor as 
described in section 2 with the effective temperature as 
described in section 4.2. A linear correlation is assumed with 
two sensors as in this example. The resulting algorithm 
provides a means to calculate the effective temperature of an 
environment at any other target product Ea.  

 
The chart in Figure 14 shows a method of projecting Teff 
based on different sensor Ea. This correlation predicts Teff of 
degradation for a material of different Ea than either sensor. 
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Figure 14. Correlation of Teff to the Ea of a sensor. 

The results of this analysis at three time periods during the 
variable temperature aging are shown in Figure 15. The 
method of Section 4.2 was used to determine Teff for both 
sensors co-aged in the variable temperature trial. Teff for the 
target material degradation measurements (Nitrile O-Ring 
hardness Ea) utilized the method of Figure 14. 

Figure 15. Effective temperature for a variable temperature 
environment as a function of activation energy. Note the 
target Teff, with lowest activation energy, is lower than 

either Teff calculated for the sensors. 

Figure 16 below shows the projected hardness increase of 
nitrile O-rings determined at the effective temperatures of 
both C2A and C2B sensors and the projected Teff using the 
Ea of the target material.  

Figure 16: Comparison of nitrile O-ring hardness increase in 
a variable temperature environment utilizing the two sensor 

Teff approach results of Figure 15 . 

The relative differences between the individual and multi-
sensor hardness projections of Figure 16 are consistent with 
those expected, i.e., the target projections are lower for the 
two sensor projection than those by the single sensors alone 
when adjusted for target Ea.  Differences of projected 
hardness increase and measured hardness increase may be 
attributable to the relatively large variance in durometer 
measurements of the trial and the relatively small sample size 
of the variable temperature trial. Further investigation is 
required to confirm these results. Other thermo-kinetic 
models that compensate for thermal age sensor-target product 
Ea mismatches are being evaluated as part of this project. 

 

5. APPLICATIONS OF THE APPROACH 

Simplicity, low cost, small size and elimination of the 
requirement for complex data management and battery 
replacement issues associated with data loggers are the 
motivating factors for application of thermal age tags in 
applications.  It is important where shelf life, fixed 
replacement and “run-to-failure” methods are insufficient. 
Passive thermal age sensors provide the simplest and lowest 
cost upgrade from simple shelf-life or operating-time 
methods and bridge the gap to extensive multi-sensor 
integrated vehicle health monitoring (IVHM) methods used 
in large, fixed asset applications. They offer significant cost 
reductions resulting from reduced unscheduled downtime for 
rapidly aged equipment, and reduced premature replacements 
where equipment is replaced on a fixed replacement time 
scenario.   

The versatility of this approach is shown in Figure 17 below, 
using one of the same sensors (C2B) used in predicting the 
degradation of nitrile O-rings to predict the end of shelf life 
of aspirin based on literature aging data (Al-Gohary et al, 
2000). The direct correlation method of section 4.1 was used 
to model aspirin degradation data at three temperatures (70C, 
60C and 50C). C2B sensor data was adjusted to the 
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equivalent aspirin measurement temperature and times by the 
method discussed in section 4. 

 

 
Figure 17. Direct correlation modeling of thermal age sensor 
C2B capacitance to predict the end of shelf life for aspirin. 

 
Tiny, single sensor tags such as those shown in Figure 18 can 
be attached to individual products such as motors, generators, 
transformers, wire and cable insulation, elastomeric seals, 
gaskets and hoses, even food and pharmaceutical products. 
Resistive thermal age sensors, disclosed in a previous paper 
(Watkins, 2018) can be formed as films on products and read 
by contact readers. 

Figure 18: Small single and dual sensor thermal age tags can 
be used to project remaining thermal life of a wide variety 

of individual products. 

The passive nature of thermal age tags lends well to passive 
Radio Frequency Identification (RFID) tag approaches where 
a thermal age sensor is utilized in a passive RFID tag to both 
track a product and predict remaining thermal life.  An 
example of a passive RFID tag with thermal age sensor is 
shown in Figure 19. 

 
Figure 19. The passive (no battery) feature of thermal age 

tags allows full integration with passive RFID tags. 
 

Additional tag capabilities can be expanded with additional 
sensor capabilities including chemical sensors and 
shock/vibration sensors. Polymer Aging Concepts has shown 
feasibility of a passive thermal/humidity age tag capable of 
predicting material properties under both variable thermal 
and variable humidity conditions. 

6.  CONCLUSIONS 

Completion of this project is expected to demonstrate that 
thermal age sensors offer a simple, low-cost approach to 
identify prematurely aged materials and components and to 
extend the shelf life of materials and components which are 
optimally transported and stored. 

Capacitive thermal age sensors offer a new simplified PHM 
approach that eliminates the need for conductive fillers used 
in conductive composite thermal age sensors while providing 
excellent thermal age resolution.  And these sensors retain the 
completely passive (no battery, elimination of data logging 
requirements) and “life of the asset” benefits of resistive 
thermal age sensors. 

Multiple empirical modeling approaches can be employed 
that correlate the capacitance of the thermal age sensor 
(representing the integrated time-temperature of the tag 
environment) to current target material or product condition.  
Accurate correlation requires multiple target material 
property data at multiple temperatures and property threshold 
data for “Red light/Green light capability. These empirical 
approaches will not detect product degradation or faulty 
engineering caused by product manufacturing defects. 
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