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ABSTRACT

One of the main challenges in prognostics corresponds to the
estimation of the probability density function (PDF) of the
system’s time-of-failure (ToF) prior to reach a fault condi-
tion. An appropriate characterization of the ToF-PDF will let
the user know about the remaining useful life of the system
or component, allowing the users to prevent catastrophic fail-
ures through optimal maintenance schedules. However, the
ToF-PDF estimation is not an easy task because it involves
both the computation of long-term predictions of a fault in-
dicator of the system and the definition of the hazard zone.
In most cases, the trajectory of the fault indicator is assumed
as a trajectory with monotonic behavior, and the hazard zone
may be considered as a deterministic or probabilistic thresh-
old. This monotonic behavior of the fault indicator enables
assuming that the system will only fail once when this indi-
cator reaches the hazard zone, and the ToF-PDF will be esti-
mated according to mathematical definitions proposed in the
state-of-the-art. Nevertheless, not all the fault indicators may
be considered with a monotonic behavior due to its nature
as a stochastic process or regeneration phenomenon, which
may entail to errors in the ToF-PDF estimation. To overcome
this issue, this paper presents an approach for the estimation
of the ToF-PDF using the first-passage-time (FPT) method.
This method is focused on the computation of the FPT-PDF
when the stochastic process under analysis reaches a specified
threshold for the first time only. Accordingly, this work aims
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to analyze the impact in the estimation of the ToF-PMF (prob-
ability mass function) when particle-filter-based prognostics
algorithms are used to perform long-term predictions of the
fault indicator and compute the probability of failure consid-
ering specific hazard zones (which may be characterized by a
deterministic value or by a failure likelihood function). A hy-
pothetical self-regenerative degradation process is used as a
case study to evaluate the performance of the proposed meth-
ods.

1. INTRODUCTION

Monitoring the state-of-health (SoH) of a system (and/or its
components) is essential to improve their overall performance
and reduce costs associated with a corrective maintenance
(Wang, Lu, Cheng, & Jiang, 2019). Based on this, prognos-
tics and health management (PHM) plays a crucial role in
the estimation of system conditions. According to Si (2015),
PHM provides a set of tools used to guarantee the system’s
reliability, estimate its real condition, and avoid risks that can
affect the operation or cause irreversible damage to the sys-
tem. Prognostics allow the identification of the requirements
of a system (and/or its components) in the future; that is, the
time-of-failure (ToF) and the remaining useful life (RUL).
The ToF is a relevant parameter in PHM, and it is defined
as the time in which the failure threshold is reached (Skaf,
2015). In the case of RUL, it is defined as the difference be-
tween the ToF and the current time instant (Wei, Dong, &
Chen, 2018). In this article, we prefer to use ToF instead of
RUL, since it is more general and is applicable for a broader
range of cases (Orchard & Vachtsevanos, 2009).
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Currently, various methods are used to estimate the ToF.
Some authors have classified these methods into two ma-
jor categories: model-based and data-driven. The first cat-
egory consists of the use of a set of equations that include
the physical characteristics of the phenomenon under study.
In contrast, the second category uses a large amount of data
obtained from sensors and monitoring. These data is then
used to infer the behavior of the event. For example, Pola et
al. (2015) presents a model-based approach combined with
a particle filter (PF) to estimate the end of discharge (EoD)
of lithium-ion batteries, while Liu, Zhao, and Peng (2019)
presents a data-driven approach based on long short term
memory networks and Bayesian model averaging to deter-
mine the RUL.

The SoH is an indicator widely used to characterize degrada-
tion processes. According to Qu, Liu, Ma, and Fan (2019),
an accurate estimation of the SoH of a system will affect the
RUL prediction directly. In this line, failure prognostic algo-
rithms use long-term predictions to describe the future behav-
ior of this kind of indicators to estimate the ToF of the faulty
system. To achieve this, failure prognostic algorithms require
a correct characterization of the indicator under study, and
its accuracy has a direct impact on the estimation of the ToF
probability mass function (ToF-PMF). An example of these
algorithms is the one based on PFs, which are widely used
by many researchers in diverse applications within the PHM
community (Rozas et al., 2020).

The characterization of specific degradation processes contin-
ues to be a topic of interest in PHM for applications related to
self-regenerative processes; such is the case of the discharg-
ing process for lithium-ion (Li-ion) batteries (Ng, Xing, &
Tsui, 2014; Zou, Hu, Ma, & Li, 2015). According to Xu et al.
(2019), the self-regenerative process in Li-ion batteries can
be defined as the process by which the battery increases its
capacity for the next operation cycle if a long standby time
is considered. If this self-regenerative behavior is not treated
adequately by prognostic algorithms, then the accuracy and
precision of the ToF (or RUL) estimation may be consider-
ably affected. Therefore, it is of utmost importance to charac-
terize and consider aspects related to these processes through
methodologies that allow computing a correct ToF (or RUL)
estimation. Examples of advances in this area are the works
presented in Orchard et al. (2015) and Xu et al. (2019).

This paper presents an approach to compute the ToF-PMF
based on the concept of the first-passage-time (FPT) method.
FPT is defined as the first time when a stochastic process
crosses a specified threshold (Jaskowski & van Dijk, 2015).
This method is commonly used in the areas of economics
and finance (Bakshi & Panayotov, 2010; Janssen, Manca, &
Manca, 2013). However, during the last year, the concept
was extended to different areas, such as animals’ movement
to establish a distant relationship between the animal and its

prey (McKenzie, Lewis, & Merrill, 2009). Another case is
the study of a stochastic degradation model under bivariate
time scales. In this specific study, the concept of FPT is used
to predict the RUL of the degrading components (Pei et al.,
2019). Finally, the approach proposed by Si (2015) combines
the FPT concept with the Kalman filter for RUL estimation.
In this work also, the author establishes that the use of the
extended Kalman filter or PF combined with the FPT may be
an interesting approach for future research.

Considering all of the above, in this research effort, we pro-
pose three methods to improve the efficiency of sampling
strategies in the implementation of particle-filtering-based
prognostic algorithms. These methods allow working either
with deterministic or probabilistic definitions of the failure
hazard zone.

As a case study, a hypothetical self-regenerative degradation
process is considered for the computation of the ToF-PMF.
The performance of the three methods is evaluated through
the Jensen-Shannon Divergence and the computation time,
in function of the amount of particles used by the particle-
filtering-based prognostic algorithm.

This paper is organized as follows: Section 2 describes the
main concepts related to ToF estimation, FPT and particle-
filtering-based prognostic algorithms, Section 3 describes the
proposed methodology, Section 4 introduces the case study,
Section 5 shows the simulations and obtained results, and fi-
nally, Section 6 presents the conclusions.

2. THEORETICAL FRAMEWORK

2.1. Time-of-Failure estimation and First-Passage-Time

Failure prognostic algorithms use long-term predictions to
describe the future trend in time of a SoH indicator of a fail-
ing system (or subsystem, or component), aiming to estimate
its ToF (Figure 1). To compute these long-term predictions,
failure prognostic algorithms should require a complete un-
derstanding of the underlying dynamics of the SoH indicator,
as well as a proper characterization of the related uncertainty
sources, and also a future usage profiles of the system (Diaz et
al., 2020). Thus, it is more accurate to state that failure prog-
nostic algorithms allow estimating the ToF-PMF of a failing
system.

Generally, the SoH indicator is directly related to a degra-
dation process or a deterioration phenomenon (e.g., ero-
sion, corrosion, or cracking) (Deng, Barros, & Grall, 2016).
This entails that monotonic assumptions may be usually
made over the SoH indicator, because most SoH degra-
dation/deterioration processes exhibit this kind of behavior
(Park & Bae, 2010).

According to this, the system under observation would incur
into a catastrophic failure condition only once, moreover, this
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Figure 1. Long-term predictions generated by failure prog-
nostic algorithms.

event could be characterized by a situation where the SoH
indicator crosses a predetermined threshold (Zhang, Si, &
Hu, 2015). For this case, the concept of threshold represents
a failure condition defined by collected data from historical
failures of the system. In most cases, the threshold is char-
acterized by using a deterministic value; however, if there is
enough historical failure data, it is also possible to character-
ize the probability of failure events by a likelihood function
(Orchard & Vachtsevanos, 2009). The latter is also called
hazard zone, and it is the general way to define a failure con-
dition in PHM. Taking this into account, we can observe that
a deterministic threshold corresponds to the simplest hazard
zone that can be defined (Acuña & Orchard, 2018).

In cases where the catastrophic failure condition is assumed
to occur only once and where the hazard zone is represented
by a deterministic threshold T , the ToF can be estimated us-
ing the concept of FPT (Deng et al., 2016; Jaskowski & van
Dijk, 2015). Mathematically speaking, let {xk, k ≥ 0}, with
x ∈ R, k ∈ N ∪ {0}, be a scalar discrete-time stochastic
process that characterizes the evolution in time of the SoH
indicator, and where it is assumed that the degradation con-
dition monotonically increases its severity in time. Then, the
ToF of the stochastic process xk at time k , given that we have
acquired measurements y ∈ R until time kp, is computed ac-
cording to Eq. (1):

ToF (kp) = inf{ k : {k > kp} ∧ {xk ≥ T |y1:kp
}}. (1)

It is important to mention that, for simplicity in the notation,
we consider ToF = ToF (kp) in upcoming equations.

With the definition presented in Eq. (1) and the Law of
Total Probability, the authors in Jaskowski and van Dijk
(2015) obtained a recursive way to compute the ToF-PMF,
P(ToF =k), given by Eq. (4), as from Eq. (2) and consider-
ing P(xk ≥ T |ToF = k) = 1 in Eq. (3):

P(xk ≥ T ) =
k∑

j=kp+1

P(xk ≥ T |ToF = j)P(ToF = j) (2)

P(xk ≥ T ) = P(xk ≥ T |ToF = k)P(ToF = k) +

k−1∑
j=kp+1

P(xk ≥ T |ToF = j)
(3)

P(ToF =k) = P(xk≥T )−
k−1∑

j=kp+1

P(xk ≥ T |ToF =j) (4)

As stated above, the expression in Eq. 4 allows computing the
ToF-PMF considering a deterministic threshold; besides, in
some particular cases for the SoH indicator random process,
an exact and closed-form of the ToF-PMF can be obtained (Si,
Wang, Chen, Hu, & Zhou, 2013). However, if a probabilistic
threshold is considered as the failure condition, the recursion
in Eq. (3) is no longer valid, and there is no closed-form
solution to the problem of computing the PMF-ToF of the
faulty system.

2.2. Particle Filter based Prognostics algorithms for
Time-of-Failure estimation

In PHM, there are different failure prognostic algorithms pro-
posed to address the prognostic problem; however, many re-
searchers have preferred probability-based methods. This
is owing to the possibility to include the notion of uncer-
tainty. A widely used failure prognostic algorithm is based
on the PF, which is suitable for both on-line learning systems
and state estimation of uncertain systems (Arulampalam,
Maskell, Gordon, & Clapp, 2002). In this sense, particle-
filtering-based prognostic algorithms aim at approximating
the SoH indicator PDF by a set of weighted samples (called
“particles”). Authors in Orchard and Vachtsevanos (2009) de-
fine a theoretical framework and provide the necessary proce-
dures with the purpose of estimating the ToF-PMF, as well as
obtaining a proper characterization of it in accordance with
Eq. (5):

P(ToF =k) =

Np∑
i=1

w
(i)
k P(x

(i)
k ≥ T |y1:kp

) (5)

where w(i)
k P(x

(i)
k ≥ T |y1:kp

) is the probability of being in
the event of catastrophic failure, conditional on a specific par-
ticle, and {w(i)

k }
Np

i=1 are the particle weights at time k.

As the expression in Eq. (4), the Eq. 5 is also valid for a sys-
tem that will reach the condition of catastrophic failure only
once given a deterministic threshold. It is noteworthy to high-
light these two elements because, in the case of using a prob-
abilistic threshold, the mathematical expression in Eq. (5) is
not valid. Otherwise, in case of the SoH indicator represents
a regenerative system, the particles of the particle-filtering-
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based prognostic algorithm could cross the threshold several
times, which could lead to a mathematically erroneous esti-
mation of the ToF-PMF (the sum of all the probabilities of
the PMF higher than 1). Due to this, in this work, we pro-
pose three methods inspired in the concept of FPT, which are
capable of obtaining, in an efficient way, an empirical approx-
imation of the ToF-PMF for particle-filtering-based prognos-
tic algorithms. These methods can be used for both non-
regenerative and regenerative systems, as well as any kind
of hazard zone.

2.3. The Jensen-Shannon Divergence

Divergence is a mathematical concept used in different re-
search topics with the purpose of measuring the dissimilar-
ity between PMFs. An example of this is the Kullback-
Leibler (KL) Divergence. However, the KL-Divergence is
not a true metric for the dissimilarity between PMFs be-
cause it does not comply with the symmetry property. In-
stead, we use the Jensen-Shannon (JS) Divergence, which
is based on KL-Divergence. Indeed, from a mathematical
point of view (Osán, Bussandri, & Lamberti, 2018), given
two random discrete distributions P = {p1, p2, ..., pn} and
Q = {q1, q2, ..., qn} the KL-Divergence is defined by:

DKL(P,Q) =

n∑
i=1

pi log

(
pi
qi

)
, (6)

and the symmetric JS-Divergence is defined as:

DJS(P,Q) = 1
2

[
DKL

(
P, P+Q

2

)
+DKL

(
Q, P+Q

2

)]
. (7)

3. TIME-OF-FAILURE ESTIMATION METHODS FOR
PARTICLE FILTER-BASED PROGNOSTICS ALGO-
RITHMS

As stated above, particle-filtering-based prognostic algo-
rithms approximate the PDF of the SoH indicator by a set
of particles in each instant time in the absence of measure-
ments and allow computing the ToF-PMF when the particles
reach (or cross) the predefined hazard zone. These so called
hazard zones can be classified in two types according on how
the threshold is defined. The first type uses a deterministic
threshold, while the other type uses a probabilistic threshold
through a failure likelihood function. For both approaches,
the ToF computation will depend on the kind of hazard zone
considered. In other words, when a deterministic threshold
is considered, the ToF for each particle, given that we have
acquired measurements until time kp, is computed according
to Eq. (8):

ToF (i) = inf{ k : {k > kp} ∧ {x(i)k ≥ T |y1:kp
}}. (8)

Otherwise, when a probabilistic hazard zone is considered,
the ToF for each particle is computed by means of Eq. (9):

ToF (i) = inf{ k : {k > kp} ∧ {F (x(i)k ) = 1}}, (9)

where F (·) is the failure likelihood function, that denotes the
failure condition of the given particle, which is defined by:

F (x
(i)
k ) =

{
1 failure condition
0 operative condition , (10)

F (·) can be understood as a realization of a Bernoulli pro-
cess, where the probability of the event is a function of
the failure likelihood function that defines the hazard zone
and the position of each particle x(i)k in the state space, i.e.
F (x

(i)
k ) ∼ Bernoulli(p(x

(i)
k )). In this case, p is a function

that denotes the nonlinear mapping R −→ [0, 1] according to:

p(x) =

 1 x ≥ T+

p∗ x ∈ (T−, T+) ,
0 x ≤ T−

(11)

where T− and T+ indicate the lower and upper bounds of the
hazard zone.

On account of the ToF computation previously exposed, the
ToF-PMF can be computed through the counting of the parti-
cles (and the summation of their respective weights) that have
reached the failure condition for the first time.

Considering all the prior concepts, we propose three meth-
ods inspired in particle-filtering-based prognostic algorithms,
and the FPT concept, to compute the ToF-PMF. Each method
differs from the others in the treatment of the particles and
their weights. For example, each of these methods consider
the weights of the particles as follows:

• Method 1: All the particles have the same weight.

• Method 2: The particles have different weights.

• Method 3: The weights of the particles are re-computed
depending on the number of particles that enter into the
failure condition.

Furthermore, it is noteworthy to recall that the proposed
methods are based also in the concept of FPT, therefore, the
three methods only count the particles that enter into the fail-
ure condition for the first time. This includes the cases where
regenerative systems are prognosticated, since the particles
may reach the failure condition more than one time. In this
case, the failure condition is considered using one of the fol-
lowing criteria: i) when the particles cross the threshold T if
it was a deterministic hazard zone, or ii) when F (x(i)k ) = 1
for a probabilistic hazard zones.
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3.1. First Method

The first method considers the scenario in which all the parti-
cles have the same weight when long-term prediction are per-
formed by the particle-filtering-based prognostic algorithm
(e.g., when a resampling step is applied before starting the
long-term predictions). With this in mind, the ToF-PMF com-
putation will only consider the first time instant in which the
particles reach the failure condition.

An illustration of the main idea in which this method is based
is shown in Figure 2. Moreover, the procedure to compute
the ToF-PMF is detailed in Algorithm 1 for a deterministic
hazard zone, and in Algorithm 2, for a probabilistic hazard
zone. It is important to specify that, for all proposed algo-
rithms, we use the term Prediction horizon to denote the time
period in which long-term predictions are computed, whereas
the Prediction step corresponds to a predictive update of the
state vector that is computed using the process model.

Figure 2. Computation of ToF-PMF using the first method.
Every time a blue particle enters the hazard zone, its fail-
ure status is considered to form the ToF-PMF, then discarded
(magenta particles). The weight of the particles is illustrated
with a line, every line has the same weight.

Algorithm 1 ToF-PMF computation when a deterministic
hazard zone is considered

1: p← set of Np particles in time kp
2: while k ≤ Prediction horizon do
3: pmf [k]←

∑
W [find(p >= Threshold)]

4: Discard particles in p that (p >= Threshold)

5: p[k + 1]← Prediction step(p[k])

6: end while

3.2. Second Method

The second method is similar to the first method. The
only difference is that Method 2 considers that the particles

Algorithm 2 ToF-PMF computation when a probabilistic
hazard zone is considered

1: p← set of Np particles in time kp
2: while k ≤ Prediction horizon do
3: l← hazard zone CDF for p[k]

4: B ← Bernoulli(l)

5: pmf [k]←
∑
W [find(B == 1)]

6: Discard particles in p that (B == 1)

7: p[k + 1]← Prediction step(p[k])

8: end while

have different weights when long-term prediction are per-
formed by the particle-filtering-based prognostic algorithm
(e.g., when the resampling step is not applied before start-
ing the long-term predictions). An example of this method
is shown in Figure 3. The general procedure to compute the
ToF-PMF through this method is also detailed by Algorithms
1 and 2.

Figure 3. Computation of ToF-PMF using the second method.
As the first method the blue particles are used to form the
PMF, now their weights are not uniform, they are sampled
from a normal distribution from N(E(k), σ(k)).

3.3. Third Method

The third method is similar to Method 1, in the way that,
the long term predictions are performed using particles with
the same weight, and considering the first time instant in
which the particles reach the failure condition. However, this
method is proposed to improve the ToF-PMF characterization
by increasing the number of particles.

In this method, at every time instant that a particle enters the
failure condition (p ≥ T or F (p) = 1), a new particle is in-
serted to the “healthy particles” (Hp) set by using the multi-
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nomial resampling approach (Douc & Cappe, 2005). With
the addition of this new particle, the weights of theHp set are
recalculated, with the aim of maintaining all these particles
with the same weight, and also considering that the sum of
the whole set of particles must be equal to 1.

Figure 4 illustrates the proposed methodology. The Hp set is
represented with blue. As time passes, some particles enter
into the hazard zone. These particles are colored in magenta,
and they are replaced with new particles, colored with red.
Once the substitution is made and the weights of the Hp set
is recalculated, the algorithm continues.

Figure 4. Computation of ToF-PMF using the third method.
Here the weights are changing according to the particles that
are resampled. The weight of the remaining particles is dis-
tributed to the blue and red particles to maintain the integral
of the ToF-PMF equal to one.

The procedure to compute the ToF-PMF by Method 3 is de-
tailed in Algorithm 3 for a deterministic hazard zone, and in
Algorithm 4, for a probabilistic hazard zone.

Algorithm 3 ToF-PMF computation when a deterministic
hazard zone is considered

1: p← set of Np particles in time kp
2: W ← [1 / Np]

3: while k ≤ Prediction horizon do
4: pmf [k]←

∑
W [find(p >= Threshold)]

5: Discard particles in p that (p >= Threshold)

6: W ← [
∑
W (find(p < Threshold)) / Np]

7: Resample particles in pthat (p ≥ Threshold)
8: p[k + 1]← Prediction step(p[k])

9: end while

Algorithm 4 ToF-PMF computation when a probabilistic
hazard zone is considered

1: p← set of Np particles in time kp
2: W ← [1 / Np]

3: while k ≤ Prediction horizon do
4: p← Prediction step(p)
5: l← hazard zone CDF for p[k]
6: B ← Bernoulli(l)

7: pmf [k]←
∑
W [find(B == 1)]

8: Discard particles in p that (B == 1)

9: W ← [
∑
W (find(B == 1)) / Np]

10: Resample particles in p that (B == 1)

11: end while

4. CASE STUDY

A hypothetical self-regenerative system was considered as a
case study to analyze the proposed methodology. This hy-
pothetical degradation process was designed to represent a
strong self-regenerative phenomenon with the aim to evaluate
the proposed methods in a challenging scenario. It is also im-
portant to note that the self-regenerative model is only used to
generate the long-term predictions of the state variable, which
means that the proposed case study represents only the prog-
nosis stage of a PHM application. Therefore, any previous
estimation stage is assumed as correct, and the initial state
(x(0)) for the proposed self-regenerative model corresponds
to the prognostic starting point of a particle-filter-based prog-
nostics algorithm (i.e., kp in Figures 1, 2, 3, and 4).

The self-regenerative system is modeled by Eq. 12, with
x(0) = 1. Model parameters a and b are set to 1.06 and
0.935, respectively. In addition, the process noise is mod-
eled as a Gaussian distribution, ωk ∼ N (0, 6.4e − 3), and
the prediction horizon H equal to 156. The hazard zone is
characterized with the threshold value T = 20 in the deter-
ministic case, and the Gaussian distribution N (20, 0.5) in a
probabilistic scenario.

xk+1 =


a·xk + ωk if k < H/3

a·b·xk + ωt if H/3 ≤ k < 2H/3

a·xk + ωk if 2H/3 ≤ k ≤ H

. (12)

To compute the ground truth ToF-PMF for the proposed case
study, Monte Carlo (MC) simulations were performed. With
the purpose of obtain an acceptable representation of the
ground truth ToF-PMF, one million of MC simulations were
considered. In Figure 5, an example of the MC simulations
for the regenerative system is shown. Figure 6 shows the cor-
responding ground truth ToF-PMF for the both kinds of haz-
ard zones.

6



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020

Figure 5. Monte Carlo simulations for the hypothetical case
study (self-regenerative system).

Figure 6. Ground Truth ToF-PMF for a deterministic hazard
zone (upper plot) and a probabilistic hazard zone (lower plot).

5. RESULTS

To evaluate the ToF-PMF characterization of the proposed
methods and their efficiency, the three algorithms were tested
using the self-regenerative process presented in the case
study. The ToF-PMF estimation obtained by the three meth-
ods were compared to the ground truth ToF-PMF obtained in
the case study. The software used for the simulations was
Matlab R2017, and the hardware corresponds to an Intel®
CoreTM i5-8250U CPU @ 1.60GHz 1.80GHz, and 12 GB of
RAM.

The ToF-PMF characterization was evaluated both through
the JS Divergence (Osán et al., 2018), and the execution time.

In both cases, they were represented as a function of the
amount of particles (Np) used by the particle-filtering-based
prognostic algorithm. The amount of particles were varied
from 100 to 500, and increased by hundreds. Additionally,
one hundred iterations per each of the Np defined were con-
sidered to carry out an statistical analysis.

Finally, the ToF-PMF estimation for the case study consid-
ered the two kinds of hazard zones described above: deter-
ministic threshold and failure likelihood function. In this
way, the results are organized according to the kind of haz-
ard zones, as stated below.

5.1. Deterministic hazard zone

The results for the three methods, when a deterministic
threshold is considered are shown in Figure 7. The upper
plot compares the results obtained for the JS-Divergence as
a function of the amount of particles, while the lower plot
compares the execution times for the three methods.
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Figure 7. Comparison between the three methods over a de-
terministic hazard zone. JS-Divergence is used to compare
the level of approximation of the ToF-PMF and the time of
computation is measured. Each plot shows the mean and stan-
dard deviation of each method.

For a given amount of particles, the best characterization of
the ToF-PMF is obtained using Method 3, as seen in upper
plot of Figure 7, followed by Method 2 and 1. This can be
explained by the formulation of Method 3 which has the ef-
fect of maintaining a constant amount of particles available
to compute the ToF-PMF in every time instant. However, this
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method considers a resampling algorithm that requires major
computation efforts to compute the ToF-PMF in comparison
with Method 1 and 2. This is illustrated in the execution
time plot of Figure 7, where Method 1 and 2 are in ascend-
ing order, since the complexity of them is also increased, and
the one with major complexity is the slowest of the three pro-
posed methods.

According to Figure 7 and the obtained results regarding the
JS-Divergence the performance of the three methods present
a considerable deviation with a few amount of particles. But
that trend tends to decrease with the increasing amount of par-
ticles considered to compute the ToF-PMF with each method.
Furthermore, the execution time does increase for the three
methods when the amount of particles is also increased.

Finally, Figure 8 shows the comparison between the ToF-
PMF obtained by each method using 200 particles, and the
ground truth ToF-PMF.

Figure 8. Comparison of the PMFs obtained by the three
proposed methods. The corresponding JS-Divergence for
Method 1, 2, and 3 are equal to 0.03457, 0.03321, and
0.01592, respectively.

5.2. Probabilistic hazard zone

When the hazard zone is characterized by a failure likelihood
function, the three methods behave similar to the determinis-

tic case. In Figure 9, in the upper plot the JS-Divergence for
the three methods shows that the Method 3 is the one that
better characterizes the ToF-PMF of the ground truth, and the
Method 1 and Method 2 behave in the same manner as for
the deterministic threshold.
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Figure 9. Comparison between the three methods over a de-
terministic hazard zone. JS-Divergence is used to compare
the level of approximation of the ToF-PMF and the time of
computation is measured. Each plot shows the mean and stan-
dard deviation of the respective measure per method.

Moreover, when the execution time is compared all three
methods are less efficient in time when the number of par-
ticles is increased. This can be noted in the lower plot of
Figure 9. This behavior can be explained by the implementa-
tion of the Bernoulli process in the computation of the failure
status of the particles, since this new step takes almost 70, 60
and 40 percent of the total execution time per method, respec-
tively. Also, the dispersion does not show a trend for any of
the proposed methods, but for Method 3 a greater dispersion
in execution time is measured, and presents an independent
behavior respect to the amount of particles.

Figure 10 shows a comparison of the resulting PMF of the
three methods with a hazard zone characterized by a failure
likelihood function. This example considers the case of 200
particles, and it is contrasted with the Monte Carlo simula-
tions of the Case Study.

Finally, it is important to mention that simulations with less
amount of particles were performed, although the observed
behavior was similar to the one exposed in this article.
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Figure 10. Comparison of the PMFs obtained by the three
proposed methods. The corresponding JS-Divergence for
Method 1, 2, and 3 are equal to 0.03115, 0.02968, and
0.02246, respectively.

6. CONCLUSIONS

In this paper three methods were proposed to compute the
ToF-PMF based on FPT, and considering two kinds of hazard
zones. The three proposed methods were evaluated using a
hypothetical self-regenerative degradation process.

The three methods were capable of approximating the ToF-
PMF, compared to the ground truth ToF-PMF, at a reasonable
level, and in an efficient manner. Therefore, the three pro-
posed methods may be used in particle-filtering-based prog-
nostic implementations for different kinds of processes and
hazard zones.

When the results were focused on the efficiency of the execu-
tion time, they showed that the proposed methods can be im-
plemented in real conditions by particle-filtering-based prog-
nostic algorithms. However, the trade-off between ToF-PMF
approximation and execution times must be always consid-
ered.

For future work, we propose to test this methodology con-
sidering real data, to compare its performance with state-
of-the-art methodologies. Also, to evaluate the behavior of

each of the algorithms in a context with limited computational
power.
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Cerda, M. A., Olivares, B. E., . . . Pérez, A. (2015).
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