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ABSTRACT 

Prognostics and health management (PHM) include 

comprehensive engineering approaches that evaluate the real-

time health condition of an asset and predict its future states 

under the actual operating conditions. There are two main 

concepts in PHM: diagnostics and prognostics. Detection, 

isolation and identification of faults are done by diagnostics, 

while prognostics is concerned with predicting future fault 

progression of a system by assessing the extent of deviation 

from its expected normal operating conditions. Mechanical 

fatigue phenomenon that causes crack initiation and 

propagation is considered to be a common reason for failure 

in mechanical parts. The current paper studies mutual effects 

between the fatigue crack propagation and vibrations of an 

unbalanced rotor. At the first step, the coupled equations of 

rotor motion and crack growth are obtained. The Paris–

Erdogan law is used for crack growth modeling and the 

Jeffcott model is used for the rotor. The coupled equations 

are solved numerically using the Runge–Kutta method. The 

mutual effects between cycles of loading, excitation 

frequency and crack growth rate are demonstrated for high 

cycle and low cycle loadings using numerical simulations. 

The outputs of the model show the importance of considering 

coupling between the dynamic response and crack growth for 

fatigue degradation modeling. The proposed model is capable 

of calculating the instantaneous crack depth for a given rotary 

system within a range of excitation frequency and loading 

cycles. In addition, it can model rotor degradation evaluation 

that is of significance in future state estimation, prognostics, 

and lifetime prediction of rotating systems. 

1. INTRODUCTION  

Planning an effective maintenance strategy is crucial for 

safety of mechanical systems. The maintenance strategies 

have historically changed from post-failure repair to 

preventive maintenance to Condition Based Maintenance 

(CBM). Unlike the first two strategies, CBM is a cost-

effective maintenance approach that makes maintenance 

decisions only when needed. Recently, CBM has been 

suggested for many advanced mechanical systems with high 

reliability requirements (Kim, An, & Choi, 2016).  

Prognostics and Health Management (PHM) are the primary 

concepts to aid CBM. PHM includes engineering approaches 

for real-time health assessment of a mechanical asset under 

real operational conditions and predicts the system states 

evolution based on online data captured form the system. 

Diagnostics, as the first step in PHM, is concerned with 

detection, isolation and identification of faults, while 

prognostics is concerned with predicting the future fault 

progression and degradation evolution when the captured 

data shows deviation from ideal operating conditions 

(Goebel, Daigle, Saxena, Sankararaman, Roychoudhury, & 

Celaya, 2017).  

Mechanical fatigue phenomenon that causes crack initiation 

and propagation is considered to be one of the most common 

reasons for failure in engineering systems. Rotating 

machineries like compressors, turbines, pumps and 

expanders are under high risk of such fatigue failures due to 

long runs with rotating motion. Crack initiation and 

propagation can strongly affect the nonlinear dynamics of a 

rotating system due to major structural changes that it brings 

about (Schijve, 2001). Hence, modeling the dynamics of a 

rotating system under the effects of crack propagation is 

arguably a crucial step in its future state estimation, 

prognostics and life prediction. Notable research in this area 

are addressed in the following.  
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A literature review by Wauer (1990) on dynamics of cracked 

rotating systems can be considered as an early work in this 

area. Dimarogonas (1996) reviewed dynamics of cracked 

structures with focus on rotors. Nelson and Nataraj (1986) 

analyzed the dynamics of a rotor-bearing system with a 

transversely cracked rotor. The effects of crack presence on 

dynamics of the system and consequent stiffness variation 

and parametric excitation were studied. Papadopoulos (2008) 

proposed the strain energy release method for obtaining the 

stiffness coefficients in cracked rotating systems. Kumar and 

Rostagi (2009) presented a review on approaches applied to 

modeling dynamics of cracked rotating systems. The major 

part of related research focused on modeling the cracked 

rotating systems under negligible crack growth assumption 

(Darpe, Gupta, & Chawla, 2004; Ebrahimi, Heydari, & 

Behzad, 2017; Palacios-Pineda, Gómez-Mancilla, Martínez-

Romero, & Elías-Zúñiga, 2017; Papadopoulos & 

Dimarogonas, 1992; Sinou & Lees, 2005). Under this 

assumption, a wide range of research tried to study the effects 

of crack on dynamics of a rotor using numerical analyses 

such as bifurcation, phase portraits and Poincaré maps (Patel 

& Darpe, 2008; Pu, Chen, Zou, & Zhong, 2002; Weiyang 

Qin, Chen, & Ren, 2004; Qin, Meng, & Zhang, 2003; Saeed 

& Eissa, 2018; Yiming, Yufang, & Shijian, 2003). Although 

these studies made notable improvement in modeling of 

cracked rotors, the negligible crack growth assumption 

undermines their effects on PHM advances. These 

approaches include analyses like modeling fault propagation, 

degradation evaluation and future state estimation when the 

system goes under a long period of operation. In such 

conditions, assuming that crack growth is negligible cannot 

be valid. Hence, both short term and long term behaviors of 

the system should be taken into account in modeling. This 

emphasizes the importance of modeling long time 

degradation and short term vibration in a coupled form for 

analyzing cracked rotating systems.  

In the case of coupling nonlinear vibration and fatigue 

induced degradation several studies are worthy of mention. 

Initial research concerned with modeling simple vibratory 

systems under effects of different excitation types and fatigue 

induced stiffness degradation (Sobczyk, Perros, & 

Papadimitriou, 2010; Sobczyk & Trebicki, 2000; Trebicki & 

Sobczyk, 2008). Oppenheimer and Loparo (2002) presented 

a physics-based approach for diagnostics and prognostics 

using integrated observers and life models in a rotating 

system. Using observers for shaft cracking and imbalance, 

the number of machine fault strengths and corresponding 

remaining machine life were determined. Niu and Yang 

(2018) considered a coupled rotor vibration and crack growth 

model and  studied the effects of the crack growth on stability 

of the system using numerical simulations.  

Based on the literature review, the majority of research 

studies focused on modeling the cracked rotor under 

negligible crack growth assumption, so modeling the coupled 

vibration and crack propagation seems still far from mature. 

This paper tries to model precisely the mutual effects between 

crack growth and nonlinear vibrations of a rotor under 

excitation of an unbalance force for different scenarios of 

loading cycle. Also, the degradation evolution is modeled by 

considering these mutual effects. The interdependency 

between cycles of loading, excitation frequency and crack 

growth rate are demonstrated for high cycle and low cycle 

loadings using numerical simulations. It is shown that the 

proposed model can calculate the instantaneous crack depth 

for a given rotating system within a range of excitation 

frequency and loading cycles. 

The remaining parts of this paper are organized as follows. In 

Section 2, a mathematical model of the cracked rotor is 

derived. In Section 3, results of numerical simulations under 

different loading scenarios are discussed. The conclusion is 

presented in Section 4. 

2. MATHEMATICAL MODELING 

Fig. 1a shows a flexible Jeffcott rotor including a massless 

elastic shaft and a rigid disk with transverse surface crack 

located at the mid span of the rotor. In order to model the 

dynamics of the system, rotating and fixed coordinates are 

considered. 𝑌 and 𝑍 are axes of the fixed coordinate and 𝑦 
and 𝑧 are the rotating coordinate axes positioned at the crack 

cross-section according to Fig. 1b. It is assumed that the shaft 

is under excitation of an unbalanced force with eccentricity 

of ε at an angle β respect to 𝑧 axis. The rotational speed is 

notated by ω and 𝜃(𝑡) is the instantaneous rotation angle. For 

obtaining the equations of motion the following assumptions 

are made (Abbasi, Khadem, Bab, & Friswell, 2016; Darpe, 

Chawla, & Gupta, 2002). 

1. Amplitude of torsional and axial vibrations are 

negligible, so only lateral vibration and corresponding 

transverse crack growth are taken into account. 

2. Rotor damping is of linear viscous type. 

3. The only source of excitation is the eccentricity of the 

unbalance force. 

4. The initial crack front is a straight line and propagates in 

the same form. 

5. The applied stress range is well below the yield stress, so 

linear elastic fracture mechanics is valid in crack 

modeling. 

6. The disk thickness is negligible, so the displacement at 

the crack location is the same as the disk displacement. 

7. Only plane strain relations are considered for the crack 

front propagation under the excitation force.  

8. It is assumed that the magnitude of the gravity force 

dominates the unbalance force. 
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Figure 1. (a) Schematic of the rotating system. (b) Fixed and 

rotating coordinate systems 

 

2.1. Rotor Dynamic Equations  

The equations of motion of the cracked rotor using Newton’s 

second law of motion is derived as (Patel & Darpe, 2008): 

 
 

 

2
sin

2
cos

mV cV k V k V m
Y YZ

mW cW k V k W m mg
ZY Z

  

  

    

     
 

(1) 

where 𝑚 and 𝑐 show the stiffness and damping coefficients 

of the rotor. 𝑊  and 𝑉  are displacements along 𝑍  and 𝑌 

directions, respectively. 𝑘𝑌  and 𝑘𝑍  represent direct stiffness 

coefficients along 𝑌 and 𝑍 directions in the fixed coordinate, 

respectively and 𝑘𝑌𝑍  and 𝑘𝑍𝑌  are the cross-stiffness 

coefficients in this coordinate.  The stiffness coefficients in 

the fixed coordinate can be related to those in the rotating 

coordinate using a proper transformation matrix as (Patel & 

Darpe, 2008): 

 
1k k k kY YZ y yz

T T
k k k kZY Z zy z

   


   
      

 (2) 

where 𝑇 is the transformation matrix; 𝑘y and 𝑘𝑧 represent the 

direct stiffness coefficients along 𝑦  and 𝑧  directions in the 

rotating coordinate, respectively and 𝑘yz  and 𝑘𝑧𝑦  are the 

cross-stiffness coefficients in the rotating coordinate. The 

transformation matrix can be written as: 

 
   

   

cos sin

sin cos
T

 

 

 
 
    

(3) 

Also, displacement in the rotating coordinate and fixed 

coordinate can be related to each other using the same 

transformation matrix as: 

 
w W

T
v V

   
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   
 (3) 

Given the assumption on the dominancy of the gravity force 

over the unbalance force, it is assumed that the open part of 

the crack changes continuously with shaft rotation. Thus, a 

harmonic breathing function (F(θ)) for modeling the crack 

opening and closing versus shaft rotation is considered as:  

     
1

1 cos
2

F   
 

(4) 

The relation between stiffness coefficients of the uncracked 

rotor with those of the cracked one using the breathing 

function can be written as: 
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000
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(5) 

where 

 ˆ ˆ,
0 0

k k k k k k
y y z z

    
 

(6) 

where 𝑘0  is stiffness of uncracked rotor and �̂�y  and �̂�z are 

stiffness coefficients in the rotating coordinate when the 

crack is fully open along 𝑦 and 𝑧 directions, respectively. For 

calculating these stiffness coefficients, a cross section of the 

cracked rotor according to Fig. 2 is considered.  In this figure 

𝑎  is the crack depth; 𝑤  is the crack depth; 𝐷  is the rotor 

diameter and 𝑎′ = √𝐷2 − (2𝑤)2  is the depth of the crack 

where 𝑧 is equal to 𝑤. 

 

Figure 2. Cross section of the cracked rotor 

 

Using the strain energy method the flexibility of the cracked 

cross section and the corresponding stiffness, coefficients can 
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be obtained as (Chasalevris & Papadopoulos, 2006; Patel & 

Darpe, 2008): 
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 (7) 

where 𝑔y, 𝑔𝑧, 𝑔yz and 𝑔𝑧𝑦 are the direct and cross-flexibility 

coefficients along 𝑦  and 𝑧  directions, respectively. 𝐿  is the 

rotor length. Also, 
a

F
a

 
 
 

and 
a

F
a

 
  

 
are obtained using 

following relations  
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 (8) 

For obtaining the stiffness coefficients in the rotating 

coordinates when the crack is fully open (�̂�𝑦  and �̂�z ) the 

following relations can be used (Chasalevris & 

Papadopoulos, 2006; Patel & Darpe, 2008). 
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
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(9) 

where �̂�y , �̂�𝑧 ,  �̂�yz  and �̂�𝑧𝑦 are the flexibility coefficients 

when the band of integration is set to the depth of the crack 

when it is fully open (Chasalevris & Papadopoulos, 2006; 

Papadopoulos & Dimarogonas, 1992; Patel & Darpe, 2008). 

2.2. Crack Propagation Equation  

Forced vibration of the rotor under effects of the unbalance 

force and consequent fatigue stress can result in slow 

propagation of the rotor transverse crack. Experimental tests 

on fatigue process show that the range of the stress intensity 

factor range (𝛥𝑘)  of the crack front is the most effective 

parameter in crack propagation. When the stress intensity 

factor is higher than a threshold value, the crack growth can 

be modeled using Paris-Edgard equation as (Shih & Chen, 

1997): 

  
da mfC k

fdN
 

 
(10) 

where 𝑁  is number of loading cycles; 𝑚𝑓  and 𝐶𝑓  are 

empirical constants that are dependent on material properties 

and environmental effects. For obtaining the stress intensity 

factor range, the bending force applied on the crack cross 

section is calculated as (Chasalevris & Papadopoulos, 2006; 

Patel & Darpe, 2008):  

 

P k v k w
y y yz

P k w k v
z z zy
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(11) 

where 𝑃𝑦 and 𝑃𝑧 are bending forces along 𝑦 and 𝑧 directions 

in the rotating coordinate, respectively. The corresponding 

stress relations can be obtained as (Chasalevris & 

Papadopoulos, 2006; Patel & Darpe, 2008):   

 

 
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where 𝜎𝑦 and 𝜎z are stress terms along 𝑦 and 𝑧 directions in 

the rotating coordinate, respectively. 𝐼  is the crack cross 

section moment of inertia. So, the total stress intensity of the 

crack front (𝐾I) will be 
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K aF aF
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 (13) 

According to Eq. 10 it can be seen that forces applied on the 

crack cross section and dynamic responses are 

interdependent. Also, the mutual effects between the 

dynamic response and crack growth can be seen in Eqs. 9 and 

13, in which the crack depth affects the cross-section stiffness 

while the dynamic response changes the stress intensity 

range. Using the transform matrices in Eq. 3 and the relations 

found for stiffness of the crack cross section in Eq. 9, the 

equations of motion can be rewritten as (Chasalevris & 

Papadopoulos, 2006; Patel & Darpe, 2008): 
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(14) 
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The equations of motion can be written in dimensionless form 

using the following parameters (Patel & Darpe, 2008): 
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(15) 

So the non-dimensional equations of motion are (Patel & 

Darpe, 2008): 
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(16) 

2.3. Solving Coupled Equations of Rotor Vibration and 

Crack Propagation  

The rate of crack propagation and corresponding degradation 

process is low compared to the vibration time history. Hence, 

in order to couple the rotor vibrations and crack propagation, 

additional assumptions on numerical simulation time scales 

should be made. It is assumed here that for low cycles of 

loading, the crack growth is negligible, so its depth is 

constant. High cycle loadings can be separated to low cycle 

loading steps. The length of low cycle loading is assumed to 

be 1000. Hence, the crack depth changes after each 1000 

cycles of loading and it is assumed to be constant meanwhile. 

Based on this assumption, the second order differential 

equations governing the motion equations (Eq. 16) are 

transformed to the first order ones in the state space; they are 

then solved numerically step by step using the Runge-Kutta 

method. Each step lasts for 1000 cycles and the maximum 

stress intensity factor range for each step is obtained. Then, 

the crack depth at the end of each step is calculated using Eq. 

10. This depth is set as the initial crack depth of the next step 

of 1000 cycles and this process continues until loading is 

over. It should be noted that at each step, in order to eliminate 

the transient behavior of the system, the numerical results of 

the first 100 cycles of loading are eliminated. In the numerical 

simulation, the following parameters are used (Patel & 

Darpe, 2008): 
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(17) 

3. RESULTS AND DISCUSSION  

In this section, mutual effects between the crack growth and 

dynamic responses are analyzed under different loading 

scenarios. 

3.1. Low Cycle Loading with Negligible Crack Growth 

In this section, it is assumed that the crack growth is 

negligible, so the initial crack depth remains constant (1mm), 

and the rotor undergoes 1000 cycles of loading. Figs. 3 and 4 

show the frequency response of the cracked rotor along the 𝑌 

and 𝑍 directions, respectively. The horizontal axis is ratio of 

the excitation frequency to the natural frequency of the 

uncracked rotor increased by a constant step. At each 

frequency ratio step, the motion equations (Eq.16) that 

represent a classical two degree of freedom forced vibration 

equations are solved numerically using Runge-Kutta method. 

Then, the amplitude of response within the range of 1000 

cycle is considered as the frequency response at this step. 

This procedure is repeated for a range of frequency ratio with 

lower and upper bands of 0.001 and 2, respectively. The 

outputs of this procedure form Figs. 3 and 4. The diagrams 

show that the motions of the rotating system in the 𝑌 and 𝑍 

directions are periodic and similar but not identical. The 

positive direction of the vertical displacement has been 

assumed to be upward. Given the direction of the gravity 

force and effects of the static deflection, the vertical 

frequency response is negative in the low frequency range. 

Also, it can be seen that the peak amplitude of response of the 

cracked rotor happens in resonance condition in which the 

excitation frequency gets close to the natural frequency of 

uncracked rotor and the corresponding ratio is close to 1.  It 

can be inferred that, for the crack depth of 1mm, the variation 

in cracked rotor stiffness is not significant, so the frequency 

response and resonance conditions of the cracked and 

uncracked rotor are very similar. 
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Figure 3. Vertical frequency response of the rotor with 

constant crack depth of 1mm  

 

 

 

 

Figure 4. Horizontal frequency response of the rotor with 

constant crack depth of 1mm 

The effects of the crack on dynamics of the system are 

intensified for higher values of the initial crack depth. Figs. 5 

and 6 show the effects of initial crack depth on the response 

amplitude of the cracked rotor along the 𝑌 and 𝑍 directions, 

respectively. The results are obtained for several values of the 

initial crack ranging from 1mm to 14mm. The system goes 

through low cycle range of loading (1000 cycles) at the 

resonance frequency of the uncracked rotor condition. It can 

be seen that for higher values of the initial crack depth, the 

amplitude of the rotor response will be lower in both 𝑌 and 𝑍 

directions. It shows that increasing the initial crack depth 

escalates the cracked rotor stiffness degradation and 

increases the equivalent flexibility of the rotor, so the 

resonance frequency reduces. For example, considering the 

case 1 and 2 with the crack depth of 1mm and 8mm, 

respectively. The resonance frequency of the case 1 is the 

post-resonance frequency in case 2. Hence, a drop in 

amplitude of response between two cases can be seen in Figs. 

5 and 6. 

 

Figure 5. Amplitude of vertical response of the cracked 

rotor for different initial crack depth in resonance condition 

 

 

Figure 6. Amplitude of horizontal response of the cracked 

rotor for different initial crack depth in resonance condition 

3.2. High Cycle Loading and Effect of Crack Growth 

The crack propagation is highly slower than exposure rate of 

nonlinear behaviors of the rotor. Upon crack initiation, each 

cycle of loading increases the crack depth a small amount. In 

the low cycle loading the summation of this changes can be 

neglected, while it can cause fatigue failure over the high 

cycle loadings. Majority of industrial rotating machines like 

gas turbines and compressors undergo continuous and long-

time loadings. Given the wide application range of these 

machines from power generation to aircrafts, failure can 

bring about many major consequences. In this section, the 

interdependency between the crack growth and nonlinear 

behaviors of the rotor over high cycle loadings is 

investigated. As mentioned earlier, for high cycle loading 

(here, over 1000 cycles) the loading history can be separated 

to low cycle loading steps with the length of 1000 cycles. In 

the low cycle loading steps the crack depth is assumed to be 

constant. Upon calculating the maximum stress intensity 

factor range in each step, the crack depth is updated and is 

considered as the initial depth of the consecutive step. Fig. 7 

shows crack growth trajectories versus cycles of loading for 
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different values of the frequency ratio, which is defined as the 

ratio of excitation frequency to the natural frequency of the 

uncracked rotor. The initial crack depth is 1mm and the 

simulation is over when the crack depth reaches 6mm. Within 

the frequency ratio range of 1 to 2.1, it can be seen that as the 

system comes close to the resonance condition, where the 

ratio is equal to 1, the crack growth rate increases. It is clear 

that the most rapid crack growth happens when the frequency 

ratio is equal to 1 that represents the resonance condition.  

 

Figure 7. Crack growth trajectories for different frequency 

ratio values 

The mutual effects between the crack growth and dynamics 

of rotor can be illustrated by comparing appropriate indices. 

With this aim, Fig. 8 demonstrates the relationship between 

normalized vibration peak amplitude and normalized 

maximum stress intensity factor range. In this figure, 

horizontal axis shows the ratio of excitation frequency to 

natural frequency of the uncracked rotor and results are 

obtained in a range of loading cycle in which the crack depth 

grows from 1mm to 6mm. These two normalized parameters 

can be considered as indices showing the magnitude of the 

dynamic response and the crack growth rate, respectively.  

 

Figure 8. Comparison between normalized peak amplitude 

of vibration and normalized maximum stress intensity factor 

range for different frequency ratios 

It can be seen that the variation of these two indices are in 

accordance with each other. The maximum normalized stress 

intensity factor range happens where the peak amplitude of 

the response happens. This confirms maximum crack growth 

happens when the system is in the resonance condition. This 

coupled model shows how the dynamic response can affect 

the crack growth and fatigue degradation process and vice 

versa. This model can precisely follow the degradation 

evolution of the rotor according to Figs. 7 and 8 by 

considering the interdependence between crack growth and 

dynamic responses. Calculating the crack depth at a specific 

excitation frequency and cycle of loading is a primary step in 

prediction of crack growth that can be done by this model. In 

addition, another notable output is stiffness degradation 

evolution modeling due to fatigue phenomena (see Fig. 7). 

The evolution data can be used in future state estimation of 

the system that is so important from failure prediction and 

reliability aspects. Hence, the outputs of this model are of 

significance to prognostics and lifetime prediction of rotating 

systems. 

4. CONCLUSION 

This paper has been concerned with modeling the coupling 

between the fatigue degradation due to crack propagation and 

dynamic response of an unbalanced cracked rotor. Given the 

significant difference between the time rate of fatigue 

degradation and dynamic response, loading history has been 

separated to high cycle and low cycle loading steps. It has 

been assumed that high cycle loadings are consecutive steps 

of low cycle loadings in which the crack depth is constant. 

The mutual effects between the dynamic response and crack 

propagation rate in high cycle loadings have been 

demonstrated using numerical simulations. The proposed 

model is capable of calculating the instantaneous crack depth 

for a given rotary system within a range of excitation 

frequency and loading cycles. This model can provide 

detailed insight on degradation evaluation and future state of 

the system. The outputs of this model are of significance to 

prognostics and lifetime prediction of rotating systems. Our 

ongoing research will focus on improvements of this model 

in the following aspects. 

The length of the low cycle loading step can be variable using 

an adaptive approach. Significant variations in amplitude of 

the response can undermine the validity of negligible crack 

growth assumption. Hence, an adaptive approach can set the 

length of low cycle loading step based on dynamic response 

variation rendering the corresponding stress intensity factor 

range more realistic.  

The crack growth trajectories of high cycle loadings have 

been obtained under the assumption that all of them start with 

the same initial crack depth (1mm). Not making this 

assumption and enabling the model to follow the crack 

growth for any arbitrary initial crack depth would be a 

notable improvement in the generalization of the model. 
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Upon this step, the model will be able to provide a dataset 

containing initial crack depth, excitation frequency, cycle of 

loading and instantaneous crack depth. This dataset can be 

used in combination with data driven techniques in a hybrid 

prognostic approach. 

The capability of this model in tracking the degradation 

evaluation can be used along with a diagnostics approach. 

Further, a health management strategy can be designed in 

which at the first step a diagnostics approach can detect the 

fault in the form of a crack in the rotor; then, the proposed 

model of this paper can predict the fault propagation (crack 

growth in this study) and degradation evaluation in the 

prognostic step.  
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