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ABSTRACT

Advancements in sensing and computing technologies, the
development of human and computer interaction frameworks,
big data storage capabilities, and the emergence of cloud stor-
age and could computing have resulted in an abundance of
data in modern industry. This data availability has encour-
aged researchers and industry practitioners to rely on data-
based machine learning, specially deep learning, models for
fault diagnostics and prognostics more than ever. These mod-
els provide unique advantages, however their performance is
heavily dependent on the training data and how well that data
represents the test data. This issue mandates fine-tuning and
even training the models from scratch when there is a slight
change in operating conditions or equipment. Transfer learn-
ing (TL) is an approach that can remedy this issue by keeping
portions of what is learned from previous training and trans-
ferring them to the new application. In this paper, a unified
definition for transfer learning and its different types is pro-
vided, Prognostics and Health Management (PHM) studies
that have used transfer learning are reviewed in detail, and fi-
nally a discussion on TL application considerations and gaps
is provided for improving the applicability of transfer learn-
ing in PHM.

1. INTRODUCTION

Technology advancements in different fronts including sens-
ing and measurement, data collection practices, data process-
ing and computation, data storage capability, and the emer-
gence of external processing and storage power (i.e. cloud
service providers) are all accelerating the transformation of
industry to the concept of a data-driven industry 4.0 (Lasi,
Fettke, Kemper, Feld, & Hoffmann, 2014). Along with
this transition, data-driven methods, specially deep learning
methods, for PHM applications such as fault detection, diag-
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nostics, and prognostics have attracted great interest. This is
due to their unique ability to handle large amounts of data.
In fact, the larger the data size, the better their performance.
Also, deep learning models are able to automatically generate
good-enough features in cases where there is a lack of under-
standing about the domain for feature engineering.

However, there are still some issues with these models as
well. One of their key problems is the lack of generalizability
of a trained model to other equipment, settings and operating
conditions in the context of PHM. Transfer Learning (TL)
is an approach that can remedy the generalizability issue by
storing the knowledge gained while solving one problem and
transferring it to a different but related problem. The Neu-
ral Information Processing Systems (NIPS) 1995 workshop
(Thrun & Pratt, 1998) is believed to be the starting point for
research on this topic. Since then, terms such as Learning to
Learn, Knowledge Consolidation or transfer, inductive trans-
fer, and domain adaptation have been used to convey TL.

In the PHM domain, TL could save great endeavors to man-
ually labeling data and retuning models for new problems.
Specially, given the fact that high-quality labeled operation
data that also includes failures is rare. Therefore, it is highly
desirable to be able to use a model that is trained with a good
dataset on a specific equipment and working condition on
other related problems. One could imagine several valuable
applications for this possibility, such as:

• Transferring the knowledge gained by training on one
equipment to a fleet of identical equipment with slightly
different operation conditions (Q. Wang, Michau, &
Fink, 2019).

• Transferring the knowledge gained from training a di-
agnostics model using laboratory test data (Yang, Lei,
Jia, & Xing, 2019) or simulation data (Xu, Sun, Liu, &
Zheng, 2019) to health management of the same equip-
ment in the field.

• Transferring the knowledge from other domains such as
image processing to PHM applications including image-
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based structural health monitoring (Gao & Mosalam,
2018) or fault diagnosis of time series data that is con-
verted to image (Wen, Li, & Gao, 2019).

Despite the above-mentioned possible applications, this ap-
proach is not fully embraced by the PHM community (there
are only two published TL related papers in reliability engi-
neering and systems safety journal and the identified refer-
ences are dispersed across various journals and conferences).
For this reason, in this paper, we provide a formal definition
of the TL and its different categories, review the related stud-
ies in order to provide a better perspective on the applications
of TL for PHM researchers, and finally we discuss the re-
quired considerations for using this method.

2. TRANSFER LEARNING

To mathematically express TL, a domain can be defined as
follows:

D = {X , P (X)}
Where X is a feature space and P (X) is a marginal probabil-
ity distribution in which X = {x1, x2, ..., xn} ∈ X .

For a specific domain, a learning task can be defined as:

T = {Y, f(.)}

Where Y is the label space and f(.) is the desired predictive
function. This function is learned from the training data that
is pairs of {xi, yi}where xi ∈ X and yi ∈ Y . In probabilistic
terms, f(x) can be written as P (y|x). For any new instance
x, f(x) would predict the corresponding prediction (e.g. a
label in a classification scenario).

In TL studies usually two domains are considered which are
the source domain (DS) and the target domain (DT ) (note
that there can be several source domains (Multi-Source TL
(Ge et al., 2014)). Given a DS , a source learning task TS , a
DT , and a corresponding target learning task TT , the objec-
tive of TL is to improve the learning of the target domain’s
predictive function fT (.) using the information gained from
DS and TS where the source and target domain or tasks are
not the same.

In this paper, the categorization introduced by (Pan & Yang,
2009) is used to classify TL. This categorization has three
main criteria which are similarity of source and target do-
mains, similarity of source and target tasks, and availability
of labeled data in the source and target domains. In this cate-
gorization, TL has three main classes:

1. Inductive TL: the target task is different from the source
task (TS 6= TT ) while the source and target domains can
be either different or the same. In Inductive TL, label
data is available in the target domain but not necessarily
in the source domain. In this type of TL, TS and TT

can either be learned at the same time (i.e. multi-task
learning) or sequentially.

2. Transductive TL: the source and domain tasks are the
same, while there is a domain shift or a distribution
change between the source and the target (DS 6= DT ,
TS = TT ). In this type of TL, labeled data is only avail-
able in the source domain. Transductive TL is also called
”Domain Adaptation” in many studies.

3. Unsupervised TL: the source and domain tasks are dif-
ferent but related (similar to inductive TL) and there is
no labeled data available in the source or target domains.

Also, in each class, there are four common TL approaches
that can be applied based on ”what to transfer” (Pan & Yang,
2009; Weiss, Khoshgoftaar, & Wang, 2016; Yan, Shen, Sun,
& Chen, 2019):

• Parameter-based TL: transfers knowledge through
shared parameters between source and target domain
learner models.

• Instance-based TL: instances from the source domain are
reweighted to compensate for marginal distribution dif-
ferences between the two domains. The reweighted in-
stances are then directly used for training in the target
domain.

• Feature-based TL: transfers features from the source do-
main either by reweighting to better match the target do-
main features or by discovering a common latent feature
space that has acceptable predictive qualities and mini-
mizes the marginal distribution between the domains.

• Relevance-based TL: transfers knowledge based on some
defined relationship between the two domains.

3. TRANSFER LEARNING IN PHM

In this section, the existing PHM-related studies that have
used any one of the three mentioned TL classes are reviewed.

3.1. Inductive TL (TS 6= TT )

One of the most studied applications of TL is computer vi-
sion and visual classification problems, especially using deep
Convolutional Neural Networks (CNN). All of the identified
inductive TL studies have used images and CNN in their ap-
proaches. For example, (Gao & Mosalam, 2018) have used
inductive TL for training deep CNN for image-based struc-
tural damage recognition. In this study, the low-level feature
extractors from the VGG-16 (Simonyan & Zisserman, 2014)
model that is trained using the ImageNet dataset (Deng et
al., 2009) for classifying different structures (walls, bridges,
buildings,etc.) are transferred to the relatively smaller tar-
get domain (structural ImageNet) to discern structures with
spalling from the healthy ones.

Using the same source domain and same trained deep CNN
model (VGG-16), (Shao, McAleer, Yan, & Baldi, 2018) have
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Figure 1. The general idea of the identified inductive TL.
The feature extractor layers are froze and the target domain
classifier is re-trained.

transferred the low-level feature extractors of the VGG-16 to
a new deep learning model that its task is machine fault diag-
nosis and condition monitoring. The original sensor data in
the target domain are in time series format. The authors have
used time-frequency imaging to convert the sensor data to im-
ages and increase the similarity between the source and target
domains. Following the same approach, (Wen et al., 2019)
has used the ResNet-50 (pre-trained on ImageNet dataset)
deep CNN network (He, Zhang, Ren, & Sun, 2016) as the fea-
ture extractor for a machine fault classification network. They
too, have converted time series sensor data to RGB images in
order to make it compatible with the ResNet-50 inputs.

(Zhong, Fu, & Lin, 2019) proposed training a CNN-based
anomaly detector (only two classes: normal and abnormal) on
a gas turbine dataset. Then transferring the convolution lay-
ers to the target domain classifier (parameter-based TL) and
feeding those features to a Support Vector Machine (SVM)
for classifying the gas turbine condition into four different
classes (1 normal and 3 fault classes). Their approach has
significantly improved the fault diagnosis performance with
an small amount of labeled data in the target domain.

3.2. Transductive TL (DS 6= DT , TS = TT )

Transductive TL or domain adaptation is the most widely
used type of TL for PHM applications, specially fault diag-
nostics in the source and target domains. Domain general-
ization is the main application of TL in PHM that have been
identified in the literature. In this application, one general
model that is applicable to the source and target domains is
produced and labeled source dataset is available while the tar-
get dataset is unlabeled. The source domain information is
used to predict accurate labels for the target dataset. In most

cases, this generalized model for the source and target do-
mains is obtained by the adjustment and the transformation
of data. There are generally two strategies for doing so; in-
stance weighting and feature transformation (Zhuang et al.,
2020). We have summarized the measures used for data trans-
formation in (Table 1).

In the PHM context, (Qian, Li, Yi, & Zhang, 2019) have pro-
posed using Kullback-Leibler (KL) divergence as a criteria to
measure the discrepancy between the source and target do-
main datasets. They have defined a loss function that is the
sum of first to nth order moment discrepancies between the
two domains. This term is fused into the objective function
of the simultaneous training of the source and target fault di-
agnosis networks to be minimized. This way, the networks
would learn to find domain independent features that helps
learning the classification task in target domain using the la-
bels in the source domain.

In another study by (Tong, Li, Zhang, & Zhang, 2018) on
domain generalization for bearing fault diagnosis, in order to
reduce the marginal distribution difference between the do-
mains and extract maximally domain-invariant features, Max-
imum Mean Discrepancy (MMD) measure is used. They use
this measure to regularize the two dataset in a way that min-
imizes the MMD measure. Afterwards, first the classifier is
trained on the transformed source domain (labeled). Then,
pseudo-labels are generated for the target domain data (un-
labeled) which is simply picking up the class that has the
maximum predicted probability, as if they were true labels
(Lee, 2013). Having labels for both domains, the difference
between the class-conditional probability distributions can be
calculated (using modified MMD measure) and be incorpo-
rated into the model training loss function to be minimized
and provide a domain-invariant feature generator. To address
the same problem as defined by (Tong et al., 2018), (Sun,
Wang, Liu, Huang, & Fan, 2019) has used the MMD to mea-
sure the difference between the source and target domains
hierarchically-obtained features in a Sparse stacked denois-
ing autoencoder architecture. This difference terms are then
summed and fused into the training loss function to be mini-
mized and help obtaining domain-invariant features.

Table 1. Statistical criteria used for data transformation in
Transfer learning

Difference Measures References
Maximum Mean Discrepancy (MMD) (Tong et al., 2018)
Kullback–Leibler (KL) divergence (Qian et al., 2019)
Jensen-Shannon divergence (Ruder & Plank, 2017)
Hilbert-Schmidt independence criterion (T. Wang, Lu, & Zhang, 2018)
Bregman Divergence (Si, Tao, & Geng, 2009)

(X. Li, Zhang, Ma, Luo, & Li, 2020; Q. Wang et al., 2019)
proposed using a deep learning architecture that is called
Domain Adversarial Neural Network (DANN) (Ganin et al.,
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Figure 2. A general representation of DANN implementation for domain adaptation on a hypothetical gearbox simulation-based
source domain and real-world target domain. In this architecture, Gradient Reversal Layer (GRL) has no associated parameters.
During the forward propagation, the GRL acts as an identity transformation and in the backpropagation it multiplies the gradient
by a certain negative constant.

2016) and includes a deep feature extractor (G), a domain dis-
criminator (D), and a classifier (C) for obtaining a domain-
invariant fault classifier for rotating machinery. In this archi-
tecture, training data from several different domains as well
as augmented data is used. Further, through adversarial train-
ing of the deep learning architecture as shown in Figure 2
(asking D to identify whether the features are coming from
source or target domain while asking G to fool the discrim-
inator), the feature extractor is trained to generate features
from data in different domains that are not domain specific.
In other words, the machinery data under different working
conditions are mapped onto a learned common feature space
that is able to classify faults in various domains.

Considering the explained architecture and TL techniques
one can imagine applying TL to prognostics and Remain-
ing Useful Life (RUL) prediction as well. As demonstrated
by (A. Zhang et al., 2018), a predictive deep learning model
such as a Long Short Term Memory (LSTM) network can
be trained for a turbofan engine RUL prediction (using C-
MAPSS datasets) in one operating condition and then be
transferred to another operation condition using the same ar-
chitecture that is shown in Figure 1 (some parameters are kept
and some are retrained). Also, using the same dataset, (da
Costa, Akçay, Zhang, & Kaymak, 2020) has proposed train-
ing a LSTM model for RUL prediction of turbofans with a
subtle difference that no labels are used for training in the tar-

get domain. To classify the unlabeled target domain, LSTM-
DANN is architecture is proposed which is built upon the ex-
plain DANN architecture in Figure 2.

Another interesting applications of transductive TL in PHM
is transferring the knowledge gained from simulations and
experiments (DS) to real-world problems (DT ). One of the
growing virtual sources of knowledge are digital twins. Dig-
ital twins are a determining technology for the Industrial In-
ternet of Things (IIOT) (Canedo, 2016) where machines can
interact with each other and humans in the virtual space. Dig-
ital twin includes the virtual and physical spaces as well as the
interactions between the two. It models the physical twin in
terms of geometry, behaviors, and governing rules. Also, the-
oretically it can mirror, predict, and verify the performance of
the physical entity.

As shown by (Xu et al., 2019), using a digital twin, it is possi-
ble to generate data (source domain) with an acceptable vol-
ume and variety for training a proper initial deep learning-
based fault diagnostics model. They have developed such
model by training a Stacked Sparse Auto Encoder (SSAE) on
data from the digital twin of a car body-side production line
and transferred the obtained model parameters (parameter-
based TL) to be fine tuned using physical monitoring dataset.
Other types of simulation have also been used in the literature
as the source domain. To mention a few, using feature-based
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TL, (W. Li, Gu, Zhang, & Chen, 2020) have transferred fault
diagnosis knowledge from simulation data of a continuously
stirred tank reactor and the pulp mill plant benchmark prob-
lem to real-world data. (X. Wang, Ren, & Liu, 2018) have
used a portion of the Tennessee Eastman (TE) process simu-
lation data as the labeled source dataset and the remainder
as the unlabeled target dataset. Pseudo-labeling technique
and adversarial training between the classifier and domain
discriminator is used in this study as well. Considering the
experimental data as the source domain and following a sim-
ilar technical approach, (Yang et al., 2019) have transferred
locomotive bearing fault diagnostics knowledge to unlabeled
real-world operation data.

3.3. Unsupervised TL

The studies that dealt with training diagnostics and prognos-
tics models in cases where there are labeled data in both the
source and target domains or only in the source domain are
discussed. In our context, collecting the fault data is difficult,
specially when it comes to expensive and safety-critical sys-
tems. Some machines and systems cannot run to failure due
to he associated expenses and/or consequences. Also, even
regardless of the expenses and consequences, many indus-
trial systems go through a long degradation process to reach
failure which makes the failure data collection a very time
consuming task. Therefore, it is desired to still be able to
improve the deep learning-based diagnostics and prognostics
models performance using the knowledge embedded in other
related domains. Unsupervised learning in general includes
tasks such as density estimation and clustering, anomaly de-
tection or one-class classification, and learning the latent rep-
resentation of variables (feature space).

Accordingly, unsupervised TL uses strategies that assume a
known format of transformations between the domains, the
availability of discriminative domain-invariant features, a la-
tent space where the difference in distribution of source and
target data is minimal, or the possibility of transforming and
mapping the source data onto the target domain (Gopalan, Li,
& Chellappa, 2013). Among the PHM studies, only one study
by (Michau & Fink, 2019) is found that has applied a fully un-
supervised TL to learn to detect anomalies in the early life of
gas turbines using healthy data operation data of other similar
turbines. Their proposed framework is composed of a feature
extractor and a one-class classifier trained with only healthy
data. To align the features of the source and target domains,
they have selected three strategies and explored various com-
binations of them. A variational autoencoder to generate a
shared probabilistic encoder/decoder for the two domains, a
homothety loss (a transformation of space which dilates dis-
tances with respect to a fixed point) to maintain inter-point
spacial relationships between the input data and the extracted
features, and an adversarial training of a domain discrimina-

tor (as explained in Section 3.2). Their proposed architecture
is demonstrated in Figure 3.

Figure 3. The representation of an architecture used in
(Michau & Fink, 2019) for unsupervised TL. The training
data from both domains is fed to a variational auto encoder,
a domain discriminator is trained in an adversarial manner to
force the features to become as domain-invariant as possible,
and finally the one-class classifier does the prediction using
the generated features (no backpropagation arrow is used in
the one-class classifier module).

4. DISCUSSION

TL has significant advantages and applications in the PHM
context. However, similar to any other method it has draw-
backs and understanding these drawbacks is vital for its suc-
cessful application and implementation. There are three
main questions that should be considered before applying TL
which we discuss separately in the following subsections.

4.1. When to transfer?

Transferring knowledge is possible only when it is ’appropri-
ate’. Defining what ’appropriate’ means in each context is an
ongoing research question and usually careful experimenta-
tion is required. First, the need should be identified for TL.
For example, when we talk about TL for fleets of systems,
we should first identify which units require additional data
or knowledge for accurate diagnosis, then determine which
other systems in the fleet would be most helpful (for a pair-
wise TL) and have minimal negative transfer effect. Negative
transfer and best practices to avoid it, is actually a research
gap. However, (Z. Wang, Dai, Póczos, & Carbonell, 2019)
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present a great clarification of how negative transfer should
be understood. According to this research, negative transfer
should be defined w.r.t. the algorithm and negative transfer
largely depends on the size of the labeled target data.

Regarding the amount of data required for TL, usually TL
is best applied when the source domain is considerably larger
than the target domain. Occasionally, TL can be helpful when
the two domains have almost the same size as well. Another
important consideration is that if the predictive model has a
high prediction error on the source data (due to noisy data,
etc.), similar or even worse prediction errors on the trans-
formed target data are expected. Thus we should have confi-
dence in the source domain prediction model before the trans-
fer process.

4.2. What to transfer?

Another important aspect of TL is what is being transferred.
A Careful selection of what to transfer is key to have a suc-
cessful TL. In an ideal transfer, the most ”similar” portions of
data (instances or features) should be identified and utilized,
using various similarity measures introduced earlier. If an al-
gorithm fails to discard the divergent part and instead rely on
it, performance deterioration would be inevitable. As men-
tioned, to find the most ”similar” portions of source data, data
transformation through instance weighting or feature trans-
formation is required. For instance weighting, methods like
Kernel Mean Matching (KMM) (Huang, Gretton, Borgwardt,
Schölkopf, & Smola, 2007), Kullback–Leibler Importance
Estimation Procedure (KLIEP) (Sugiyama et al., 2008), and
heuristic methods like AdaBoost (Schapire, 2013) and TrAd-
aBoost (Dai, Yang, Xue, & Yu, 2007) have been proposed.
Respectively for feature transformation, several feature aug-
mentation, reduction, and alignment methods have been pro-
posed that are discussed in detail by (Zhuang et al., 2020).

4.3. How to transfer?

Various approaches are discussed throughout this paper that
are not perfect and have some inherent flaws and weaknesses.
For examples, the use of similarity metrics between distribu-
tions (i.e. MMD, KL, etc.) was explained. It is shown that
these measures are not always reliable and there is a need
for more robust measures (L. Zhang, 2019). We mentioned
pseudo-labeling as a way to improve the performance of the
models in the target domain (unlabeled), however incorrect
pseudo-labels can considerably worsen the performance of
the model and they should be used with caution. Also even
with pseudo-labeling, in cases with unlabeled target domains,
the confidence in class predictions becomes very low if the
disparity between the domains is large.

Adversarial training is growing popular in machine learning
applications and it is being more and more used in TL ap-
plications. As mentioned a feature generator and a domain

discriminator are the common elements of adversarial train-
ing for TL. The domain discriminator’s only duty is to distin-
guish the source and domain features and it can easily overfit
the data. Therefore, it cannot consider task-specific decision
boundaries between classes, leading to ambiguous features
near class boundaries which means less robust generated fea-
tures.

5. CONCLUSION AND FUTURE WORK

TL has become a major field of study in machine learning. It
mimics an important feature of human learning and improves
the machine learning performance. For the PHM society, TL
can be a way to reduce the required training data and signif-
icantly improve fault diagnostics and prognostics ability in
situations with limited data and information. In this study
we thoroughly reviewed the studies that used TL for PHM
purposes. The low number of identified studies and the fact
that most of them are published in the last couple of years,
shows the increasing adoption of this technique by PHM re-
searchers. Thus, this paper could contribute to the field by
introducing the different state of the art techniques, identified
applications, and implementation considerations.

Future studies could fruitfully explore TL application in the
PHM domain further by enabling transfer of knowledge be-
tween more diverse tasks, such as fault diagnosis of simi-
lar systems with manufacturers and different condition mon-
itoring configurations. Also, transferring knowledge from
simulation-based source domains needs further exploration.
Exciting emerging technologies like digital twins could po-
tentially be the perfect source domain for target industrial
systems.
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