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ABSTRACT

Machine learning algorithms for early fault detection of wind
turbines using 10-minute SCADA data are attracting attention
in the wind energy community due to their cost-effectiveness.
It has been recently shown that convolutional neural networks
(CNNs) can significantly improve the performance of such
algorithms. One practical aspect in the deployment of these
algorithms is that they require a large amount of historical
SCADA data for training. These are not always available,
for example in the case of newly installed turbines. Here we
suggest a cross-turbine training scheme for CNNs: we train
a CNN model on a turbine with abundant data and use the
trained network to detect faults in a different wind turbine for
which only little data are available. We show that this scheme
is able to considerably improve the fault detection perfor-
mance compared to the scarce data training. Moreover, it is
shown to detect faults with an accuracy and robustness which
are very similar to the single-turbine scheme, in which train-
ing and detection are both done on the same turbine with a
large and representative training set. We demonstrate this for
two different fault types: abrupt and slowly evolving faults
and perform a sensitivity analysis in order to compare the
performance of the two training schemes. We show that the
cross-turbine scheme works successfully also when training
on turbines from another farm and with different measured
variables than the target turbine.

1. INTRODUCTION

A central challenge in training algorithms to detect and di-
agnose faults in technical systems lies in the fact that critical
faults are very rare and are often very specific in character.
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This is true also in the case of fault detection on wind tur-
bines. A standard approach is therefore to train fault detec-
tion algorithms that do not rely on the exact nature of faults,
but rather extract information from turbines under normal
non-faulty conditions, also known as normal state modeling
(Stetco et al., 2019; Schlechtingen & Santos, 2014). After
training with normal data only, the algorithm is used for on-
line detection, in which deviations from normality manifest
in high prediction errors. In order to detect incipient faults
such deviations from normal behavior should be detected as
early as possible.

The conventional approach for fault detection of wind tur-
bines is a single machine approach (Tautz-Weinert & Wat-
son, 2016; Leahy et al., 2016; Fu et al., 2019; Kong et al.,
2020). A machine learning model is trained using data from
a specific turbine, measured during normal behavior (healthy
data). During training, the model is trained to recognize the
normal behavior of a selected target variable. Provided with
enough representative data, the model learns to predict ac-
curately the target variable of unseen test data, assuming it
originates from the same turbine in its healthy functioning
state. However, when the turbine state is degraded, we expect
the prediction of the trained network to deviate from the mea-
sured value. The deviations, or prediction errors can therefore
be used as a “health index (HI)” for an early detection of in-
cipient faults.

This approach is only applicable for turbines which are in
operation for long enough to accumulate sufficient represen-
tative data. It cannot be applied to newly installed turbines, or
turbines for which data are missing due to a technical reason.
A scalable practical deployment of fault detection algorithms
for wind turbines requires a solution to this problem.

The problem of little or no training data and the need to use
fleet information for fault detection has been intensely dis-
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cussed in the fault diagnosis community, as described in re-
cent review articles (Zhao et al., 2019; Lei et al., 2020). Meth-
ods for transfer learning (Wang et al., 2019; Shao et al., 2018;
L. Guo et al., 2018) and domain adaptation (Zheng et al.,
2019; Li et al., 2018) have been developed for fault diagnosis
applications, suggesting how to adapt detection algorithms to
predict faults in a certain machine after being trained on an-
other machine. Most of these methods rely on using high res-
olution (e.g vibration) data. For wind turbine fault detection,
however, there have been only very few attempts to go beyond
the single-turbine approach and transfer data-driven informa-
tion between different turbines. A recent work (Lebranchu et
al., 2019) suggested to exploit farm statistics in conjunction
with single-turbine data to boost the performance of fault de-
tection algorithms based on 10-minute SCADA data. Another
paper uses transfer learning methods for the purpose of wind
power prediction (Qureshi et al., 2017). Transfer learning
neural networks have been used for fault detection based on
wind turbine vibration data (J. Guo et al., 2020), and for the
purpose of ice detection on wind turbines using SCADA data
(Yun et al., 2019), but to the best of our knowledge not for
generic fault detection in various turbine components based
on the already available 10-minute SCADA data.

The possibility to apply trained fault detection algorithms
across various operating conditions has an additional relevant
aspect. Training machine learning algorithms on large fleet
of machines can be costly and can serve as the decisive factor
for operational deployment. The potential of training on only
few wind turbines and using the trained models to predict on
the entire fleet is an additional incentive for transfer learning
for wind turbine fault detection.

In this paper we suggest to apply a simple approach of trans-
fer learning for fault detection of wind turbines based on 10-
minute SCADA data only. The fault detection is not limited to
one fault type and has been tested on multiple components in
the turbine. In particular, we show that a CNN model that was
developed for a single-turbine fault detection purpose (Ulmer
et al., 2020), demonstrates surprisingly high abilities to detect
faults when used in a cross-turbine scheme. This means that
after training the CNN model on a certain turbine, for which
historical data are abundant, we can use the trained network to
predict on another turbine in the same wind farm or in another
wind farm, and still detect its faults early enough and with a
high precision. This cross-turbine scheme includes a rescal-
ing step of the prediction outcomes in order to show a com-
parable performance to the standard single-turbine scheme.
The advantage of the proposed method is twofold: first is its
simplicity, not requiring additional complex network archi-
tectures for domain adaptation which are then costly in terms
of training times. The second advantage lies in the potential
for general application, which goes beyond a specific fault
type or fault location.

Figure 1. CNN architecture.

The focus of this paper is not on showing the superiority of
the CNN architecture over other algorithms. This was argued
in a previous publication (Ulmer et al., 2020). We also note
that the examples we selected for the sake of demonstration
of our method were chosen due to a limited availability of
clearly labeled data. However, extensive testing of the algo-
rithm is at the center of our on-going research.

In the next section we describe the architecture, input and
output of the CNN model which is used in both the single-
and the cross-turbine schemes.

2. ALGORITHM DESCRIPTION

2.1. Network Architecture

In this work we apply a CNN model for time series pre-
diction using a multivariate input. The details of the neu-
ral network can be found in our previous publication (Ulmer
et al., 2020). The target variable y is typically a tempera-
ture of a certain component of the turbine, e.g a generator
bearing, the gearbox oil or the hub temperature. In order to
remain generic, we select a small number of measured vari-
ables from the SCADA system and use them as inputs to the
CNN model: output power, ambient temperature, wind speed
and rotor rpm, denoted by x1, x2, x3, x4. Selecting a small
yet representative set of inputs helps to keep our algorithm
generic and address fault types in as many components as
possible.

The CNN receives multivariate input sequences of dimension
4x144 corresponding to the 4 input variables over a period
of one day: xi(1) . . . xi(t) with i = 1 . . . 4. We generate
the input sequences with a sliding window with a 10 minute
overlap. The network has 4 convolutional layers, with 128 2D
filters each. The time dimensions of the filters are 32,18,8,8.
Their width is 4, covering the four inputs, see Figure 1.

The last convolution layer is locally connected. The repre-
sentation is then flattened to a fully connected layer of 20
neurons which then connect to a single output. For more de-
tails about the network architecture we refer the reader to our
previous paper (Ulmer et al., 2020). The output ŷ(t) is the
prediction target variable at the end of the 1 day period of the
input sequence. The loss is the squared error between ŷ(t)
and y(t).
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The CNN model yields an output ŷ(t) every 10 minutes. The
prediction error (residuals) time series δ(t) are calculated by:

δ(t) = y(t)− ŷ(t) (1)

2.2. Training Schemes

We distinguish between two training schemes for fault detec-
tion on a target turbine T:

1. Single turbine scheme: a training and validation set from
turbine T are used to train the CNN. The trained CNN is
then used to predict the output variable of turbine T at all
times.

2. Cross-turbine Scheme: training and validation sets from
turbine S (different from T) are used to train the CNN.
The trained CNN is then used to predict the output vari-
able of turbine T at all times. The cross turbine scheme
includes an additional step of rescaling of the prediction
errors, see Algorithm 1. We expect discrepancies be-
tween turbines in the typical normal values of certain in-
put and output variables. We correct for these discrepan-
cies by means of a linear regression of y(t) on the predic-
tion ŷ(t) using data from a short period of three months
(the ”reference set” denoted byR). We assume that such
data are available also for a newly installed turbine after
a time period of several months.

The performance of the proposed CNN model in the standard
single turbine straining scheme has been analyzed in our pre-
vious publication (Ulmer et al., 2020).

Algorithm 1: Algorithm for Cross-Turbine Health Index
Calculation
Result: Health Index h(tw)
Train CNN on turbine S;
if Cross-Turbine Training then

Use trained CNN to predict yT (t) on turbine T;
Calculate residuals δT (t) = yT (t)− ŷT (t);
Linear regression yT (t) ∼ ŷT (t) +XT (t) for t ∈ R

(a small healthy subset);
Rescale residuals δT (t)→ δ(t) using regression

coefficients;
else

Use trained CNN to predict y(t) on turbine S;
Calculate residuals δ(t) = y(t)− ŷ(t);

end
Sliding window mean of δ(t) for tw − 1 < t < tw.

2.3. Post-processing and Threshold Setting

The CNN is trained on healthy data, and is therefore expected
to predict accurately as long as the turbine state is normal. We
thus expect large prediction errors |δ(t)| � 0 only when the
turbine condition deviates from normality, which we aim to
detect as early and accurately as possible. Here we focus on

critical faults which lead to an increased component tempera-
ture, and we therefore aim at detecting the onset time of faults
with a large positive δ(t). To this end we post process the pre-
diction error time series by applying a high power filter fol-
lowed by a sliding window aggregation. As a consequence,
we obtain the time series of HI, h(tw), with one hour time
resolution.

A fault is detected whenever h(tw) > hc, with hc being the
threshold level of the HI. We assign a p-value significance
score to each h(tw) result with respect to the estimated dis-
tribution of the validation set errors N(µ, σ2). The threshold
can then be set using a desired significance level α that is re-
lated to the confidence of detection: all points with a p-value
smaller than the fixed significance level α are highly unlikely
to be drawn from the healthy error distribution and are de-
clared as faulty (see for example Clifton et al., 2008). In the
cross-turbine case, we use the reference set R instead of the
validation set for the purpose of threshold setting.

3. RESULTS AND DISCUSSION

In this section we present an evaluation of the cross-turbine
scheme. In order to do this, we detect faults on test cases
of two target turbines A0 and B0. To emulate a situation of
low data availability we intentionally use only a small part of
data from the target turbines when training on other turbines
in the cross-turbine scheme. The smaller data sets from the
target turbines A0 and B0 are then only used at the rescaling
step. To evaluate the cross-turbine scheme we compare the
results to a single-turbine training scheme under two oppo-
site scenarios: in the ”limited data” scenario we use the stan-
dard single turbine scheme with only three months of data. In
the ”Baseline” scenario we emulate the ideal case, in which
there is indeed enough (in this case 9 months of) training data
from both A0 and B0, such that the cross turbine scheme
is not required and one could resort to the usual single tur-
bine scheme. In practice, however, we apply the cross-turbine
scheme to wind turbines with little historical data for which
the single turbine scheme does not perform well enough.

In the following we present the comparison of fault detection
between the standard single-turbine training and the cross-
turbine training scheme. We demonstrate the comparison on
two fault types in two different wind farms. on Turbine A0

two faults with an abrupt time evolution have been detected.
This means that early signatures of an abnormal condition
can develop within hours, but still lead to a turbine stoppage
several weeks or months later. On Turbine B0, on the con-
trary a slow condition degradation over several months was
observed, and eventually led to a turbine stoppage. The goal
of early fault detection in both cases is to detect the abnor-
mality signatures or the degradation as early and accurately
as possible.

It is important to point out that we apply two different evalua-
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Figure 2. predicted and observed target variables in a stan-
dard single-turbine scheme with enough representative data.
(a) Generator bearing temperature in turbine A. Grey dashed:
true fault initiation. Black dashed: true turbine stoppage. (b)
Main bearing temperature in turbine B.

tion criteria for these two cases. In the case of turbine A0 we
had access to information that allowed us to label an entire pe-
riod as ”faulty”. In this case it is possible to use the standard
evaluation metrics such as recall and precision. However, for
turbine B0 labels were not available. In this case we inferred
the degradation directly from the data, and evaluate different
schemes according to their ability to detect the degraded state
as early as possible. We therefore compare the first detec-
tion date of the various schemes. This criterion is particularly
relevant for slowly evolving faults, and less for abrupt faults
such as the ones observed for turbine A0.

3.1. Detecting Abrupt Faults

Figure 2(a) displays the measured and predicted values of the
generator bearing temperature of wind turbine A0 over a pe-
riod of about 2 years. The first 9 months of data from A0

were used for training and validation and the rest for testing
(standard single-turbine training with a large data set).

Figure 3 shows the calculated health indices for the gener-
ator bearing temperature h(tw) in degrees Celsius in each
available time window. The color code denotes the selected
threshold, in this case parameterized by α = 0.0001 in all
panels. All red colored points in the plots indicate a detected
faulty behavior. For this turbine we had access to “true labels”
from the operator, indicating the onset of two faults, followed
by their actual detection time by the staff on site. The first one
(f1) started showing up 9.12.2017 and lead to a complete tur-
bine stoppage on the 30.1.2018. The second fault (f2) started
on the 20.3.2018, causing a stoppage on the 5.4.2018.

Figure 3(a) shows the results of training and predicting on the
same turbine, A0 in the ”Limited Data” scenario, in which
only three months of data are available for training the CNN
model. This should first be compared with the ideal ”Base-
line” scenario of panel 3(b) in which a large data set of 9

months can be used for training. As expected, when train-
ing on a small data set, the prediction errors and thus the
extracted health indices are much noisier, whereas training
with 9 months allows for a much clearer distinction between
healthy and faulty periods. From the color code of these
two plots it is clear, that the detection with little training
data is less precise (not all faulty points are above the detec-
tion threshold) and suffers from more false positives (some
healthy points are detected as faulty). In order to achieve a
high detection quality, while using only three months of data,
we apply the cross-turbine scheme, thereby training on large
data sets from other turbines and rescaling the results using
the three months reference set of turbine A0.

The results of the cross-turbine training are displayed in pan-
els (c) to (g). Figures 3(c) and (d) show the results when
training on large data sets (of 9 months) from turbines A1

and A2 from the same wind farm, and using the trained CNN
to predict with the data of turbine A0 and detect its faulty
behavior. Panels (e) and (f) show the results when training
on turbines B0 and B1 from a different wind farm than the
target turbine A0, but using the same variable (the genera-
tor bearing temperature) as output when training the CNN. In
Panel (g) the training was done using a different output vari-
able (the main bearing temperature) with turbine B0 from the
other wind farm.

The cross-turbine results in Fig. 3(c)-(g) show that the two
faults in turbine A0 would be successfully detected by the
CNN model, not only when trained with enough representa-
tive data from the very same wind turbine A0 but also when
trained on similar amounts of data from turbine A1 or A2

from the same wind farm. Moreover, the transfer learning is
possible also when training on similar turbinesB0 orB1 from
another wind farm in another geographical location, and even
training with another target variable yields a health index of
a similarly high ability to identify faulty behavior. The ad-
vantage of the cross-turbine training scheme over the single
turbine training in the case of only little data (panel (a)) is
clearly demonstrated in this Figure.

3.1.1. Detection Performance Evaluation

The above results can be quantified by measuring the detec-
tion performance against true labels. Here we label the en-
tire period between fault initiation and turbine stoppage as
“faulty”. This applies for both faults f1 and f2. The rest
of the data is labeled as “healthy”. High performance cor-
responds to detecting a maximal fraction of the faulty time
windows (True Positives or TP) with a minimal false positive
(FP) rate. We introduce the following performance metrics:

• Time of first detection. Earliest time window tw for
which

h(tw) > hc (2)
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Figure 3. Health index for detection of abrupt faults in the generator bearing temperature of turbine A0 using training data
from turbine (a) A0 in the single turbine scheme with limited training data (b) A0 in the single turbine Baseline scheme with
abundant data (c) A1 in cross-turbine scheme (d) A2 in cross-turbine scheme (e) B0 in cross-farm scheme (f) B1 in cross-farm
scheme (g) B0 in cross-farm with the Main Bearing Temperature (MBT) as target variable.

• Recall:
Recall =

TP

TP+ FN
(3)

• Precision:
Precision =

TP

TP+ FP
(4)

• F1 score:

F1 = 2 · Recall ·Precision

Recall+Precision
(5)

Table 1 summarizes the comparison between the different
training schemes based on the above measures with a detec-
tion threshold of α = 0.0001. The first line in the table dis-
plays the performance scores for a ”Limited data” scenario,
that is, assuming that only three months of data of turbine A0

(the reference set) are available for training. As expected, we
observe considerably lower recall, precision and F1 scores
than if we use 9 months of training data as in the Baseline
scheme. This is a direct consequence of the lack of represen-
tative training data when it is based only on one season of the
entire year. The Baseline single-turbine scheme in turn yields

the highest scores of all. However, the performance scores
when training on turbine A2 with an appropriate rescaling,
are remarkably close to the baseline scores. Training on tur-
bine A1 yields slightly lower recall and precision than the
baseline, hinting at some turbine specific properties that are
not captured by the CNN model and cannot be corrected for
by the rescaling algorithm suggested above. In this case, a
more elaborate scheme of transfer learning may improve the
performance. Interestingly enough, the performance scores
are not necessarily lower when the source turbine on which
we train is in another wind farm, and even when we use the
main bearing temperature (MBT) of B0 during training and
detect faults in the generator bearing temperature of turbine
A0. The main point here is that with limited data from the
target turbine A0, all cross-turbine training sets perform con-
siderably better than a single-turbine training which relies on
this very same data.
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Table 1. Scheme comparison for abrupt fault detection in tur-
bine A0

Scheme Train on Recall Precision F1

Limited data A0 0.62 0.83 0.71
Baseline A0 0.96 0.98 0.97
Cross-turbine A1 0.95 0.92 0.93
Cross-turbine A2 0.96 0.97 0.96
Cross-farm∗ B0 0.94 0.95 0.94
Cross-farm∗ B1 0.92 0.98 0.95
Cross-farm∗ B0 (MBT∗∗) 0.96 0.93 0.95

∗Cross-turbine scheme trained on a turbine from a different farm.
∗∗Main Bearing Temperature as target variable.

3.1.2. Sensitivity Analysis

In order to systematically investigate the robustness and sen-
sitivity of fault detection with different training schemes we
perform a detailed sensitivity analysis. The performance
scores are typically dependent on the choice of threshold. A
higher detection threshold leads to a higher precision and a
lower recall rate. This is demonstrated in Figure 4. The fig-
ure illustrates the sensitivity of the scores towards the desired
confidence level C, defined in terms of the threshold α as

C = − log10 α (6)

Setting a a smaller threshold α is equivalent to requiring an
exponentially higher confidence C of the fault detection. Fig-
ure 4(a) and (b) show clearly that standard single turbine
training with limited data (solid grey) suffers from poor per-
formance scores throughout the entire range of confidence
levels. Moreover, the scores are highly sensitive to the thresh-
old choice. This stands in natural contrast to the case of sin-
gle turbine Baseline training, where enough training data is
used. Here the detection performance is also high compared
to most of the cross-turbine training sets. Figure 4(a) shows
that the recall of the Baseline (single-turbine) training (solid
black) is somewhat higher than the one achieved when train-
ing on another turbine, whether inside or outside the farm.
Here we see that cross-turbine training on another target vari-
able than the predicted one (dark red thin diamonds) is more
prone to missing detections at high confidence. Figure 4(b)
displays the detection precision as function of the confidence
score. Here as well, there are only minor differences between
single-turbine training with large data sets and cross-turbine
training for the case of limited data. The precision (reflect-
ing the False Positive rate) is sensitive to the cross-turbine
training mainly in the low-confidence regime, where we al-
low for some false positives by lowering the threshold for de-
tection. In this case the single-turbine scheme suffers less
from false positives than the cross-turbine scheme. More im-
portantly, the performance scores of the baseline scheme are
slightly more stable against changing the detection threshold
(or the confidence level) than the scores of the cross-turbine
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Figure 4. Sensitivity analysis for abrupt fault detection in the
generator bearing temperature of Turbine A0. Dependence of
the (a) Recall and (b) Precision scores on the desired con-
fidence level C = − log10 α for seven training configura-
tions: Single-turbine training on Turbine A0 itself, with lim-
ited data or in the Baseline scheme (abundant data); cross-
turbine training on Turbine A1 or A2 from the same farm;
cross-turbine training on turbine B0 or B1 from a different
farm, cross-turbine training on B0 with a different output
variable Main Bearing Temperature (MBT). The training sets
are denoted in the legend with the corresponding source tur-
bine.

scheme in these examples. However, when comparing all
cross-turbine results with the single turbine case with limited
data, the advantage of using the cross-turbine scheme is clear:
the performance and robustness of all cross-turbine training
sets is closer to the ideal single turbine Baseline (solid black)
than to the limited data set (solid grey).

The analysis of the above example of detection of an abruptly
evolving fault demonstrates a very successful transfer of the
learning ability of the CNN model between different turbines.
Moreover, the learning is transferred also from turbines in
a different wind farm and even when training the network
to predict another target variable such as the main bearing
temperature while detecting faults of the generator bearing
temperature.
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Figure 5. Health index for detection of slowly degrading faults in the main bearing temperature of turbine B0 using training
data from turbine (a) B0 in the single turbine scheme with limited training data (b) B0 in Baseline or single turbine scheme
with abundant training data (c) B1 in cross-turbine scheme (d) B2 in cross-turbine scheme.

3.2. Detecting Slow Degradation

In order to test the applicability of the cross-turbine training
scheme with our CNN model, we discuss a second example
of turbine B0 in a different wind farm. Here the time evo-
lution of the faulty condition is slow, over months instead of
hours as in the previous example. A fault was detected by our
algorithm in the main bearing temperature and verified with
the farm operator in retrospect. Below we demonstrate the
possibility to train the CNN with data from a wind turbine
from the same farm, Turbine B1 or B2, in order to detect the
slowly degrading condition of Turbine B0 as early as possi-
ble.

Figure 2(b) shows the raw measured temperature and the pre-
dicted values of the generator bearing of wind turbineB0 over
a period of about 3 years. The first 9 months of data from tur-
bine B0 were used for training and validation and the rest for
testing (”Baseline” single-turbine scheme for large represen-
tative training data).

Figure 5 shows the resulting health index h(tw) in degrees
Celsius for each time window. Figure 5(a) shows the results
of training and predicting on the same turbine B0 with only
limited training data of 3 months. The results can be con-
trasted with the one of panel (b) of this figure, which displays
the Baseline results of training and predicting on B0 using a
large data set of 9 months. Clearly, the prediction errors and
thus the extracted health indices in the limited data case suffer
from a lower signal to noise ratio, leading to a later detection
time. The cross-turbine scheme is examined in Figures 5(c)
and (d). In these cases training was performed on large data

sets (similar to the Baseline) from turbinesB1 andB2 respec-
tively, and using the trained CNN to predict with the data of
turbine B0 in order to detect its faulty behavior. It is seen
that cross-turbine training on either turbine B1 (panel (c)) or
B2 (panel (d)) yields comparable results to the ones on panel
(b), where both training and detection are on the same turbine
B0 with enough representative training data. These allow for
a considerably clearer and earlier fault detection than in the
limited data case of panel (a).

3.2.1. Detection Performance Evaluation

In order to quantify the detection performance for the slowly
degrading fault we could not use true labels and we there-
fore compare the date of first detection among the four cases.
Some results are summarized in Table 2. As an example, we
set the detection threshold on α = 0.0001(C = 4) and exam-
ined the different detection dates when training onB0,B1 and
B2. We compare these results to the ”Limited data” scenario
in which the CNN is trained only with the three months of
the reference set of B0. As expected, training with little data
leads to lower signal-to-noise ratio of the health indices and
thus to a much later fault detection compared to the Baseline
training scheme with 9 month of data. Comparing the latter
to the cross-turbine scheme with B1 and B2, we do observe a
clear advantage of the Baseline scheme, where we train with
abundant data and detect on the same turbine, and could de-
tect first faulty signatures already mid-August 2017. When
training on B1 or B2 the detection with the same confidence
level is postponed by about six or three weeks respectively.
This, however is still some 8 months earlier than what one
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could achieve with only limited data from B0 without using
the cross-turbine scheme.

Table 2. Scheme comparison for slowly evolving fault detec-
tion in turbine B0

Scheme Train on First detection First detection
(α = 0.0001) high confidence

Limited data B0 20.04.18 16:00 20.07.18 16:00
Baseline B0 15.08.17 17:00 09.09.17 18:50
Cross-turbine B1 30.09.17 14:20 30.09.17 14:20
Cross-turbine B2 09.09.17 14:20 10.09.17 17:20

3.2.2. Sensitivity Analysis

We perform a sensitivity analysis for the second fault type, in
order to compare the detection performance and robustness
among the various training sets. Here we test the dependence
of the earliest detection date on the desired confidence levelC
(or equivalently the threshold value α = 10−C). The results
are displayed in Figure 6. The different curves correspond to
the four training sets B0 Limited data (black diamonds), B0

Baseline (blue squares), B1 (red circles) and B2 (yellow tri-
angles). Higher confidence levels naturally lead to a later (but
more certain) detection in all four cases. Using a small data
set in a standard single turbine training scheme leads to either
false detections (often too early) at low confidence levels or
late detections at higher confidence levels.

Cross-turbine Training with data from turbines B1 or B2

clearly enables early detection of the degraded state of tur-
bine B0 in case only little data from B0 is available. The de-
tection is naturally not quite as early as if trained with a large
data set from the same turbine, if such data is available, but
the profit in using the cross-turbine training is clearly demon-
strated. The accuracy is lost especially if we lower the de-
tection threshold and aim at a low or intermediate confidence
level, thus allowing for some level of false positives in order
to detect faults as early as possible (these false positives can
be eliminated in a later stage of aggregated thresholding or
some process control logic). For very high confidence levels,
training with turbine B2 yields as accurate, early and stable
fault detection as with the original turbine B0.

The conclusion from analyzing the results for detection of
slowly degrading faults is that the CNN model with cross-
turbine training in case of limited training data performs very
well and rather similarly to the standard single-turbine train-
ing with a large data set. Compared to a single-turbine train-
ing with only little data, the cross-turbine scheme offers a
considerable improvement concerning the earliest fault de-
tection time. The cross-turbine scheme can thus be used as
an alternative to the standard training scheme in case of lim-
ited data for the target turbine. However, the choice of the
source turbine, i.e the turbine used for training, can influ-
ence to some extent the accuracy and reliability of the detec-
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Figure 6. Sensitivity analysis for detection of slowly evolving
faults. Dependence of the first detection date on the desired
confidence level C = − log10 α for the 4 schemes: Limited
data (trained on Turbine B0), Baseline (trained on Turbine
B0), cross-turbine trained on Turbine B1, and cross-turbine
trained on Turbine B2.

tion. How to select the source turbine (or perhaps turbines)
in a smart way is an important question that goes beyond the
scope of the present paper and will be investigated by us in a
separate work.

4. CONCLUSION

We used a new CNN architecture that we developed previ-
ously (Ulmer et al., 2020) for early fault detection based on
10-minute SCADA data of wind turbines. The CNN was
originally developed for the standard single-turbine fault de-
tection scheme, that is, training it with historical SCADA data
from a certain turbine in order to detect faults of the same
turbine. Here we extend the usage of this CNN model to a
cross-turbine scheme. We train the model on a certain turbine
S, and use the trained network for on-line fault detection of
a different turbine T from the same wind farm. The cross-
turbine algorithm includes a post-processing step of rescaling
of residuals in order to compensate for turbine differences.
This step requires only a small reference data set from the tar-
get turbine T. We tested the performance of the cross-turbine
scheme on two fault types in different wind farms: abrupt
faults and slow degradation. We showed that:

• The CNN model is able to detect incipient faults reli-
ably and accurately when used in a cross-turbine train-
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ing scheme. This means that one can train the CNN on a
turbine for which historical data are abundant and use the
trained network to detect faults early and with high preci-
sion on another turbine in the wind farm for which there
are very little data. This is particularly useful for newly
installed wind turbines in already existing wind farms.

• Training our CNN model in the cross-turbine scheme
shows a considerable improvement in the detection ac-
curacy compared to the single-turbine training with only
limited data. At the same time, it shows almost no infe-
riority to training it with the single-turbine scheme with
a large and representative data set. This is observed for
diverse fault types: abrupt and slowly evolving in differ-
ent components (generator or main bearing) and different
wind farms. The faults were detected as early and with a
similar confidence level and robustness as in the single-
turbine-large-data case.

• The cross-turbine scheme works well also across wind
farms and target variables: we can train the CNN on a
turbine in one wind farm and detect faults with high ac-
curacy in a turbine of a similar model in another farm,
even if the CNN was trained to predict a temperature of
a different component than the one we detect faults on.
We believe that this is a demonstration of the robustness
of our CNN model.

• In this work we have demonstrated the potential of a
CNN followed by a simple transformation of the residu-
als to overcome the problem of training data availability
for specific turbines or wind farms. In our future research
we intend to test the performance of the cross-turbine al-
gorithm on a large set of turbines from various farms and
demonstrate the universality of our method, as well as
deal with the practically relevant question of selecting an
appropriate source turbine. One important advantage of
our approach is its simplicity and its low computational
load compared to standard transfer learning approaches.
As a result, the algorithm is already being used in a com-
mercial software. A detailed comparison with other ap-
proaches is the subject of our on-going research.
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