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ABSTRACT

This paper demonstrates that continual relearning of control
policies using deep reinforcement learning (RL) can improve
policy learning for non-stationary processes. We demonstrate
this approach for a data-driven “smart building environment”
that we use as a test-bed for developing HVAC controllers for
reducing energy consumption of large buildings on our uni-
versity campus. The non-stationarity in building operations
and weather patterns makes it imperative to develop control
strategies that are adaptive to changing conditions. On-policy
RL algorithms, such as Proximal Policy Optimization (PPO)
represent an approach for addressing this non-stationarity, but
exploration on the actual system is not an option for safety-
critical systems. As an alternative, we develop a RL tech-
nique that leverages a data-driven model of the system that
is re-learnt periodically, and provides the basis for policy re-
learning by performing exploration on the re-learnt models to
adapt to non-stationary behaviors. The relearning process is
implemented in a way that avoids catastrophic forgetting. We
compare the performance of our relearning RL controller to
that of a static RL controller that does not implement the re-
learning function. The performance of the static controller di-
minishes significantly over time, but the relearning controller
adjusts to changing conditions while ensuring comfort and
optimal energy performance.

1. INTRODUCTION

Energy efficient control of Heating, Ventilation and Air Con-
ditioning (HVAC) systems is an important aspect of building
operations because they account for the major share of energy
consumed by buildings. Most large office buildings,which are
significant energy consumers, are structures with complex,
internal energy flow dynamics and complex interactions with
their environment. Therefore, building energy management is
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a difficult problem. Traditional building energy control sys-
tems are based on heuristic rules to control the parameters of
the building’s HVAC systems. However, analysis of historical
data shows that such rule-based heuristic control is inefficient
because the rules are based on simplified assumptions about
weather and building operating conditions.

Recently, there has been a lot of research on smart build-
ings with smart controllers that sense the building state and
environmental conditions to adjust the HVAC parameters to
optimize building energy consumption (Shaikh et al.| [2014).
Model Predictive Control (MPC) methods have been success-
fully deployed for smart control (Maasoumy et al.,|2014), but
traditional MPC methods require accurate models to achieve
good performance. Developing such models for large build-
ings may be an intractable problem (Smarra et al., [2018).
Recently, Data-driven MPC based on random forest methods
have been used to solve demand-response problems for mod-
erate size buildings (Smarra et al.,|2018]), but is not clear how
they may scale up for continuous control of large buildings.

Reinforcement Learning (RL) methods have recently gained
traction for controlling energy consumption and comfort in
smart buildings because they provide several advantages. Un-
like MPC methods for robust receding horizon control, they
have the ability to learn a locally optimal control policy with-
out simulating the system dynamics over long time horizons.
Therefore, while MPC methods require solving a non-linear
optimization problem online, RL methods can directly com-
pute the control action given the state space of the system
because the control policy is learned offline (off policy al-
gorithm) or learned online by compiling experiences over
time (on policy algorithm) in a way that converges to op-
timal system behaviors. A number of reinforcement learn-
ing controllers for buildings have been proposed, where the
building behavior under different environmental conditions
are learnt from historical data (Mocanu et al.| |2018; Naug
et al., 2019). These approaches are classified as Deep Rein-
forcement Learning (DRL) approaches.
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However, current data driven approaches for RL do not take
into account the non-stationary behaviors of the building and
its environment. Building operations and the environments
in which they operate are continually changing, often in un-
predictable ways. In such situations, the Deep RL controller
performance degrades because the data that was used to train
the controller becomes ‘stale’. The solution to this problem
is to detect changes in the building operations and its envi-
ronment, and relearn the controller using data that is more
relevant to the current situation. This paper proposes such an
approach, where we relearn the controller at periodic intervals
to maintain its relevance, and thus its performance.

The rest of the paper is organized as follows. Section
presents a brief review of some of the current approaches in
model and data-driven reinforcement learning, and the con-
cept of non-stationarity in MDPs. Section [3] introduce the
theoretical problem of optimal control in a Non-Stationarity
MDP. Section || formally introduces the relearning RL so-
lution for non-stationary systems that we tackle in this pa-
per and the associated theories behind the techniques used to
solve the problem. Section [ introduces the specific build-
ing for which we are trying to solve the problem and maps
this building into the NS-MDP formulation proposed earlier.
Section [/| then develops our data driven modeling as well
as the incremental reinforcement learning schemes for ‘op-
timal’ building energy management for the specific building.
Section [§] discusses our experimental results, and we finally
present our conclusions and directions for future work.

2. LITERATURE REVIEW

Traditional methods for developing RL controllers have re-
lied on accurate dynamic models of the system (model-based
approaches) or data-driven approaches. We briefly review
model-based and data-driven approaches for RL control, and
then introduce the notion of non-stationary systems, and cur-
rent RL work for non-stationary processes.

2.1. Reinforcement Learning with Model Based Simula-
tors

Typical physics-based models of building energy consump-
tion, use conservation of energy and mass to construct ther-
modynamic equations to describe system behavior. In (Wei
et al., |2017), the authors applied Deep Q-Learning methods
(Mnih et al.| |2015) to optimize the energy consumption and
ensure temperature comfort in a building simulated using En-
ergyPlus (Crawley et al.,|2000), a whole building energy sim-
ulation program. In (Moriyama et al.| 2018]), the authors ob-
tained cooling energy savings of 22% on an EnergyPlus sim-
ulated model of a data-center using a natural policy gradient
based algorithm, TRPO (Schulman et al.l 2015). Similarly,
(L1 et all [2019) used an off policy algorithm called DDPG
(Lillicrap et al., 2016) to obtain 11% cooling energy savings

in an EnergyPlus simulation of a data-center. To deal with
sample inefficiency in on-policy learning, (Hosseinloo et al.,
2020) developed an event-triggered RL approach, where the
control action changes when the system crosses a boundary
function in the state space. They used a one-room Energy-
Plus thermal to demonstrate their approach.

2.2. Reinforcement Learning with Data Driven Ap-
proaches

The examples above describe RL approaches applied to sim-
ple building architectures. As discussed, creating a model
based simulator for large, complex buildings can be quite dif-
ficult (Parkl 2013; |Kim & Park, |2011). Alternatively, more
realistic approaches for RL applied to large buildings rely on
historical data from the building to learn data-driven models
or directly use the data as experiences from which a policy
is learnt. In (Nagy et al., [2018)), the authors developed sim-
ulators from data-driven models and then used them for fi-
nite horizon control. Support Vector Regression was used in
(Naug & Biswas, [2018) to develop a building energy con-
sumption model, and then used stochastic gradient methods
to optimize energy consumption. Authors in (Costanzo et al.,
2016) used value-based neural networks to learn the thermo-
dynamic model of a building. The energy models were then
optimized using Q-learning (Sutton & Barto, 2018)). Subse-
quently, (Naug et al.l [2019) used a DDPG (Lillicrap et al.,
2016) approach with a sampling buffer to develop a policy
function that minimized energy consumption without sac-
rificing comfort. Another recent approach (Mocanu et al.,
2018)) has successfully applied deep RL to data-driven build-
ing energy optimization.

2.3. Non Stationary MDPs

The data-driven approaches presented in Section do not
address the non-stationarity of the large buildings. Non-
stationary behaviors can be attributed to multiple sources.
For example, weather patterns, though seasonal, can change
abruptly and in unexpected ways. Similarly, conditions in
a building can change quickly, e.g., when a large number
of people enter the building for an event, or components of
the HVAC system, degrade and fail, e.g, stuck valves, or
failed pumps. When such situations occur, a RL controller,
trained on the past experiences, cannot adapt to the unex-
pected changes in the system and environment, and, there-
fore, performs sub-optimally. Some methods (Mankowitz
et al., 2018} [Tamar et al.l 2014} [Shashua & Mannor, 2017)
have been proposed to address non-stationarity in the envi-
ronments by improving the value function under the worst
case conditions (Iyengar, |2005) of the non-stationarity.

Other approaches try to minimize a regret function instead of
finding the optimal policy for non-stationary MDPs. The re-
gret function measures the sum of missed rewards when we
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compare the state value from a start state between current best
policy and the target policy in hindsight i.e., they tell us what
actions would have been appropriate after the episode ends.
This regret is then optimized to get better actions. For (Hallak
et al., 2015)), the authors applied this approach to context-
driven MDPs (each context may represent a different non-
stationary behavior) to find the piecewise stationary optimal
policies for each context. They proposed a clustering algo-
rithm to find a set of contexts. The papers (Jaksch et al.|
2010; |Gajane et al., 2019)) also minimize the regret based on
an average reward formulation instead of a state value func-
tion.In (Padakandla et al.l 2019)), the authors proposed a non-
stationary MDP control method under a model-free setting by
using a context detection method proposed in (Singh et al.,
2019). These approaches assume knowledge of a known set
of possible environment models beforehand, which may not
be possible in real systems. Moreover, they are model-based,
i.e., they assume the MDP models are available. Therefore,
they cannot be applied in a model free setting.

To address non-stationarity issues in complex buildings we
extend previous research in this domain to make the following
contributions to data-driven modeling and RL based control
of buildings:

e We retrain the dynamic behavior models of the building
and its environment at regular intervals to ensure that the
models respond to the distributional shifts in the system
behavior, and, therefore, provide an accurate representa-
tion of the behavior.

e By not relearning the building and its environment model
from scratch, we ensure the repeated training is not time
consuming. This also has the benefit of the model not be-
ing susceptible to the catastrophic forgetting (Kirkpatrick
et al., [2017)) of the past behavior which is common in
neural networks used for online training and relearning.

e We relearn the policy function; i.e., the HVAC controller
every time the dynamic model of the system is relearned,
so that it adapts to the current conditions in the building.

In the rest of this paper, we develop the relearning algorithms,
and demonstrate the benefits of this incremental relearning
approach on the controller efficiency.

WITH REINFORCEMENT

3. OpTIMAL CONTROL

LEARNING

Reinforcement learning (RL) represents a class of machine
learning methods for solving optimal control problems,
where an agent learns by continually interacting with an
environment (Sutton & Barto, 2018)). In brief, the agent
observes the state of the environment, and based on this
state/observation takes an action, and notes the reward it re-
ceives for the (state, action) pair. The agent’s ultimate goal
is to compute a policy, i.e., a mapping from the environment

states to the actions that maximizes the expected sum of
reward. RL has been cast as a stochastic optimization method
for solving Markov Decision Processes (MDPs), when the
MDP is not known. We define RL problem more formally
below.

Definition 3.1 (Markov Decision Process). A Markov deci-
sion process is defined by a four tuple: M = {S, A, T, R},
where S represents the set of possible states in the environ-
ment. The transition function 7' : S x A x S — [0,1] de-
fines the probability of reaching state s’ at ¢ + 1 given that
action a € A was chosen in state s € S at decision epoch
t, T = p(s'|s,a) = Pr{siy1 = §'|st = s,ar = a}. The
reward function R : § x A — R estimates the immediate
reward R ~ r(s,a) obtained from choosing action « in state
s.

The objective of the agent is to find an optimal policy 7* that
maximizes the accumulated discounted rewards it receives
over the future. The optimization criteria is the following:

v (s)zrglealgl(V (s), Vse s, (1)

where V™ : S — R is called value function and it is defined
as

V™(s)=F Z’th(st,atﬂso =s|,Vses, (2
t=0

where 0 < « < 1 is called the discount factor, and it deter-
mines the weight assigned to future rewards. In other words,
the weight associated with future rewards decays with time.

An optimal deterministic Markovian policy satisfying Equa-
tion [T]exists if the following conditions are satisfied

. |[R~r(s,a)]<C<oo,Va€eA seS
2. T and R do not change over time.

If a MDP satisfies the second condition, it is called a sta-
tionary MDP. However, most real world systems undergo
changes that cause their dynamic model, represented by the
transition function 7', to change over time (Dulac-Arnold et
al.,|2019). In other words, these systems exhibit non station-
ary behaviors. Non stationary behaviors may happen because
the components of a system degrade, and/or the environment
in which a system operates changes, causing the models that
govern the system behavior to change over time. In case of
large buildings, the weather conditions can change abruptly,
or changes in occupancy or faults in building components can
cause unexpected and unanticipated changes in the system’s
behavior model. In other words, T is no longer invariant, but
it may change over time. Therefore, a more realistic model
of the interactions between an agent and its environment is
defined by a non stationary MDP (NMDP) (Puterman, 2014)).
Definition 3.2 (Non-Stationary Markov Decision Process). A
non-stationary Markov decision process is defined by a 5-
tuple: M = {S, A, T,(pt)ter, (rt)te7}. S represents the



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020

set of possible states that the environment can reach at deci-
sion epoch t. T = {1,2,..., N} is the set of decision epochs
with N < 400. A is the action space. p;(s’|s, a) and r¢(s, a)
represent the transition function and the reward function at
decision epoch ¢, respectively.

In the most general case, the optimal policy for a NMDP, 7,
is also non stationary. The value of state s at decision epoch
t within an infinite horizon NMDP is defined for a stochastic
policy as follows:

Vi(s)=E Z’)’i_tRz‘(Si,aiﬂSt =S, @i ~ Ty, Siy1 ~ Pi
i=t
(3)

Learning optimal policies from non-stationary MDPs is par-
ticularly difficult for non-episodic tasks when the agent is un-
able to explore the time axis at will. However, real systems
do not change arbitrarily fast over time. Hence, we can as-
sume that changes occur slowly over time. This assumption
is know as the regularity hypothesis and it can be formalized
by using the notion of Lipschitz Continuity (LC) applied to
the transition and reward functions of a non-stationary MDP
(Lecarpentier & Rachelson, 2019). This results in the defini-
tion of Lipschitz Continuous NMDP (LC-NMDP)
Definition 3.3 ((L,, L,) -LC-NMDP). An (L,, L,) -LC-
NMDP is a NMDP whose transition and reward functions are
respectively L,-LC and L,-LC w.r.t. time,

Wl(pt(.\s,a),p,g(.|s,a)) < Lp|t_tA|v v (t,f,s,s/7a) 4)
|rt(s,a,s/) — Tf(s,a,s/)\ < Lyt — f|, v (t,f,s,s/7a) 5)

where W, represents the Wasserstein distance and it is used
to quantify the difference between two distributions.

Although the agent does not have access to the true NMDP
model, it is possible for the agent to learn a quasi-optimal
policy by interacting with temporal slices of the NMDP as-
suming the LC-property. This means that the agent can learn
using a stationary MDP of the environment at epoch ¢. There-
fore, the trajectory generated by a LC-NMDP {sg, g, ..., Sk }
is assumed to be generated by a sequence of stationary MDPs
{MDP,,,.... MDP, 1;_1}. In the next section, we present
a continuous learning approach for optimal control of non sta-
tionary processes based on this idea.

4. CONTINUAL LEARNING APPROACH FOR OPTIMAL
CONTROL OF NON-STATIONARY SYSTEMS

The proposed approach has two main steps: an initial offline
learning process followed by continual learning process. Fig-
ure[I] presents the proposed approach organized in the follow-
ing steps which are annotated as 1, 2 . . . in the figure:

e Step 1. Data collection. Typically this represents his-
torical data that may be available about system opera-

S R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEsssEEEEEES
:' o Action
= Deployand _
+ Evaluate: Policy(Epoch k) Next State SRED
Online
B I A S T
________ - R - ——— - - - --—-
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: Action ",
5.2-Relearning Reward 5.1-Relearning
Rt Next State =
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Figure 1. Schematic of our Proposed Approach

tions. In our work, we start with a data set containing in-
formation on past weather conditions and the building’s
energy-related variables. This data set may be represen-
tative of one or more operating conditions of the non sta-
tionary system, in our case, the building,

e Step 2. Deriving a dynamic model of the environment. In
our case, this is the building energy consumption model,
given relevant building and weather parameters.

— A state transition model is defined in terms of state
variables (inputs and outputs) and the dynamics of
the system are learned from the data set.

— The reward function used to train the agent is de-
fined.

e Step 3. Learning an initial policy. A policy is learned of-
fline by interacting with the environment model derived
in the previous step.

e Step 4. Deployment. The policy learned is deployed on-
line, i.e., in the real environment, and experiences from
theses interaction are collected.

e Step 5. Relearning. In general, the relearning module
would be invoked based on some predefined performance
parameters, for example, when average accumulated re-
ward value over small intervals of time is monotonically
decreasing. When this happens:

— the transition model of the environment is updated
based on the recent experiences collected from the
interaction with the up-to-date policy.

— The current policy is re-trained offline, much like
Step 3, by interacting with the environment now us-
ing the updated transition model of the system.

We will demonstrate that this method works if the regularity
hypothesis is satisfied, i.e., the environment changes occur
after sufficiently long intervals, to allow for the offline re-
learning step (Step 5) to be effectively applied. In this work,
we also assume that the reward function, R, is stationary, and
does not have to be re-derived (or re-learned) when episodic
non stationary changes occur in the system.
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Another point to note is that our algorithm uses a two-step
off line process to learn a new policy: (1) learn the dynamic
(transition) model of the system from recent experiences; and
(2) relearn the policy function using the new transition model
of the system. This approach addresses two important prob-
lems: (1) policy learning happens off line, therefore, addi-
tional safety check and verification methods can be applied to
the learned policy before deployment — this is an important
consideration for safety critical systems; and (2) the relearn-
ing process can use an appropriate mix of past experiences
and recent experiences to relearn the environment model and
the corresponding policy. Thus, it addresses the catastrophic
forgetting problem discussed earlier. This approach also pro-
vides a compromise between off policy and on policy learning
in RL, by addressing to some extent the sample inefficiency
problem.

We use Long Short-Term Memory (LSTM) Neural Network
to model the dynamics of the system and the the Proximal
Policy Optimization (PPO) algorithm to train the control pol-
icy. PPO is one of the best known reinforcement learning
algorithm for learning optimal control law in short periods
of time. Next, we describe our approach to modeling the
dynamic environment using LSTMs, and the reinforcement
learning algorithm for learning and relearning the building
controllers (i.e., the policy functions).

5. LSTMS FOR DYNAMIC SYSTEM MODELING AND
PPO FOR POLICY LEARNING

5.1. Long Short-Term Memory Networks for Modeling
Dynamic Systems

Despite their known success in machine learning tasks, such
as image classification, deep learning approaches for en-
ergy consumption prediction have not been sufficiently ex-
plored (Amasyali & El-gohary, 2018). In recent work, Re-
current neural networks (RNN) have demonstrated their ef-
fectiveness for load forecasting when compared against stan-
dard Multi Layer Perceptron (MLP) architectures (Kong et
al., |2019; Rahman et al.l 2018). Among the variety of
RNN architectures, Long-Short Term Memory (LSTM) net-
works have the flexibility for modeling complex dynamic re-
lationships and the capability to overcome the so-called van-
ishing/exploding gradient problem associated with training
the recurrent networks (Hochreiter & Schmidhuber, [1997).
Moreover, LSTMs can capture arbitrary long-term dependen-
cies, which are likely in the context of energy forecasting
tasks for large, complex buildings.

The adaptive update of values in the input and forget gates
provide LSTMs the ability to remember and forget patterns
over time. The information accumulated in the memory
cell is transferred to the hidden state scaled by the output
gate. Therefore, training this network consists of learning the

input-output relationships for energy forecasting by adjusting
the weight matrices and bias vectors.

5.2. Proximal Policy Optimization

The Proximal Policy Optimization(PPO) algorithm
(Schulman et al., 2017) has its roots in the Natural Pol-
icy Gradient method (S. M. Kakade, 2002), whose goal was
to improve the common issues encountered in the applica-
tion of policy gradients. Policy gradient methods(Sutton et
al 2000) represent better approaches to creating optimal
policies, especially when compared to value-based reinforce-
ment learning techniques. Value-based methods suffer from
convergence issues when used with function approximators
(Neural networks). Policy gradient methods also have is-
sues with high variability, which have been addressed by
Actor-Critic methods (Konda & Tsitsiklis, 2000). However,
choosing the best step size for policy updates was the single
biggest issue that was addressed in (Kakade & Langford,
2002). PPO replaces the log of action probability in the
policy gradient equation

LYC(0) = B, |logm(as]s:) A

b

(aelse) s
W:j[d (’at . inspired by

(Kakade & Langford, 2002). Here, the current parameterized
control policy is denoted by mg(als). A, denotes the advan-
tage of taking a particular action a compared to the average of
all other actions in state s. According to the authors of PPO,
this addresses the issue of the step size partially as they need
to limit the values of this probability ratio. So they modify
the objective function further to provide a Clipped Surrogate
Objective function,

with the probability ratio 7(0) =

LEEIP(9) = By | min(r(0) Ay, clip(r(0),1 — e, 1+ €)A,) |.
(6)

The best policy is found by maximizing the above objective.
The above objective has several interesting properties that
makes PPO easily implementable and fast to reach conver-
gence during each optimization step. The clipping ensures
that the policy does not update too much in a given direction
when the Advantages are positive. Also, when the Advan-
tages are negative, the clipping makes sure that the probabil-
ity of choosing those actions are not decreased too much. In
other words, it strikes a balance between exploration and ex-
ploitation with monotonic policy improvement by using the
probability ratio.

The PPO algorithm implements a parameterized policy
mg(als) using a neural network whose input is the state vec-
tor S and the output is the mean y and standard deviation o
of the best possible action in that state. The policy network is



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020

trained using the clipped objective function (see Equation [6])
to obtain the best controller policy. A second neural network
called the value network, V'(.9), keeps track of the values
associated with the states under this policy. This is subse-
quently used to estimate the advantage A, of action A in state
S. Its input is also S and its output is a scalar value indicating
the average return from that state when policy mg(als) is fol-
lowed. This network is trained using the Temporal Difference
(TD) error (Sutton & Barto} 2018).

PPO has demonstrated to perform better than other gradient-
based policy learning algorithms for a number of complex
stochastic environment benchmarks, such as those provided
in the Mujoco platform (Engstrom et al.l 2019). One of our
primary reasons for selecting the PPO algorithm is because it
guarantees monotone improvement of the policy over multi-
ple learning iterations. This property guarantees that the per-
formance of the policy will not worsen during the relearning
step described in the previous section.

6. PROBLEM FORMULATION FOR THE BUILDING EN-
VIRONMENT

We start with a description of our building environment and
formulate the solution of the energy optimization problem by
using our continuous RL approach. This section presents the
dynamic data-driven model of building energy consumption
and the reward function we employ to derive our control pol-

icy.

6.1. System Description

The system under consideration is a large three-storeyed
building on our university campus. It has a collection of in-
dividual office spaces, classrooms, halls, a gymnasium, a stu-
dent lounge, and a small cafeteria. The building climate is
controlled by a combination of Air Handling Units(AHU) and
Variable Refrigerant Flow (VRF) systems (Naug et al.,[2019).
The configuration of the HVAC system is shown in Figure 2]

The AHU brings in fresh air from the outside and adjusts
the air’s temperature and humidity before releasing it into the
building. Typically, the desired humidity level in the building
is set to 50%, and the desired temperature values are set by
the occupants. Typically, the air is released into the building
at a neutral temperature (usually 65°F or 72°F"). The VRF
units in the different zones further heat or cool the air accord-
ing to the respective temperature set-point (defined by the oc-
cupants’ preferences). The AHU has two operating modes
depending on the outside wet bulb temperature. When the
wet bulb temperature is above 52°F’, only the cooling and the
reheat coils operate. The AHU dehumidifies the air using the
cooling coil to reduce the air temperature to 52° F', thus caus-
ing a condensation of the excess moisture, and then heats it
back up to a specific value that was originally determined by
a rule-based controller (either 65° F or 72° F"). When the wet

HVAC layout of Alumni Hall
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Figure 2. Simplified schematic of the HVAC system under
Study

bulb temperature is below 52°F' (implying the humidity of
the outside air is below 50%), only the preheat coil operates
to heat the incoming cold air to a predefined set-point. The
discharge temperature (reheating and preheating set-point de-
pending on the operating mode).

6.2. Problem Formulation

The goals of our RL controller is to determine the discharge
air temperature set-point of the AHU to minimize the total
heating and cooling energy consumed by the building with-
out sacrificing comfort. We will formulate the RL problem by
specifying the state-space, the action-space, the reward func-
tion, and the transition function for the our building environ-
ment.

6.2.1. State Space

The overall energy consumption of our building depends on
how the AHU operates but also on exogenous factors such
as the weather variability and the building occupancy. The
evolution of the weather does not depend on the state of the
building. Following Diettrich et al (2015), we formulate our
control problem as a non-stationary exogenous state MDP.
The latter can be formalized as follows:

Definition 6.1 (Exogenous State Markov Decision Process).
An Exogenous State Markov decision process is defined by a
Markov Decision Process which transition function satisfies
the following property

ple’,2'le,x,a) = Pr(zit1 = «'|ve = z)Pr(ewy1 = €les =
e, Tt = T,ar = a),

where the state space of the MDP is divided into two sub-spaces
S =X x Esuchthatz € X and e € E. X is the set of exogenous
state variables whose evolution do not depend on the MDP Actions.
E is the set of endogenous state variables whose next state depends
on the action a;.

The above definition combined with non-stationarity creates
time dependency, where the transition function can change
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from epoch to epoch as the system behavior evolves. For our
building, the subset of exogenous variables of the subspace
X are: (1) Outside Air Temperature (oat), (2) Outside Air
Relative Humidity (orh), (3) Wet Bulb Temperature (wbt),
(4) Solar irradiance (sol), (5) Average Building Temperature
Preference Set Point (avg-stpt). The remaining variables cor-
responding to the subspace E are (6) AHU Supply Air Tem-
perature (sat), (7) Heating energy for the Entire Building( f5,)
and (8) Cooling energy for the Entire Building (f.). Since
building occupancy is not measured at this moment, we can-
not incorporate that variable to our state space.

6.2.2. Action Space

The action space A; of the MDP in each epoch 7T is the
change in the neutral AHU Supply Air Temperature Set-
Point(sat-stpt). As discussed before, the wet bulb tempera-
ture determines the AHU operating mode. The valves and ac-
tuators that operate the HVAC system have a certain latency
in their operation. This means that our controller must not
arbitrarily change the Supply Air Temperature Set-Point di-
rectly. We, therefore, adopt a safe approach where the action
space A is defined as a continuous variable € [—2°F, +-2°F)
that represents the range in which the Supply Air Tempera-
ture Set Point can be changed from one time step to the next.
In this work, we set A, the time step to be 30 minutes, given
the slow dynamics of the building.

Based on the above action, the AHU Supply Air Temperature
Set Point(saz-stpt) for next time step(t+1) is updated from its
previous value at t as

sat-stpt, | = sat-stpt; + Ay @)

Note that this Supply Air Temperature Set Point(sat-stpt) will
determine the actual AHU Supply Air Temperature(sat) as
discussed in the next section.

6.3. Transition Model

Taking into consideration that the state and action space of the
building are continuous, the transition function will comprise
three components.

First, the transition function of the exogenous state variables
Pr(2'|z) is not explicitly modeled (oat, orh, wbt, sol, and
avg-stpt). Their next state (z;41) at time ¢ 4 1 is provided by
a weather database. These variables are available at 5 minute
intervals through a Metasys portal for most buildings on our
campus; solar irradiance, sol, is acquired from external data
sources.

The AHU Supply Air Temperature(sat), the heating and cool-
ing energies are the endogenous state variables since their be-
havior at £+ 1 depends on the supply air temperature set point
at t. We assume that the supply air temperature at the next
time step (sat;+1) will change according to the supply air

temperature set point (sat-stpt,) as follows
satiy1 = sat-stpt, +1n (8)

where 7 represents the error of the Proportional-Integral con-
troller that governs the supply air temperature control loop.
We characterized that error from historical data to be n ~
N(0,0.002).

Lastly, the heating and cooling energy variables(f;, and f.)
are determined by the transition functions

fr1r = F(Xy, fne, saty), )

feir1 = F(Xy, fer, saty), (10)

where X; = [oatt,orht,wbt,solt,avg-stptt}. freand for
are the corresponding heating and cooling energy values at
the current time step. As discussed in the last section, we train
stacked LSTMs to derive nonlinear approximators of these
functions.

6.4. Reward Function

The reward function includes two components: (1) the total
energy savings for the building expressed as heating and cool-
ing energy savings, and (2) the comfort level achieved. The
reward signal at time instant ¢ is given by

re41 (S, Ar) = Ox Rewardenergy+(1—19) % Rewardeom fort

(1)
where ¢ € [0, 1] defines the importance we give to each term.
We considered ¢ = 0.5 in this work.

Rewardepergy is defined in terms of the energy savings
achieved with respect to the previous rule-based controller for
the building, i.e. we reward the RL controller when its actions
result in energy savings calculated as the difference between
the total heating and cooling energy under the RBC controller
actions and the RL controller actions. Rewardepergy s de-
fined as follows

Rewardenergy = RBCval'ue,t * RBCheating,t
- RLualve,t * RLheating,t + RBCcooling,t
- RLcooling,t (12)

where the components of this equation are

® RLpeating,t: The total energy used to heat the air at the
heating or preheating coil as well as the VRF system over
the last time interval(A;) ending at ¢ based on the heating
set point at the AHU assigned by the RL controller.

o RBCheating,:: The total energy used to heat the air at
the heating or preheating coil as well as the VRF system
over the last time interval(A;) ending at ¢ based on the



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020

heating set point at the AHU assigned by the Rule Based
Controller(RBC).

e RLygive,t: The on-off state of the heating valve at time-
instant ¢ based on the heating set point at the AHU as-
signed by the RL controller.

o RBCyqgive,r: The on-off state of the heating valve at
time-instant ¢ based on the heating set point at the AHU
assigned by the Rule Based Controller(RBC).

e RLcooting,t: The total energy used to cool the air at the
cooling coil as well as the VRF system over the last
time interval(A;) ending at time-instant ¢ based on the
set point at the AHU assigned by the RL controller.

o RBCcooling,+: The total energy used to cool the air at
the cooling coil as well as the VRF system over the last
time interval(A;) ending at time-instant ¢ based on the
set point at the AHU assigned by the Rule Based Con-
troller(RBC).

Here by Rule Based Controller set-point, we refer to the his-
torical set point data that is obtained from the past data that
We run our comparisons against.

The heating and the cooling energy are calculated as a func-
tion of the exogenous state variables E;; and Ay, as dis-
cussed in the previous sub-section. Additionally, we model
the behavior of the valve that manipulates the steam flow in
the coil of the heating system, This valve shuts off under cer-
tain conditions causing the heating energy consumption to
drop to 0. This hybrid on-off behavior is not easily mod-
eled by a LSTM thus we need to model the valve behavior
independently as an on-off switch to decide when to consider
the predictions made by the LSTM (only during on). Note
that both RBCyqive,+ and R Ly gy, are predicted by using a
binary classifier.

For this paper, the reward associated with comfort is mea-
sured at a gross level, i.e., by how close the AHU Supply
Air Temperature(sar) is to the Average Building Tempera-
ture Preference set-point(avg-stpr) at any time instant. Let
d; = abs(avg-sipt — sat)

1 ; o
Rewa'l"dcomfort {6t+17 Zf 6t = 10°F (13)
_5t7 Zf 5t > 10°F
The comfort term allows the RL controller to explore in the
vicinity of the average building temperature preference to op-
timize energy. The 1 added to the denominator in case 1
makes the reward bounded.

The overall reward space is non-sparse so the RL agent would
have sufficient heuristic information for moving towards an
optimal policy as it explores the environment.

7. IMPLEMENTATION

In this section, we describe the implementation of the pro-
posed approach for the optimal control of the system de-
scribed in the previous section.

7.1. Data Collection and Processing

For Step 1 (see Figure [1)) the energy data from the building
was collected over a period of 20 months(July 2018 to Feb
2020) using the BACNET system. These include the weather
variables, the building temperature set points, and building
energy consumption available at 5 minute intervals. First,
we cleaned the data by removing the statistical outliers(two
standard deviations approach). Next, we aggregated the vari-
ables into half-an-hour intervals using an aggregation and av-
eraging processThen we scaled the data using a Min-Max ap-
proach to the [0, 1] interval so that we can learn the different
data-driven models and the controller policy. In order to per-
form the off-line learning as well as the subsequent relearn-
ing, we sampled this above data in windows of 3 months (for
training) and 1 week (for evaluating).

7.2. Deriving the Energy and Valve Models

In this section we derive the two building energy consumption
models, and the valve model that governs the heating energy
consumption by the building. This is step 2 in Figure[T]

The general neural network architecture for deriving the data
driven energy models included: (1) Feed Forward Neural
Networks(Mao & Jain, [1995) to model the non-linear rela-
tionships between the inputs variables and generate a rich set
of features; and (2) input the derived features to a LSTM
model and derive the energy consumption dynamics of the
building(Mohajerin & Waslander, 2019} |Zheng et al., [2017).
The number of layers and units for each type of network
were determined by performing hyper-parameter optimiza-
tion over a wide range of possible values for these parame-
ters.

The strategy to set the hyper-parameters of data-driven meth-
ods is important since the overall performance might depend
on them. Manually trying to determine the hyper-parameters
is intractable since there are possible combinations of the
variables is infinitely large. Therefore, we use Bayesian op-
timization to adjust the hyper-parameters of the data-driven
models (Snoek, Larochelle, & Adams,|[2012). Bayesian opti-
mization is a sequential approach for global optimization that
does not require calculation of the derivatives of the function
to be optimized.

7.2.1. Heating Energy model

The heating energy model model derives the heating energy
consumption at £ + 1 as a function of the heating energy con-
sumed and the controller action taken at time ¢. The model
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for Heating energy f;, is learned from a sequence of variables
comprising the states Sy ; over the last 3 hours i.e. 6 samples
considering data samples at 30 minute intervals. The output
for the heating energy model is the total historical heating en-
ergy consumed over next 30 minute interval.

The heating coils for the building operate in a hybrid mode
where the heating valve is turns on and off to (a) supply heat
for the pre-heating mode, and (b) supply heat to the VRF sys-
tems to heat the building if that cannot be achieved by the cold
water loop. When the valve is turned off, we assume that the
heating energy consumed is 0. This abrupt change cannot be
modeled by a smooth LSTM model. Therefore, we train our
model on contiguous sections when the heating valve is on.

The model for f} is constructed by stacking six Fully Feed
Forward Neural (FFN) Network Layers of sixteen units each
followed by two layers of LSTM with four units each. The
activation for each layer is Relu. The FFN layers generate
the rich feature set from the input data and the LSTM layers
learn the nonlinear function that approximates the dynamics
of the energy consumption of heating energy system.. The
learning rate is initially set to 0.001, and is changed accord-
ing to a linear schedule to ensure faster changes at the begin-
ning followed by gradual changes near the optimum to avoid
overshooting and oscillations. A mean squared error calcu-
lation on validation data is used to determine the terminating
condition. The best model parameters and network architec-
tures were found by hyper-parameter tuning via Bayesian Op-
timization on a Ray-Tune (Liaw et al.,2018) cluster.

7.2.2. Valve State model

The valve model f,, models the on-off for the heating energy,
i.e., when the heating energy consumption is non zero and
zero. The input variables to this model are the same as the
Heating Energy model and the output is the valve (heating
coil) on-off state.

The model for f, is constructed by stacking four Fully Feed
Forward Layers of sixteen units each followed by two layers
of LSTM with eight units each. The activation for each layer
is Relu. The learning rate, validation data, and the model
hyper-parameters are similarly chosen as before. The loss
used in this case is the binary cross-entropy loss since it is a
two-class prediction problem.

7.2.3. Cooling Energy model

The cooling energy model is used to calculate the cooling
energy consumed in state S;,; when the action A; is taken
in state S;. The input to this model is the same as the Heating
Energy model. The output of the model is the cooling energy
consumed over the next 30 minute interval.

The model for f. is constructed by stacking six Fully Feed
Forward Layers of sixteen units each followed by two lay-

ers of LSTM with eight units each. The activation for each
layer is Relu. The learning rate, validation data and the model
hyper-parameters are chosen in a way similar to the Heating
Energy Model.

Once the two energy models and the valve model have been
learned, we construct the data-driven simulated environment
E. Tt receives the control action A; from the PPO controller
and generates the next state S’ from the current state, S. To
calculate S’, the weather values for the next state are ob-
tained by simple time-based lookup from the ”Weather Data”
database. The supply air temperature for the next state is
obtained from the “State Transition Model” using Equation
The reward ;41 (S, A;) is calculated using Equation
Every time the Environment is called with an action, it will
perform this entire process and return the next state S’, the
reward 7;41(S¢, A¢) back to the RL controller with some ad-
ditional information on the current episode.

7.3. PPO Controller

As discussed previously in section [5.2] the controller will
learn two neural networks using the feedback it receives from
the environment F in response to its action A;. This ac-
tion is generated by sampling from a normal distribution with
mean g and standard deviation o which are the outputs of
the PPO policy network as shown in figure [I] After sam-
pling responses from the environment for a number of times,
the collected experiences under the current controller param-
eters, are used to update the controller network by optimiz-
ing L°Y7(9) in Equation [6] and the value networks by TD
Learning. We repeat this training process until the optimiza-
tion has converged to a local optima.

The Policy Network model architecture consists of two layers
of Fully Feed Forward Layers with 64 units each. The Value
Network network structure is identical to the Policy network.
The networks are trained on-policy with a learning rate of
0.0025. Each time the networks were trained over 10° steps
through the environment. For the environment £ this corre-
sponded to approximately 3000 episodes where each episode
was a week long.

7.4. Evaluating the energy models, valve models, and the
PPO controller

This corresponds to Step 4 in Figure [I] Once the energy
model, the valve state models, and the controller training
have converged we evaluate them on a held out test data for 1
week. The Energy models are evaluated using the Coefficient
of variation Root Mean Square Error (CVRMSE)

\/Zz (ytrue - ypred)2

yt;ue

CVRMSE =

(14)
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where Y,y and ypreq represent the true and the predicted
value of the energy, respectively.

The valve model is evaluated based on its ROC-AUC as the
on-off dataset was found to be imbalanced. The controller
policy is evaluated by comparing the energy savings for the
cooling energy and the heating energy as well as how close
the controller set-point for the AHU Supply Air Tempera-
ture(sat) is to the building average set-point(avg-stpr).

7.5. Relearning Schedule

Steps 4 and 5 in Figure[T]are repeated by moving the data col-
lection window forward by 1 week. We observed that having
a large overlap over training data between successive itera-
tions helps the model retain previous information (i.e., avoid
catastrophic forgetting), while gradually adapt to the chang-
ing data.

From the second iteration onward we do not train the data
driven LSTM models (i.e. fr, fv, fc) from scratch. Instead,
we use the pre-trained models from the previous iteration
to start learning on the new data. For the energy models
and valve models we no longer train the FFN layers and
only retrain the head layers comprising the LSTMs. The
FFN layers are used to learn the representation from the in-
put data and this learning is likely to stay identical(we also
observed this empirically from our experiments) for differ-
ent data. The LSTM layers, on the other hand, model the
trend in the data which must be relearnt due to the distribu-
tional shift. Our results show that this training approach saves
time with virtually no loss in model performance. We also
adapt(retrain) the pre-trained PPO controller policy network
according to the changes in the system. This continual learn-
ing approach saves us time during repeated retraining and al-
lows the data-driven models and the controller to adapt to the
non-stationarity of the environment.

8. RESULTS

This section illustrates the performance of our energy models,
valve model, and the RL controller over multiple weeks.

8.1. Relearning Results for Heating Energy Model

Figure [3| shows the heating energy prediction on a subset of
the data from October 7th to 23rd. We selected this time pe-
riod because the effects of the non-stationarity in the data
were quite apparent. We compare the prediction of a fixed
model, which was not updated after October 7th, with a
model which was retrained by including the new week’s data
from 7th to the 13th. The figure demonstrates the necessity of
relearning the heating energy model at regular intervals. After
the October 12th, the AHU switches from using the reheat-
ing to the preheating coil due to colder weather as indicated
by the wet bulb temperature. This causes the heating energy

consumption to change abruptly. The model which was not
updated after October 7th cannot learn this behavior and its
predictions based on the initial model, show increasing devi-
ations with time. On the other hand, the weekly relearning
model behavior started degrading but once it was retrained
using the data from Oct 7th to the 13th, it captured the chang-
ing behavior quickly using a small section of similar data in
its training set. The overall CVRMSE for the relearning en-
ergy model is shown in Figure ] For majority of the weeks,
the CVRMSE is below 30% which is accepted according to
ASHRAE guidelines for energy prediction at half hour inter-
vals

8.2. Relearning Results for Cooling Energy Model

Figure [5] shows the plots for predicting the Cooling energy
Energy over a span of two weeks. We also include the the
energy prediction from a fixed model. Starting from 25th
April, both the Fixed and Relearning model for Cooling En-
ergy predictions start degrading as they start following an in-
creasing trend while the actual trend is downward and this
behavior is expected while learning on non-stationary data.
But the Relearning Cooling Energy model is retrained using
the data from April 19th to April 26th at the end of the week
corresponding to 26th April. Thus its predictions tend to be
better than a fixed model for the next week whose predic-
tions degrade as the week progresses.The overall CVRMSE
from week to week for the relearning energy model is shown
in Figure 6| For all the weeks, the CVRMSE is below
30% which is an acceptable error rate according to ASHRAE
guidelines for energy prediction at half hour intervals
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Figure 3. Comparison of true versus predicted Heating
Energy for a weekly relearning model and a static/non-
relearning model

8.3. Prediction of the Heating Valve status

Figure([§|shows the Area Under the Receiver Operating Char-
acteristics (ROC AUC) for the model predicting the valve sta-
tus(on/off). We also show the actual and predicted valve state
for around one month in Figure Overall, the relearning
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learning Model for predicting Cooling Energy consumption
at half hour intervals

valve model is able to accurately predict the valve behavior
with an average week by week accuracy of 88.62%.

8.4. Training Episode Reward

We trained the PPO controller on the environment F every
week to adjust to the non stationarity of our system. The
episode-wise cumulative reward metric from Equation [T1] is
used to asses the improvement in controller performance over
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a number of weeks. We observed that even though the con-
troller was able to achieve good results after training over a
couple of weeks of data, it keept improving as weeks pro-
gressed. The cumulative reward metric is plotted in Figure
[ The occasional drops in the average reward were due to
changing environment conditions as the training progressed.

8.5. Cooling Energy Performance

We compared the cooling energy performance of both the
adaptive reinforcement learning controller and a static rein-
forcement learning controller against a rule based controller.
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Figure 9. Average Cumulative Reward Obtained across each
episode trained across 10 environments in parallel
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A plot comparing the cooling energy consumed over a seg-
ment of the evaluation period is shown in Figure [I0] The
significance of the relearning is apparent in this segment of
the data. When we calculate the energy savings for each RL
controller, the static RL controller had slightly higher cooling
energy savings because the last version of it was trained dur-
ing warmer weather and it tends to keep the building cooler.
But when the outside temperature drops, the static controller
action does not heat the system too much resulting in the VRF
systems starting to heat the building which consume higher
energy. The cooling energy savings over the period shown
in figure [10| was 9.3% for the adaptive controller and 11.2%
for the static controller. The average weekly cooling energy
savings over the entire evaluation period of 31 weeks was
12.61%(5.73%) or 188.53(18.153) kBTUs for the adaptive
controller versus 12.81%(8.22%) or 191.21(23.009) kBTUs
for the non-adaptive/static controller.

8.6. Heating Energy Performance

Similarly, we compared the heating energy performance of
our relearning versus the static controller over the same time-
line as shown in Figure[T1] This plot shows the severe issue
of over-cooling that can occur in the building when the con-
troller is not updated regularly. Due to lower Supply Air Tem-
perature Set Point of the static controller, the total heating en-
ergy consumption for the building went up over the entire pe-
riod of cool weather. The heating energy savings over the pe-
riod shown in Figure[T1]was 6.4% for the adaptive controller
while the static controller increased the energy consumption
by 65%. The average weekly heating energy savings over the
entire evaluation period of 31 weeks was 7.19%(2.188%) or
112.19(13.91) kBTUs for the adaptive controller whereas the
con-adaptive/static controller increased the energy consump-
tion by 54.88%(32.66%) or 161.08(18.211) kBTUs.

The sum total of the heating and cooling energy consump-
tion under the historical rule based controller, the adaptive
controller and the non-adaptive/static controller is shown in
Figure [I2] The adaptive controller consistently saved more
energy than the non-adaptive controller. Overall the adaptive
controller was able to save 300.72 kBTUs each week on aver-
age whereas the static controller was able to save only 30.03
kBTUs.

8.7. Control Actions

Here we show why the overall energy consumption of the
building went up when we use a static reinforcement learning
controller. We plot the Discharge/Supply Air Temperature
set-point resulting from the actions of both the adaptive and
static controller along with outside air temperature and rel-
ative humidity in Figure [I3] On October 12th, the outside
temperature went down and both the adaptive and static con-
troller failed to improve building comfort condition. After

October 13th , the adaptive controller was re-trained by con-
sidering the last week’s data where it encountered environ-
ment states with lower outside air temperatures and it adapted
to those conditions. For the remaining time period analyzed,
the adaptive controller kept the Discharge/Supply Air Tem-
perature set-point closer to the comfort conditions required
by the occupants.
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How can we ensure that the increasing performance of the
controller is due to the relearning approach and not just be-
cause an increasing number of training samples are being
used? We observe that the data from the past that was used to
train the controller in previous episodes, is no longer relevant
when the new control policy is computed. The addition of the
recent experiences during the relearning phase helps us adapt
to the new behavior of the system.

CONCLUSIONS

In this paper, we have presented the design and implemen-
tation of a Relearning controller, and demonstrated through

12
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a case study, how this controller results in improved energy
savings over a static RL controller as well as the baseline,
which is the original rule-based controller for the building.
For safety and practical reasons, we capped the discharge
temperature set point changes to £2°C. Whereas this may
have led to somewhat reduced energy savings, it ensured that
our controller was stable, and it would not generate spurious
settings that significantly affects occupant comfort.

In future work, we plan to develop more intelligent relearning
methods, for example, where we relearn the model and con-
troller only when the controller performance starts degrad-
ing. Switching from fixed interval to on-demand epochs, will
result in more computationally efficient implementations for
online smart building control.
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