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ABSTRACT 

Predictive maintenance and condition monitoring systems for 

wind turbines have seen increased adoption to minimize 

downtime, reducing operation and maintenance costs. On 

today’s wind power plants, the integrated supervisory control 

and data acquisition (SCADA) system provides low-

frequency operational data that can be leveraged to quantify 

a wind turbine’s health. The aim of this study is to utilize 

machine-learning techniques to predict axial cracking 

failures in wind turbine gearbox bearings up to 1 month ahead 

of time. The failures are assumed to have occurred when the 

investigated bearing was replaced. While current SCADA 

systems show the overall condition of a wind turbine, often 

they do not allow for the investigation of specific gearbox 

bearings’ health. To enrich bearing fault signatures, 

additional data are computed through physics-based models 

using gearbox design information. Based on SCADA data, 

modeled data, and bearing failure log data from an actual 

wind plant, the performances of different machine-learning 

models on unseen data are then evaluated using industry-

standard metrics, such as precision, recall, F1 score, and area 

under receiver operating characteristic curve (AUC). Results 

show the overall system performance enhancement in 

predicting bearing failure when modeled data are included 

with SCADA data. The reduction in terms of false alarms is 

about 50%, and improvement in terms of precision, F1 score, 

and AUC is about 33%, 12%, and 6%, respectively, based on 

the best performing modeling case in this study.   

1. INTRODUCTION 

Wind energy has been advancing rapidly as it plays a very 

significant part in clean-energy-based electric power 

generation (Kusiak & Li, 2011). However, the operation and 

maintenance (O&M) cost of a wind farm accounts for up to 

30% of total energy cost (Fischer, Besnard, & Bertling, 

2012), which can be reduced through continuous monitoring 

and successfully detecting incipient wind turbine failures. For 

this reason, predictive maintenance and condition monitoring 

systems are being implemented for O&M decision-making in 

the wind industry (Lau, Ma, & Pecht, 2012; Feng, Qiu, 

Crabtree, Long, & Tavner, 2013; Qiao, & Lu, 2015). These 

systems utilize a combination of statistics, data mining, and 

machine-learning-based techniques for fault diagnostics and 

prognostics, to assess wind turbine performance 

abnormalities and predict time to failure. The performance of 

these systems is improving with advances in data acquisition 

and signal processing technologies (Qiao, Zhang, & Chow, 

2015; Zaher, McArthur, Infield, & Patel, 2009; 

Colone, Reder, Tautz-Weinert, Melero, Natarajan, & 

Watson, 2017).            

Wind turbines operate in adverse weather conditions and 

their drivetrains undergo severe variable loading because of 

emergency shutdowns, varying wind speed, and fluctuations 

in energy demand (Yang, Tavner, Crabtree, Feng, & Qiu, 

2013). One of the most important parts of a geared wind 

turbine drivetrain system is a gearbox that comprises various 

bearings, gears, and shafts. Most of the gearbox failures are 

related to the shaft bearings and result in very costly repairs 

and high downtime (Saidi, Ben Ali, Bechhoefer, & 

Benbouzid, 2017). Research has shown that cracks can 

develop in the gearbox bearings only within 3 years of a wind 

turbine’s operation (Stadler & Stubenrauch, 2013). The failed 

bearings can damage surrounding components of the 
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gearbox, resulting in costly replacement of various 

components (Musial, Butterfield, & McNiff, 2007; Yang, 

Tavner, Crabtree, & Wilkinson, 2010). For these reasons, 

predicting wind turbine gearbox bearing failure is crucial.   

A wide range of approaches for condition monitoring and 

fault prediction have been developed (Leite, Araújo, & 

Rosas, 2018). Kusiak and Verma (2012) analyzed the bearing 

faults considering over temperature events and using neural 

networks. Zhang (2018) put forward an automatic fault 

prediction method to predict main bearing fault using neural 

networks. The author predicts the bearing temperature using 

other features, such as active power output, ambient 

temperature, and turbine speed, and the fault is identified 

based on the prediction error. Koukoura et al. (2018) 

developed an approach to predict wind turbine planet bearing 

fault before 12 months, 6 months, and 1 month using a linear 

regression model. These approaches generally use historical 

data of wind turbines collected by a supervisory control and 

data acquisition (SCADA) system to identify patterns that 

lead to failure. The SCADA system typically records 

averages of sensor channels over 10-minute intervals to 

reduce storage and bandwidth. The data include various 

measurements, such as rotor speed, power, bearing 

temperature, and lubricant temperature (Zaher, McArthur, 

Infield, & Patel, 2009). These SCADA data show the overall 

condition of a wind turbine and can be leveraged to detect 

when the turbine’s performance is degrading and to identify 

if a fault is developing. However, it becomes challenging to 

predict the failure of a specific wind turbine gearbox bearing, 

because the SCADA data are often not directly linked to any 

gearbox component. To bridge the gap, different features are 

calculated from SCADA data using physics-based models 

and the gearbox design. These modeled data, along with the 

SCADA data, are utilized for the bearing failure prediction, 

with an aim to improve the performance of current 

prognostics techniques. 

The rest of the paper is organized as follows: Section 2 

describes characteristics of data, the method to compute 

bearing-specific modeling data, and the data preprocessing 

technique we use. Section 3 presents strategies to address the 

class imbalance problem and machine-learning algorithms 

used for this study. In Section 4, we compare the 

performances of machine-learning models on historical 

bearing failure data using standard evaluation metrics. 

Finally, Section 5 summarizes our contribution to the field of 

wind turbine prognostics and discusses the areas of future 

work.         

2. DATA DESCRIPTION AND PREPROCESSING 

The data used in this study have been collected by a project 

partner from 12/01/2008 to 10/31/2018 at a wind farm located 

in Texas. The investigated data set contains a total of 13 1.5-

MW wind turbines that have an identical gearbox 

configuration. Each shaft of the gearbox has two bearings (A 

and B) mounted on different axial locations, and all 13 

turbines had encountered either high-speed shaft (HSS) or 

intermediate-speed shaft (IMS) axial cracking failure on 

bearing A or bearing B. The bearings were replaced, and 

lubricants of some turbines were also upgraded after the 

failure. Because the effect of installing new bearings on old 

components is beyond the scope of this study, we considered 

data up until the first failure of any bearing of the gearbox. 

The bearing replacement dates are assumed as their failure 

dates in this study, but they could be different from when the 

actual failures occurred or become detectable through 

instrumentation.  

The clear separation of train and test data in the beginning is 

important as it helps avoid accidently sharing information of 

test data during model development based on train data. To 

assess the model performance across a wind turbine’s life, we 

randomly selected 10 turbines for model training and used the 

remaining three turbines for testing. It is worth noting that the 

three turbines used for testing had different bearing failures, 

but we will be treating them as the same in our study. The 

rationale is that they share common SCADA data channels 

that could be indicative of bearing failures and the modeled 

data related to them is normalized. Figure 1 shows the 

timeline of different bearing failures of all the turbines and 

whether the data are used for model training or testing 

purposes.  

 

Figure 1. Timeline of bearing failures. 

Table 1. SCADA channels. 

SCADA Channel Unit 

Wind speed  m/s 

Power  Watt 

Rotor speed m/s 

Status code - 

Gearbox bearing temperature  Celsius 

Gearbox oil temperature Celsius 

Nacelle temperature Celsius 

Ambient temperature Celsius 

The investigated SCADA data consist of 10-minute-interval 

averaged measurements of various sensors, as shown in Table 

1. A total of 144 (6 per hour × 24 hours) rows of data are 
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recorded per day by a single turbine in the SCADA system. 

The gearbox bearing temperature is measured at another 

bearing (bearing C) on a high-speed shaft, which is different 

from the investigated bearings A and B and used to support 

the axial loads. The “status code” channel in the SCADA data 

shows the state of a wind turbine at a given time. During low 

wind speed, shutdowns, and maintenance activities, no power 

is produced by the wind turbine. Because these samples are 

out of the scope of our analysis, we filter them out and only 

consider the data when a turbine was in the running condition. 

To represent the health condition of a bearing, additional data 

are calculated from the filtered SCADA data using physics-

based models (Guo & Keller, 2020; Guo, Sheng, Phillips, 

Keller, Veers, & Williams, 2020). The various parameters for 

HSS bearings and IMS bearings in modeled data are shown 

in Table 2. An analytical roller sliding model (Guo & Keller, 

2020) was used to calculate bearing roller and cage kinematic 

and sliding speed, which is important input for computing 

frictional energy generations on roller/raceway contact 

surfaces, as detailed in Guo et al., 2020.  Bearing loads were 

calculated using a simple lumped-parameter model of high-

speed and intermediate-speed shafts (Guo et al., 2020). Roller 

load distribution and deflections are estimated analytically 

using the approach in Harris & Kotzalas (2007). All these 

physics-based models require information on gearbox design 

and turbine operation history (SCADA data) as the input. 

Table 2. Modeled data channels. 

Modeled Data Channel Unit 

Bearing load N 

Bearing roller load  N 

Roller deflection  mm 

Rolling speed of roller and cage rpm 

Sliding speed of roller and cage m/s 

Slide-to-roll ratio - 

Frictional energy intensity W/mm2 

Frictional energy  J 

 

All time series data in Tables 1 and 2 (i.e., SCADA data and 

modeled data), are candidate features for this study. The 

Pearson correlation coefficient is calculated to determine 

linear correlation between each pair of features and to avoid 

multicollinearity. The features such as ambient temperature, 

bearing roller load, roller deflection, rolling speed, and 

sliding speed are dropped considering the collinearity 

threshold as 0.9. The selection of which colinear feature to 

drop is done by using domain knowledge. For example, 

nacelle temperature is kept as it is more related to the wind 

turbine than highly correlating ambient temperature. As a 

result of the high frequency of data collection, it is possible 

for SCADA data to contain noise and sensor errors. The 

outliers in the training data are detected using a 1.5-

interquartile-range (IQR) method (Tukey, 1997), as it is 

considered robust against skewed data. Because the median 

values are not sensitive to outliers and show the central 

tendency in asymmetrical distributions, we replace detected 

outliers with median values. One thing to note is that the 

detected outliers are few and they occur randomly. Also, we 

do not see higher frequency of outliers when a turbine is 

about to fail. 

Since we only filter the data when a turbine was producing 

power, we do not have a continuous stream of 10-minute 

frequency data and the total number of rows of data in any 

day can be between 0 and 144. With an assumption that the 

data do not change significantly in a single day, we aggregate 

the data generated on the same day and represent them with 

summary statistics, as shown in Table 3. Because the 

prediction horizon (1 month) is comparatively long, 

aggregated data help us understand meaningful trends and 

changes that will signify an impending failure. We use daily 

summary statistics of each feature for model training and 

testing.  

Table 3. Summary statistics. 

Summary Statistic Formula 

Minimum - 

Maximum - 

Length of data (N) - 

Mean (x) 
∑ xi

N
i=1

N
 

Standard deviation (S) √
∑ |xi − x|2N

i=1

N
 

Root mean square (xrms) √
∑ xi

2N
i=1

N
 

Skewness 
∑ |xi − x|3 N

i=1  N⁄

S3  

Kurtosis 
∑ |xi − x|4 N

i=1  N⁄

S4  

Figure 2 shows the raw power values of a sample turbine 

from 2008-12-01 to 2008-12-07. Figure 3 shows how the 

same turbine’s processed data (i.e., summary statistics) 

would look like for a same period.  

The power a wind turbine produces at a given wind speed can 

be important to quantify its health. Figure 4 shows a typical 

power curve of a wind turbine (Sohoni, Gupta, & Nema, 

2016).  
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Figure 2. Raw power values of the sample turbine.

 

Figure 3. Summary statistics generated from raw power values of the sample turbine.

 

Figure 4. Wind turbine power curve. 

A turbine operates at the rated power in Region 3, which is 

considered to be the best for its operation (Sohoni, Gupta, & 

Nema, 2016). In Region 3, load on the bearing is high and the 

bearing sliding is low, which results in less frictional energy. 

When a turbine is operating in Region 1 and early phase of 

Region 2, the bearing sliding is higher, thereby causing 

higher frictional energy (Guo & Keller, 2020). It has been 

proven that frictional energy causes white etching cracks in 

bench tests of bearing steel specimens (Gould & Greco, 

2015). Hence, we calculate how many data points lie in each 

approximate region in a day using the wind speed limits given 

in Table 4. The regions are approximate because the upper 

wind speed limit (i.e., 6 m/s) for Region 1’ is higher than a 

typical turbine’s cut-in wind speed (e.g., 3 to 4 m/s), and the 

upper wind speed limit (i.e., 10 m/s) for Region 2’ is lower 

than a typical turbine’s rated wind speed (e.g., 12 to 15 m/s). 

They are defined based on whether the bearing is more prone 

to sliding and generates more frictional energy. 

Table 4. Approximate power curve regions. 

Region 
Wind Speed Limits 

Lower Limit Upper Limit 

Region 1’ 0 m/s 6 m/s 

Region 2’ 6 m/s 10 m/s 

Region 3’ 10 m/s 25 m/s 

Our aim is to predict bearing failure at least 1 month ahead of 

the actual failure (i.e., replacement date); therefore, the last 1 

month of any wind turbine’s data is labeled as “faulty” and 

earlier data are labeled as “healthy,” as shown in Figure 5. 

The rationale behind such labeling is an assumption that the 

data from the last month before the failure contains a strong 

signal of bearing fault.  
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Figure 5. Data labeling. 

3. METHODOLOGY 

A supervised learning algorithm analyzes the training data 

and identifies a linear or nonlinear boundary separating 

healthy and faulty classes of the training data, which can then 

be used to predict a class of new instances. Therefore, we 

used supervised learning algorithms in this study. Because 

we mark only the last 1 month of data as “faulty,” we have an 

extremely disproportionate ratio (~ 90:1) of observations in 

each class of the training data. Because of the class 

imbalance, algorithms become biased in favor of data with 

the majority class and ignore data with the minority class. 

Therefore, we utilize the following two techniques to address 

class imbalance and evaluate the performance of each in 

different models. We do not use undersampling techniques, 

as they lose a lot of information about the healthy turbine 

data.  

• Synthetic Minority Over-Sampling Technique 

(SMOTE): SMOTE (Chawla, Bowyer, Hall, & 

Kegelmeyer, 2002) is an oversampling technique in 

which new examples from the minority class are 

synthetically generated. It selects two minority class 

instances randomly that are close in feature space and 

synthesizes a new sample at any point between the line 

joining them. This technique is better than random 

oversampling, which creates duplicate instances of a 

minority class that do not add any new information. 

• Cost-Sensitive Learning: In cost-sensitive learning 

(Zadrozny, Langford, & Abe, 2003), we penalize the 

learning algorithm by increasing the cost of the 

classification mistake on the minority class. Because we 

have a class imbalance of about 90:1, we penalize the 

algorithm 90 times more if it wrongly classifies the 

faulty data as healthy.  

To build bearing failure prediction models, we selected four 

algorithms: logistic regression (McCullagh & Nelder, 1989), 

random forest (Liaw & Wiener, 2002), extreme gradient 

boosting (XGBoost) (Chen & Carlos, 2016), and long short-

term memory (LSTM) networks (Hochreiter & Schmidhuber, 

1997), which have the lowest to highest complexity, 

respectively.      

Logistic regression is a linear classifier that finds a 

hyperplane in a feature space to separate observations 

according to their classes. The logistic regression transforms 

the output of a linear function using a logistic sigmoid 

function, such that it results in the probability value that can 

be mapped to a specific class. We utilize a logistic regression 

algorithm to find a linear boundary between healthy and 

faulty wind turbine data.  

Random forest is an ensemble learning method that 

combines the outputs of a large number of decision trees and 

finds a nonlinear boundary in the feature space to separate 

classes. A decision tree is considered as a weak learner and 

often results in overfitting. In a random forest algorithm, 

decision trees are grown using only a random subset of 

features that reduces correlation among them. The final 

prediction of the observation is based on the voting of all 

decision trees, which outperforms any single decision tree 

and accounts for errors made by some.  

XGBoost is a decision-tree-based ensemble algorithm. It 

uses a gradient-boosting framework in which decision trees 

are grown sequentially by accounting for errors made by prior 

ones. XGBoost also finds the nonlinear boundary in a feature 

space among classes. Further, it is better than other boosting 

algorithms, as it is optimized via parallel processing, tree-

pruning, and regularization to avoid bias and overfitting.  

LSTM is an artificial, recurrent, neural network architecture 

that is used to learn order dependence of sequential data. One 

LSTM unit contains input, output, and forget gates, which are 

used by a model to remember previous values. LSTM is 

considered to be the state-of-the-art algorithm for time series 

classification, as it efficiently accounts for the lagged values 

and is able to capture any underlying pattern in the sequential 

data. We utilize an LSTM network to predict wind turbine 

bearing failure at any given time using the past 1 month of 

sequential data.  

SMOTE and most of the existing sampling techniques cannot 

consider the temporal structure of multivariate sequential 

data. Because LSTM handles imbalanced data and learns to 

classify accurately with correct cost function, we use only 

cost-sensitive learning to train LSTM models.  

The gearbox bearing failure does not happen instantaneously 

and recent historical data are also very helpful for 

prognostics. Logistic regression, random forest, and 

XGBoost evaluate data points at a given time without 

bringing forward information from the past. Therefore, we 

add lagging variables of SCADA channels up to 30 days 

while training these models. These lag values are used to 

capture any underlying pattern in the last 1 month before the 

bearing failure. LSTM models inherently handle a sequence 

of past observations as an input; therefore, we do not add lag 

variables while training them.  

All four algorithms are trained and tested using the following 

two sets of data. The list of final features is also shown.   

1. SCADA data: Daily summary statistics of power, wind 

speed, rotor speed, bearing temperature, oil temperature, 

and nacelle temperature; daily number of data points 

lying in power curve Region 1’, Region 2’, and Region 

3’. 
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2. SCADA data and bearing-specific modeled data: 

Daily summary statistics of power, wind speed, rotor 

speed, bearing temperature, oil temperature, nacelle 

temperature, bearing load, slide-to-roll ratio, frictional 

energy intensity, and frictional energy; daily number of 

data points lying in power curve Region 1’, Region 2’, 

and Region 3’. 

To compare the performances of algorithms it is important to 

choose the right evaluation metric. For a typical binary 

classification model, a confusion matrix is normally used to 

evaluate its performance (shown in Figure 6).   

 

Figure 6. Confusion matrix. 

The confusion matrix terms are defined as follows: 

• True Negatives: Correct predictions of “Healthy” class 

samples 

• False Negatives: “Faulty” class samples incorrectly 

predicted as “Healthy” (i.e., “missed alarms”)  

• True Positives: Correct predictions of “Faulty” class 

samples 

• False Positives: “Healthy” class samples incorrectly 

predicted as “Faulty” (i.e., “false alarms”). 

Because we have a class imbalance, standard metrics such as 

accuracy and error rate are biased toward the data with the 

majority class. We rely on precision, recall, F1 score, and 

area under receiver operating characteristic curve (AUC) to 

evaluate all models in this study.  

We can calculate precision, recall, and F1 score using the 

formulas shown in Table 5. We consider the turbine’s last 1 

month of data as positives and earlier data as negatives. 

Precision is used to minimize false alarms, whereas recall is 

used to minimize missed alarms. As the bearing’s failure cost 

is high, we would prefer high recall with very few missed 

alarms. However, there is a trade-off between precision and 

recall, and an increase in recall comes at a cost of a decrease 

in precision. If there is less precision in a prediction model, 

we get many false alarms. Because gearbox bearings are not 

easily accessible, inspecting false alarms costs a lot as well. 

Therefore, we also use the F1 score to evaluate the overall 

performance of a prediction model, as it is a harmonic mean 

of precision and recall.  

AUC is the area under receiver operating characteristic-ROC 

(Fawcett, 2004) curve. A ROC curve is a probabilistic curve 

that illustrates the trade-off between true positive rate (TPR) 

and false positive rate (FPR) at various classification 

thresholds. TPR and FPR can be calculated using formulas 

given in Table 5. The AUC provides a summary of the 

model’s performance using a single number and it shows the 

model’s ability to distinguish between positive and negative 

classes. The AUC can be between 0.5 and 1, and the higher 

the AUC, the better the model. When the AUC is 0.5, the 

model does not have class separation capacity. Since AUC is 

threshold-independent, it quantifies the model’s performance 

holistically and we can utilize it to compare different models.  

Table 5. Metrics. 

Metric Formula 

Precision TP/(TP + FP) 

Recall or TPR TP/(TP + FN) 

F1 score 2 × Precision × Recall/(Precision + Recall) 

FPR FP/(FP + TN) 

We adopt the best or recommended practices in the model 

development processes. To build logistic regression and 

random forest models, we use the Scikit-Learn library 

(INRIA, 2018), and use the XGBoost library (DMLC, 2019) 

for XGBoost models. Logistic regression, random forest, and 

XGBoost use a number of hyperparameters. We performed a 

randomized grid search to select the optimum 

hyperparameters that yield the best results using F1 score as 

a scoring metric. To build LSTM models, we used the keras 

library (Chollet et al., 2015), which is a deep learning 

framework. The LSTM models have two hidden layers, with 

50 and 25 nodes in each, respectively. To determine a number 

of hidden nodes in each layer, we used a trial-and-error 

method. Because LSTM models are prone to overfit, we 

added two layers of dropout, with a 50% dropout rate to avoid 

overfitting. Based on the highest accuracy on validation data, 

we selected a final architecture.  

4. RESULTS 

Table 6 and Table 7 summarize the performances of models 

built using SMOTE and cost-sensitive learning as a class-

balancing technique, respectively. We compare these two 

methods to address class imbalance in the data. The best 

method to remedy class imbalance is highly dependent on the 

data set (Weiss, McCarthy, and Zabar, 2007) and in this 

problem, cost-sensitive learning performs slightly better than 

oversampling using SMOTE for most of the algorithm and 

data combinations. As observed in Table 7, logistic 

regression models have the highest recall of 0.86 (SCADA 

data) and 0.85 (both SCADA and modeled data) with cost-

sensitive learning, whereas LSTM networks have the highest 

precision of 0.52, F1 score of 0.57, and AUC of 0.97 using 

both SCADA and modeled data. Because the F1 score is a 
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harmonic mean of precision and recall, it is reduced 

significantly by poor precision in all models built using 

logistic regression, random forest, and XGBoost algorithms.  

By adding 1 to 30 days of lag values while training logistic 

regression, random forest, and XGBoost models, feature 

space increases significantly, which results in overfitting 

observed by higher performance on training data and lower 

performance on test data. The reason for poor performance of 

logistic regression models might be that the data are not 

linearly separable. For tree-based models such as random 

forest and XGBoost, it has been observed that their 

performance is compromised in high-dimensional data 

(Jiang, Cui, Zhang, & Fu, 2018; Nguyen, Huang, & Nguyen, 

2015). LSTM models are preferred for prognostics problems, 

as they can store the information about the recent historical 

data well and exploit the time dependency between them. 

Although LSTM models perform better, they do not offer 

model interpretability and feature importance. LSTM models 

also require a large amount of data and they are more 

computationally expensive.

Table 6. Performance summary of models built using SMOTE. 

 

Model Algorithm Data 
Model Performance 

Precision Recall F1 Score AUC 

1 
Logistic regression 

SCADA 0.10 0.80 0.18 0.90 

2 SCADA + modeled 0.11 0.79 0.19 0.91 

3 
Random forest 

SCADA 0.08 0.70 0.14 0.79 

4 SCADA + modeled 0.10 0.69 0.17 0.84 

5 
XGBoost 

SCADA 0.10 0.73 0.18 0.89 

6 SCADA + modeled 0.11 0.72 0.19 0.90 

 

Table 7. Performance summary of models built using cost-sensitive learning. 

 

 

 

 

 

 

 

 

 

 

Our aim is to improve current gearbox bearing axial failure 

prognostic methods by adding modeled data that capture a 

bearing’s fault signature to existing SCADA data. The results 

show that, for all four algorithms investigated with cost-

sensitive learning, when modeled data are added, precision is 

improved, which increases the F1 score. The modeled data 

help reduce the number of false alarms by sacrificing 

relatively less recall. The overall system performance is also 

improved by an increase in AUC score.  

We can visualize the performances of all models on unseen 

test data using the confusion matrix and ROC curves. Figure 

7 and Figure 8 show the performance of LSTM models built 

using only SCADA data and modeled data along with 

SCADA data, respectively. When modeled data are used, we 

can see that performance is improved, as evidenced by the 

number of false alarms reduced from 105 to 52, about 50% 

improvement. By referring to the metrics in Table 7, the 

improvement in terms of precision is about 33%, and the 

sacrifice in terms of recall is about 17%, leading to an 

improvement in F1 score by 12% and in AUC by about 6%. 

Model Algorithm Data 
Model Performance 

Precision Recall F1 Score AUC 

1 
Logistic regression 

SCADA  0.11 0.86 0.22 0.88 

2 SCADA + modeled 0.13 0.85 0.23 0.91 

3 
Random forest 

SCADA  0.12 0.58 0.20 0.82 

4 SCADA + modeled 0.14 0.57 0.22 0.85 

5 
XGBoost 

SCADA  0.12 0.72 0.20 0.90 

6 SCADA + modeled 0.13 0.71 0.22 0.91 

7 
LSTM 

SCADA  0.39 0.75 0.51 0.92 

8 SCADA + modeled 0.52 0.62 0.57 0.97 
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Figure 7. Performance of LSTM model built using SCADA data. 

 

Figure 8. Performance of LSTM model built using SCADA and modeled data. 

5. CONCLUSION 

This study shows the potential of bearing-specific data 

computed using physics-based models and gearbox design to 

improve the existing bearing failure prognostics techniques 

that use only SCADA data. The modeled data help to reduce 

false alarms significantly and improve F1 score and overall 

AUC, about 50%, 12%, and 6%, respectively, in the best 

performing modeling case of this study. As there is a trade-

off between precision and recall, the optimum model should 

be chosen by tuning the classification threshold on the ROC 

curve and considering the cost associated with missed and 

false alarms. In this study, we build a generalized model that 

can predict failure of any high-speed or intermediate-speed 

shaft bearing caused by axial cracking. However, overall 

performance can be improved if we make individual models 

for each bearing using SCADA and modeled data. We do not 

know when the bearing cracks start developing until they are 

visually detectable or through dedicated condition 

monitoring solutions. In this study, we try to detect signals in 

the last 1 month before a failure is assumed to have occurred 

when the bearing is replaced. Therefore, another area to 

further study this work would be to find the optimal time 

window to predict failure onsets of bearings that are deemed 

physically detectable and cost effective to support optimized 

maintenance decision-making.  
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