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ABSTRACT

Artificial Intelligence (AI) is escalating in data-driven con-
dition monitoring research. Traditional expert knowledge-
based Prognostics and Health Management (PHM) processes
can be smartened up with the assistance of various AI tech-
niques, such as deep learning models. On the other hand,
current deep learning based prognostics suffers from the data
deficit issue, especially considering the varying operating
conditions and the degradation modes of the components in
practical industrial applications. With the development of
simulation techniques, physical-knowledge based digital twin
models give engineers access to a large amount of simula-
tion data at a lower cost. These simulation data contain the
physical characteristics and the degradation information of
the component. In order to accurately predict the Remain-
ing Useful Life (RUL) during the degradation process, in this
paper, a bearing digital twin model is constructed based on
a phenomenological vibration model. A Domain Adversar-
ial Neural Network (DANN) is used to achieve the domain
adaptation target between the simulation and the real data.
Regarding the simulation data as the source domain and the
real data as the target domain, the DANN model is able to
predict the RUL without any priori knowledge of the labelling
information. Based on the validation results from real bear-
ing run-to-failure experiments, the proposed method is able
to get the minimum RUL prediction error compared against
state-of-the-art methods.

1. INTRODUCTION

Predictive Maintenance (PdM) strategy is a popular solution
for various industries to achieve cost-efficiency by reducing
unnecessary repairs and unplanned downtime. Today, the ad-
vancement of Internet-of-Things (IoT) and the data analyt-
ics technologies have become the new driving forces behind
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the PdM push. Powerhouse companies in the manufacturing
and energy sectors are marrying their sensory data with cloud
computing platforms, racing to deploy data-driven prognostic
tools on mechanical assets.

Artificial Intelligence (AI) is considered as a game-changer
for data-driven prognostics. Traditional expert knowledge-
based predictive models can be smartened with AI-powered
assistance, and upgraded to an advanced prognostic ecosys-
tem with minimal human interference, proactive decision-
making, and high prediction accuracy (Lei et al., 2018). In
the frame of AI, Deep Learning (DL) has sparked prognos-
tic algorithms’ development in light of the robust nonlinear
modeling capability. In the last years, a wide variety of DL
models have been proposed, targeting an accurate prediction
of the Remaining Useful Life (RUL) of critical mechanical
components such as bearings and gears, as reviewed by Khan
& Yairi (2018).

Despite the heuristic prediction results, state-of-the-art DL
prognostics models suffer from the data deficit issue, espe-
cially under varying operating conditions and degradation
modes for heterogeneous machinery fleets in the real indus-
try. One solution is to conduct large-scale, fleet-wise run-to-
failure experiments to generate the data mountain to improve
the generalization ability of the constructed DL model. How-
ever, such luxury experiments are not always feasible, consid-
ering the critical components’ long lifespans in high-valued
assets.

Simulation-based Digital Twin (DGT) has great potential to
ease the reliance on real-world tests and is gaining fast mo-
mentum in the condition monitoring research field. In con-
junction with the on-line sensory measurements, DGT mod-
els are able to represent the operating scenarios under a va-
riety of parameters (Sobie et al., 2018). In the frame of DL-
driven condition monitoring, the primary benefit of DGT is
to generate simulated system responses with pre-configured
faults or degradation processes, giving access to a large
amount of simulation data to train the DL model. The gen-
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Figure 1. Digital twin-based deep learning for smart maintenance tasks.

eral scheme of DGT-based DL for smart maintenance tasks is
depicted in Figure 1.

The pioneering work of the DGT-based AI method was pro-
posed by Gryllias & Antoniadis (2012), where an analytical
model was utilized to provide training datasets for a Sup-
port Vector Machine (SVM), which was designed for bearing
diagnostics. After that, other sophisticated simulation tools
were leveraged, and the AI technique was evolving from shal-
low classifiers to deep models, i.e. deep neural networks. For
instance, Sobie et al. (2018) constructed a one-dimensional 3-
DOF bearing dynamic model to produce simulated vibration
signals for a Convolutional Neural Network (CNN) classifier.
Gao et al. (2020) investigated the usage of a Finite Element
Model (FEM) to generate faulty bearing features, which was
integrated with a Generative Adversarial Network (GAN) to
discriminate bearing defects under the hypothesis of insuffi-
cient faulty signal information.

These implementations show that the DGT-based DL ap-
proach accommodates the requirements in the condition mon-
itoring context. However, the coupling of the DGT and DL
models is still at its infancy with limited applications only
for classification problems. It has not yet been extended to
any prognostic tasks. On the one hand, current DGT models
cannot sustain the entire asset degradation processes due to
the complex operating environment in practice, which results
in low accuracy predictive simulation. On the other hand,
the performance of the DL prognostic model is essentially
dictated by the distribution mismatch between the simulation
data and real measurements, i.e. the domain shift issue.

One solution to tackle this problem is by using the domain
adaptation technique to enhance the DL model. Domain Ad-
versarial Neural Network (DANN) is developed as an effec-

tive approach to align the latent feature distributions of the
datasets from two different domains (Ganin et al., 2016).
Considering the simulation data and real measurements as the
source and target domain respectively, DANN adversarially
trains a domain discriminator to extract the domain-invariant
features, which puts efforts in reducing the domain shift. Re-
cent research from Q. Wang et al. (2019) revealed the DANN
method’s superiority in bearing fault classification with vi-
bration signals. Chen et al. (2020) also came to a similar
conclusion with the CNN-based DANN architecture for end-
to-end bearing and gearbox fault diagnostic purposes. For
prognostics, da Costa et al. (2020) proposed a DANN model
for aero-engine remaining useful life prediction using physi-
cal features as inputs.

In this paper, a novel DGT-based DL prognostic model is
proposed within the frame of DANN. For the first time, the
DANN technique aligns the rolling element bearing physical
simulation with run-to-failure experiments for RUL predic-
tion, which carries out the domain adaptation target between
the simulation and the real data. The phenomenological vi-
bration model is adopted as the generative DGT, and the Bi-
directional Long Short Term Memory (Bi-LSTM) neural net-
work is then employed as the feature extractor in the DANN
regime. The results show that the proposed method could get
high prediction accuracy in contrast to the non-adapted mod-
els.

The rest of the paper is organized as follows: Section 2 in-
troduces the theories of the DGT model and the DANN ap-
proach. The proposed method and the experiment are dis-
cussed in Section 3 and 4, respectively. The prognostic re-
sults are illustrated in Section 5. Some conclusions are sum-
marized in the last section.
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2. THEORETICAL PART

2.1. Faulty bearing DGT model

Vibration signals have been proved efficient in reflecting and
monitoring the degradation of components, especially for
high-dynamic machinery. Thus the proposed DGT model will
focus on the simulation of vibration response. The morpholo-
gies of rolling element bearing faulty signals are shown in
Figure 2, where the faults are mostly observed on the outer
race, the inner race, and the rolling elements. By replicating
the bearing vibration signals, the DGT model is expected to
introduce the critical physical characteristics of the bearing
degradation process.

Figure 2. Three types of bearing faults with corresponding
time domain vibration responses.

McFadden & Smith (1984) firstly proposed a bearing phe-
nomenological model according to the repetitive impacts and
modulations caused by the faults in order to reconstruct the
vibration signals. Ho & Randall (2000) improved this model
by adding randomness considering the slip phenomenon in-
side the bearing. Based on the understanding of the quasi-
cyclostationarity of bearing signals, Antoni & Randall (2003)
proposed a stochastic modelling approach with a more pre-
cise simulation of the spectral characteristics. This approach
is implemented in this paper as the core DGT model.

For localized defect, the periodic train of impulses could be
described as (Antoni, 2007):

x(t) =

+∞∑
i=−∞

h(t− iT − τi)q(iT )Ai + n(t) (1)

where h(t) represents the impulse response to the measured
impact, i is the sequential number of the impact, T is the time
interval between two impacts, τ and A are the uncertainties
on the inter-arrival time and the magnitude, q(t) and n(t) de-
note the periodic modulation generated by the load distribu-
tion and the background noise, respectively. The randomness
of τ and A can be further described with:

E{τiτj} = δijσ
2
τ ,

E{A2
i } = 1 + δijσ

2
A

(2)

where δij is the Kronecker symbol, στ and σA are the stan-

dard deviations. Many studies focusing on the implementa-
tion of Equation 1 have demonstrated that the slight random
fluctuations of the impulse train could affect the harmonics
and result in significant randomness of the signal (Randall et
al., 2001; Antoni & Randall, 2003). Consequently, the faulty
bearing vibration signal can be described as:

x(t) = xH(t) + xR(t) (3)

where xH(t) is the weak harmonic component in the low-
frequency range, and xR(t) is the dominating random cyclo-
stationary component in the higher-frequency range. The de-
tailed numerical implementation and the spectral characteris-
tic analysis of the simulated signals can be found at Antoni &
Randall (2003).

2.2. Domain Adversarial Neural Network

As one of the domain adaptation techniques, DANN is able
to align the simulation efforts with the deep learning model.
The fundamental theory of DANN can be traced back to
the research from Ganin & Lempitsky (2014) and Ganin
et al. (2016). It is designed to encounter the domain shift
problem, i.e., the distribution mismatch of training and test-
ing dataset. Inspired by the Generative Adversarial Net-
works (GANs), DANN uses adversarial training to construct
a domain-invariant feature space for both the source and tar-
get domain data. These features are simultaneously sent to a
domain classifier and to a label predictor. By learning from
the source domain data and the associated labels, the goal of
DANN is to map a function that can precisely label the target
domain data.

Figure 3. The architecture of DANN for regression.

As shown in Figure 3, the DANN architecture includes three
parts: the feature extractor Gf (·; θf ), the domain classifier
Gd(·; θd) and the label predictor Gr(·; θr), where θf , θd and
θr are respectively their hyper-parameters. The Gf is used
to create the feature space needed for the following networks
based on the mixture of source and target domain samples.
In the forward propagation, the features are sent to the Gd
to classify whether they come from the source or the target
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domain. The loss of the Gd can be described as:

Ld(θf , θd) = Ld(Gd(Gf (x; θf ); θd)) (4)

where x is the input. According to Ganin et al. (2016), the
training target of Gd is to reduce the H-divergence between
the two domains, which can be fulfilled using a Gradient Re-
versal Layer (GRL). During the back propagation process, the
GRL is inserted between the domain classifier and the fea-
ture extractor to reverse the training targets, i.e., Gf is opti-
mized to extract domain-invariant features from the two do-
mains, but Gd is optimized to discriminate as much as pos-
sible their belonging domains. GRL can be simply imple-
mented by multiplying −1 to the gradient without introduc-
ing other hyper-parameters. When the classifier can no longer
identify the exact domain of a sample, the domain-invariant
feature space aligning the two distributions is successfully
constructed.

Since the labels are available for the source domain data, the
features are simultaneously sent to Gr, which is trained in a
supervised way. The loss function of Gr is described as:

Lr(θf , θr) = Lr(Gr(Gf (x; θf ); θr)) (5)

Combining the domain classifier and the label predictor, the
total loss of DANN can be defined as follows according to
Ganin et al. (2016):

L(θf , θd, θr) =
1

n

n∑
i=1

Lir(θf , θr)−

λ(
1

n

n∑
i=1

Lid(θf , θd) +
1

n′

n′∑
i=1

Lid(θf , θd))

(6)

where n and n′ are respectively the numbers of samples from
the source and target domain. λ is the weight scalar of the
loss. By implementing optimizers like SGD, Adam, or RM-
SProp, Equation 6 is expected to converge to a saddle point,
and the labels of the target domain then can be predicted. It is
noticeable that the DANN model can be used in either a semi-
supervised or unsupervised way. The proposed method in this
research is leveraging the unsupervised DANN with the Bi-
LSTM feature extractor, which is discussed in the following
section.

3. PROPOSED METHODOLOGY

3.1. Bearing degradation simulation dataset

As discussed in the previous section, the bearing DGT model
could generate vibration signals based on real bearing geom-
etry and operating conditions. However, it has to be noticed
that the model does not explain the dynamic mechanism for
the bearing failure and therefore cannot evolve with the bear-
ing degradation. On the other hand, it is possible to have a

glance at this process using various Health Indicators (HI).
Following the work of B. Wang et al. (2018), the bearing
degradation process is estimated as an exponential function
described as:

f(t) = αeβt + γeδt + ε (7)

where t is the time stamp, and f(t) represents the HI extracted
from the raw vibration signal. The other parameters from α to
ε could be obtained using a nonlinear least squares method.
The exponential curves should cover up a broad enough in-
put feature space, containing most of the possible degradation
trajectories, to provide abundant samples and instructive in-
formation for the follow-up learning process. The schematic
of the simulation process is shown in Figure 4, where the real
and simulated degradation processes are described with an in-
creasing HI. tp is the time stamp when the first prediction is
made, and tλ is the inspecting time. The solid red line in-
dicates the real measurements and the dotted red line is the
indicators that has not been measured.

Figure 4. Simulation of degradation based on HI trajectories.

The baseline degradation trajectory is obtained based on bear-
ing’s L10 life. When a specific bearing is operated under
certain speed and load, its L10 life can be calculated to in-
fer the bearing reliability (Huang et al., 2007). The baseline
exponential function could be fitted based on the End-of-Life
(EoL) threshold and theL10 life value which is then extended
for further simulation.

3.2. RUL prediction with Bi-LSTM based DANN

In this research, sensory vibration signals of bearings are
collected as the input data. The flow chart of the proposed
method is depicted in Figure 5, which is composed as fol-
lows. The source domain data includes the vibration signals
from the simulation degradation datasets and the correspond-
ing RUL scalar values as labels. The target domain data con-
tains the vibration signals measured from the real bearing.
Then these two types of information are passed to the pro-
posed neural network.
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Figure 5. Flow chart of the proposed prognostic method.

Bi-directional Long-Short Term Memory (Bi-LSTM) layers
are combined with Fully Connected (FC) layers to form the
feature extractor in the DANN model. The FC layers are
also used in the domain classifier and the label predictor with
shared weights from the Bi-LSTM. A softmax and a linear
activation function are applied respectively in the last layers
of the domain classifier and the label predictor. In this im-
plementation, the cross-entropy loss function is used on the
domain classifier. Since the label predictor is dealing with
the regression problem, the root mean square error loss func-
tion is selected for its optimization. The detailed architecture
and the parameter selection of the proposed Bi-LSTM DANN
can be found in Table 1.

Table 1. Architecture of the Bi-LSTM DANN.

Feature extractor
1 Input layer Size: length of the signal
2 Bi-LSTM layer Unit: 500
3 Dropout layer Rate: 0.2
4 FC layer Unit: 200, activation: Relu
5 Dropout layer Rate: 0.2
6 Feature output Unit: 200, activation: Relu

Domain classifier
7 FC layer Unit: 100, activation: Relu
8 Dropout layer Rate: 0.2
9 FC layer Unit: 50, activation: Relu
10 Domain classification Unit: 2, activation: Softmax

Label predictor
11 FC layer Unit: 100, activation: Relu
12 Dropout layer Rate: 0.2
13 FC layer Unit: 50, activation: Relu
14 Source regression Unit: 1, activation: Linear

Besides the layers mentioned above, the GRL is added be-
tween the last FC layer of the feature extractor and the first
FC layer of the domain classifier, as discussed by Ganin et al.
(2016). The weight of loss, λ, between the domain classifier
and the label predictor is set to 1.0 in this work.

4. EXPERIMENTAL PART

4.1. IMS dataset

The proposed method is validated using the NASA IMS
dataset including three subsets (Qiu et al., 2006). Each of
them contains the vibration signals measured from run-to-
failure bearing experiments as shown in Figure 6. Four (4)
double row Rexnord ZA-2115 bearings were mounted on a
shaft connected with an electric motor.

Figure 6. Test rig layout of IMS experiment.

Two accelerometers were installed on each bearing to acquire
signals from x- and y-axes. With the sampling frequency of
20 kHz, each individual measurement lasted for 1 second and
the recording interval was 10 min. In the released documents,
each file represents one vibration signal. Four (4) bearings
were observed as defected with different fault types and lifes-
pans. The original End-of-Life (EoL) threshold of the ex-
periment was defined based on the accumulated debris of a
magnetic plug, which lacked of detailed measuring informa-
tion. In order to quantify the bearing life from the vibration
perspective, the EoL adopted in this research is reached when
the acceleration overcomes 5g.

In this research, the prognostics is proceeded after the detec-
tion of an anomaly based on engineered features, which is
assumed as the occurring of incipient fault. The faulty bear-
ing information are listed in Table 2. The anomaly detection
results are based on the research of C. Liu & Gryllias (2020).

Table 2. Faulty bearing information of IMS dataset.

Bearing Fault type Measurement
duration

Anomaly
detection

Dataset 1
Bearing 3 Inner race 2156 files Signal #1796

Dataset 2
Bearing 1 Outer race 980 files Signal #532

Dataset 3
Bearing 3 Outer race 6323 files Signal #5977
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4.2. Comparative methods

IMS dataset has been used as a benchmark in various re-
searches in the field of bearing prognostics. Four published
prognostic methods based on this dataset are reviewed and
used as the targets to compare against the proposed approach.

• SVM (Dong & Luo, 2013): The method firstly employs
Principal Component Analysis (PCA) to extract features
from the inputs and combines them with a SVM to con-
duct the prognostics.

• LSTM (Cheng et al., 2018): This method uses signal
processing methods to extract classic engineered features
from both time and frequency domain to feed a deep
LSTM neural network.

• PSW (Qian et al., 2017): A hybrid model using Phase
Space Warping (PSW) technology is used together with
the Paris’ law to estimate the RUL based on crack
growth.

• CNN (R. Liu et al., 2019): A CNN model with a joint
loss function is proposed which can simultaneously di-
agnose the bearing fault type and predict the RUL.

The results from these papers are gathered to compare with
the proposed method. It should be noticed that, some of the
published methods use supervised learning methods based
on fleet-wise model training, which require prior knowledge
about the degradation process. With the help of the bearing
DGT, the prognostics is proceeded in an unsupervised way in
this research, which needs only the bearing geometry and the
operating conditions as the inputs.

Beside comparing with published results, it is also necessary
to examine the effectiveness of the domain adaptation. There-
fore the proposed model is also compared against the non-
adapted method. Instead of the adversarial training during
the modelling process, the non-adapted model is constructed
based on the simulation and then is tested directly with the
real data.

4.3. Evaluation metrics

In this research, the predicted RUL value, RULpred, can be
calculated based on the normalized RUL in [0, 1] and the ac-
tual inspecting time tλ:

RULpred =
RULnorm

1−RULnorm
tλ (8)

The performance of the prognostic model can be measured
via several metrics (Saxena et al., 2010). Two error-based
metrics, the Root Mean Squared Error (RSME) and the
Mean Absolute Error (MAE) are commonly adopted in prog-
nostic research to calculate the error between RULact and
RULpred. Considering there are entirely N measurements,
the errors can be described as:

RMSE =

√∑N
i=1(RULi

act −RULi
pred)

2

N
(9)

MAE =

∑N
i=1

∣∣RULi
act −RULi

pred

∣∣
N

(10)

Error-based metrics can globally evaluate the predictions
which equally weight the samples at different time stamps.
In practice, a precise prediction at the time closer to the EoL
is considered more valuable for decision making than at the
starting period of the degradation. Therefore, the Cumulative
Relative Accuracy (CRA) is used as an aggregate prediction
accuracy metric, which is described as:

CRA =

N∑
i=1

ωiRAi (11)

where RA represents the relative accuracy at specific time
stamp and ω is the corresponding weight. They can be calcu-
lated as follows:

RAi = 1−

∣∣∣RULiact −RULipred∣∣∣
RULact

(12)

ωi =
i∑N
i=1 i

(13)

When the RA and CRA values are closer to 1, the model
presents a good prognostic performance. Moreover, the α-
λ accuracy is used to evaluate the RUL estimation at each
individual time stamp. α represents the tolerance range of the
true RUL, which is also denoted as the α-cone. tλ indicates
the inspecting time stamp, and λ is in the range [0, 1] rep-
resenting the fraction between the starting time stamp tp and
the EoL. The prediction at tλ should be evaluated if it falls
into the α-cone or not. tλ can be expressed as follows:

tλ = tp + λ(EoL− tp) (14)

5. RESULTS

The proposed model is implemented with Python 3.6 and
TensorFlow 1.9 on an Intel Xeon Gold 6140 (2.3 GHz)
and NVIDIA Tesla P100 GPU. The bearing DGT models are
constructed with an inner race and an outer race defect, re-
spectively. Each model includes 100 degradation trajectories
to cover all potential degradation modes and provide a wide
enough latent feature space.

In order to fit the input shape of the Bi-LSTM layer, both
the simulated and the real time sequences are reshaped as
[N,T, F ] which are respectively the number of samples, time
steps and features. During the training, the network is up-
dated with the incoming target data sample N , which is set to
100. The experiments are repeated 5 times to reduce the influ-
ence of randomness, and the averaged metrics are recorded.
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5.1. Simulation results

The simulated signals are generated based on the hereto-
fore mentioned phenomenological model. It should be no-
ticed that the amplitude parameter q(t) in Equation 1 is se-
lected based on the amplitude of the healthy signals before
the anomaly happens. The real and the simulated signals of
the IMS Dataset 2 Bearing 1 are shown in Figure 7.

(a) (b)

Figure 7. Real and simulated signals of IMS Dataset 2 Bear-
ing 1 (a) real signal. (b) simulated signal.

5.2. Comparison against published results

As illustrated in the previous section, the comparison of RUL
prediction results is firstly carried among the published state-
of-the-art results. The prognostic results from the selected
papers are listed in Table 3. It is noticeable that almost all the
bearing prognostic papers with the IMS dataset only validate
the models on the faulty bearings in the first two subsets. The
metrics are calibrated using the number of measured samples
based on Equation 8. In the table, the symbol “-” indicates
that the results are not provided.

The results of the DGT-based DANN model are also pre-
sented for the two faulty bearing cases. With lower prediction
errors and higher CRA values, the superiority of the proposed
method can be attributed to the DGT-based simulation as well
as the DANN’s domain generalization ability. In the prognos-
tic tasks, classic deep neural networks extract features based
on the limited number of measurements from a single degra-
dation trajectory. These one-on-one methods could easily fall
into the trap of a case-specified or overfitted model, which
cannot be applied to other datasets. On the other hand, many
existing deep learning methods treat prognostics as a super-
vised learning problem with training and testing datasets split
from a single run-to-failure experiment. However, it is im-
practical to make such an assumption dealing with on-line
dataflow under real prognostic scenarios.

Figure 8. Prognostic results of Dataset 1 Bearing 3.

Figure 9. Prognostic results of Dataset 2 Bearing 1.

Based on the proposed method, the RUL predictions and the
α- λ performance of Dataset 1 Bearing 3 and Dataset 2 Bear-
ing 1 are shown in Figure 8 and Figure 9, respectively. In
the first bearing case, it can be observed that the predic-
tions before 1.9 ×104 minute (λ = 0.27) are decentralized
from 1,200 to 4,500 minutes. The domain-invariant features

Table 3. Comparison of state-of-the-art prognostic models with the proposed method based on IMS dataset.

Metric Dataset 1 Bearing 3 Dataset 2 Bearing 1

SVM LSTM CNN PSW DANN SVM LSTM CNN PSW DANN

RMSE (min) - - - 547.20 511.80 429.60 364.20 615.55 857.40 349.20
MSE (min) - - - 425.40 348.60 - 361.80 - 681.00 241.20

CRA - - - - 0.72 0.64 - - - 0.78
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have not been fully captured from the real measurement due
to the lack of training samples in the target domain. With
the increase of available training data, the model’s perfor-
mance is significantly boosted with the monotonic trend ob-
served from the predictions, especially after 2.05 ×104 min-
utes (λ = 0.68). Generally, 13.85% of the predictions are
outside the α-cone.

A similar performance is found in the second bearing case
with a faster converge of the prediction starting at 7,500
minute (λ = 0.49). The proportion of the out α-cone pre-
dictions is 20.49%, as shown in Figure 9.

With the assist of simulation data, the physical information of
bearing degradation is embedded in the source domain. The
neural network training will further result in the emergence of
domain-invariant and monotonic features, which can be used
to track the bearing degradation. Since the training of the tar-
get domain is unsupervised, the proposed DGT-based DANN
model is able to circumvent the labelling issue of the run-
to-failure dataset. In practical applications, the available un-
labelled measurements increase with the machine operating
and could be used to enhance the target domain, thus leading
to a more precise prediction.

5.3. Comparison against non-adapted models

In order to further validate the effectiveness of the domain
adaptation, a comparative analysis has been performed be-
tween the proposed method and a non-adapted DGT model,
which is only trained with the simulation data without the
domain classifier. The simulation model construction keeps
consistent with the proposed method using 100 generated sig-
nal sequences. The RUL prediction errors and the computa-
tional cost of Dataset 3 Bearing 3 are reported in Table 4.
It should be noticed that the adversarial training process in-
creases the training time compared to the non-adapted mod-
els. The corresponding prediction curves are depicted in Fig-
ure 10.

Table 4. Prognostic metrics of Dataset 1 Bearing 3.

DGT based-DANN Non-adapted model

RMSE (min) 445.59 790.22
MAE (min) 328.24 715.30

CRA 0.68 -2.09
Training time (min) 16.78 10.32

Compared to the DANN method, the non-adapted model fails
to adapt its outputs to the real data, which gives rise to high
prediction errors. Although the simulation dataset could pro-
vide enough training samples to the neural network, the shift
between the simulation and real is still considerable since
the DGT cannot perfectly replicate the degradation process,

Figure 10. Prognostic results of Dataset 3 Bearing 3.

which leads to the higher prediction errors and less monotonic
RUL curve.

On the other hand, the DGT-based DANN method shows the
promising results of transferring physical information to the
deep learning framework via domain adaptation. The results
reveal that the proposed DGT-based DANN model is a sound
approach to be used in bearing prognostics.

6. CONCLUSION

Combining deep learning with a digital twin is one of the key
opportunities in the future-oriented smart industry. In this pa-
per, a bearing DGT model is married with a deep neural net-
work in the domain adaptation frame to fulfill a prognostic
task. At the heart of this prognostic approach lie two criti-
cal techniques: the bearing vibration model and the domain
adversarial neural network. The experimental results based
on the IMS dataset validate the efficacy of the DGT-based
DANN method. Among the state-of-the-art prognostic re-
sults, the proposed method exhibits dominant performance
with lower prediction errors and high relative accuracy. The
comparison between the adapted and non-adapted models
confirms the virtues of the DANN. Besides these encourag-
ing results, the method provides a new route to handle the un-
supervised learning problem in practice, which has plagued
the prognostic community for a long time. The proposed
method not only contributes as a data driven framework for
the bearing prognostic task, but also explores a new path to
synchronize the physics-based simulation and the deep learn-
ing. More sophisticated simulation models could be used as
alternatives for the training data augmentation, which might
lead to a better prediction. From the industry point of view,
the deployment of the proposed model will significantly ease
the reliance on real operational data with lower cost.
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