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Marcos Quiñones-Grueiro1, Timothy Darrah2, Gautam Biswas3, and Chetan Kulkarni4

1, 2, 3 Vanderbilt University, Nashville TN, 37209 USA
marcos.quinones@vanderbilt.edu
timothy.s.darrah@vanderbilt.edu
gautam.biswas@vanderbilt.edu

4 KBR. Inc., NASA Ames Research Center, Moffett Field, CA, 94035
chetan.s.kulkarni@nasa.gov

ABSTRACT

This paper develops an offline decision-making framework to
support safe urban operations of individual unmanned aerial
vehicles (UAV) flights. The core of the proposed framework
is the analysis of the probability of mission failure and the
corresponding risk of flight as a function of two factors: (1)
collision with obstacles, and (2) crashes attributed to the de-
graded state of the vehicle. The risk computation is associ-
ated with specific trajectories defined by a set of way points.
Our experimental studies consider a UAV mission fails when
(1) it collides with other objects, or (2) the battery charge
is depleted below a threshold. The decision making system
automatically selects the mission plan that minimizes risk of
flight by considering the state of the vehicle, the environmen-
tal conditions, and a map of the environment.

1. INTRODUCTION

The use of Unmanned Aerial Vehicles (UAVs) is increasing
at unprecedented rates across across a wide range of appli-
cations that include surveillance, package delivery, photogra-
phy, cartography, remote sensing, agriculture, military mis-
sions, and more1. The FAA passed regulations in 2016 that
authorized the commercial use of UAVs. As adoption and
use of drones increase, so does the risk of collisions and
mishaps that can result in a loss of money, time, productivity,
or most important, human lives. There is an abundance of re-
search on the technical aspects of UAV systems: their design,
implementation, operation, diagnostics, and stability (Moir
& Seabridge, 2012). However, a more holistic approach to
ensuring safe operations in a heterogeneous airspace is re-
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quired to address this multi-faceted problem that comprises
of component and system diagnostics, system-level prognos-
tics, airspace safety assurance, flight path risk assessment, as
well as trajectory planning and replanning, just to name a few
(Clothier & Walker, 2006).

Our overall goals is to support safe operations of package
delivery UAVs operating in urban environments. We have
developed a decision-making framework to maintain system
safety during a UAV mission (flight from a starting point to a
destination going through a sequence of pre-determined way
points) by minimizing the overall risk of mission failure, con-
sidering a number of risk factors along with uncertainties in
the environment and the operating state of the vehicle (UAV).
In this paper, we develop a Risk analysis approach that com-
putes and updates risks associated with projected UAV flight
paths by considering two potential hazards:(1) collision (with
static obstacles), and (2) depleting battery charge below a
pre-specified safe threshold. In addition, we also take into
account the effects of degradation in system components on
overall UAV flight. In general, multiple components of a sys-
tem may degrade at the same time, therefore, we develop
methodologies for computing system performance using a
system-level prognostics approach that we have developed in
past work (Khorasgani et al., 2016).

A primary task for ensuring safe UAV flight operations re-
quires careful flight planning and trajectory generation based
on a series of four-dimensional waypoints (latitude, longi-
tude, altitude, and arrival time), while satisfying a set of con-
straints that assure safety during flight (e.g., distance from
nearest obstacle ≥ 2m, battery charge ≥ 10%, risk thresh-
old ≤ 15%), and optimizing a set of performance parame-
ters (e.g., flight time, power consumption). We assume our
package-carrying UAV is a low flying craft that typically flies
over roads between large buildings. Our path planning algo-
rithm assumes the existence of a map of possible routes that

1



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020

UAVs can fly within this urban environment. Trajectory gen-
eration involves the process of deriving a stable trajectory,
defined by a set of waypoints, with the assumption that the
UAV, if undisturbed will fly a straight line path between two
consecutive way points. The UAV trajectory is smoothed us-
ing B-splines at corners, implying that the UAV does not have
to make sharp turns at corners.

In situations where there are no ambient disturbances, such
as wind direction changes or wind gusts, we assume the UAV
chooses the minimum distance path between its start and des-
tination points, because that consumes the least amount of
battery charge (i.e., energy), thus minimizing risk of crash
due to loss of power. However, wind gusts and changes in
environmental conditions in the vicinity of where the UAV is
flying, may result in a change in flight risk, causing it to ex-
ceed specified thresholds. In extreme circumstances, the UAV
may decide that it is too risky to continue flying, and, invokes
emergency landing procedures instead. We do not deal with
contingency management in this paper.

The rest of this paper is organized as follows. Section 2 re-
views the literature on UAV safety analysis. Section 3 pro-
vides a description of of our octocopter UAV system model
and the test bed for our experimental studies. Section 4
presents our decision making framework. Section 5 presents
the system-level prognostics scheme considered in this pa-
per. The results of our experimental case studies run on an
octocopter system under different scenarios are presented in
Section 6. Finally, the conclusions of our work and directions
for future research are presented in Section 8.

2. BACKGROUND: SAFETY ANALYSIS, HEALTH MAN-
AGEMENT AND PATH PLANNING FOR UAVS

Past work on UAV safety analysis has focused on collisions
of these systems with other aircraft flying in the civil airspace
with recommendations on developing and advancing Traffic
Collision and Alert Systems (TCAS) that can be deployed to
minimize these collisions (Kuchar, 2005). Clothier & Walker
(2006) contend that overall safety requirements for UAV sys-
tems should be the same as that for human-piloted aviation.
They developed a simple simple fatality model to illustrate
the impact of different safety objectives on the design and
operation of UAV systems. They used comparative examples
to highlight the importance of the nature of risk exposure to
the type of operation being performed.

A number of studies have also characterized UAV flight safety
or risks associated with the potential harm to humans and
property that would result from UAV crashes to the ground.
In this regard, Atkins (2014) introduced the concept of ge-
ofencing in the context of safe UAV flights for agricultural ap-
plications, such as crop inspections and insecticide spraying.
Ippolito (2019) generalized and extended the notion of safety
analysis to dynamic ground risk mitigating flight control by

analyzing methods for (1) reducing the likelihood of occur-
rence (e.g., flight planning to avoid overpopulated areas) and
(2) reducing the severity of the consequences when operat-
ing in low altitude, high density urban areas. The author dis-
cussed a number of risk mitigation strategies that include (1)
physical separation, (2) geofencing around important assets,
(3) fault monitoring, and (4) safe flight termination in case
of contingencies to address risk mitigation control of UAV
systems.

Recently, a number of authors have developed fault detec-
tion and prognostics approaches to support risk mitigation
and increase safety of UAV flights. For example, Saha (2007)
and Sierra, et al (2019) discuss approaches for tracking UAV
battery health during operations. Balaban & Alonso (2013)
propose modeling techniques based on Partially Observable
Markov Decision Processes (POMDPs) for prognostic deci-
sion making. POMDPs allow for representation of uncertain-
ties in state estimation (including in payoffs/rewards), action
outcomes, and future operating conditions. They apply this
approach to a mission replanning case study for UAVs.

Traditionally, approaches developed in robotics have evalu-
ated risk without considering the state of the vehicle. For in-
stance, data driven approaches to risk analysis have taken into
account uncertain weather conditions (Rubio-Hervas et al.,
2018) and measurement uncertainty (De Filippis et al., 2011)
together with the vehicle’s kinematics, but they have ignored
the fact that a UAV’s operating conditions can change during
flight. On the other hand, contributions from the field of con-
trol systems incorporate trajectory planners that consider the
dynamic model of the vehicle (Brown & Rogers, 2016), but
do not take into account the varying environmental conditions
for risk analysis. However, in urban scenarios, it is important
to consider the interactions between the system’s state and
the varying environmental conditions (Coutinho et al., 2018).
Computing risk and safety is another area of research that
is a key component of ensuring safe UAV operation. Lin &
Shao (2020) compute the expected level of safety (ELS) of a
path as a function of mean time between failures, the area of
exposure in square meters (assuming a ground impact), the
population density, and accident severity.

Several recent studies have demonstrated promising methods
for fast trajectory generation. In Corbetta et al. (2019), the
authors use B-spline curves to generate a smooth trajectory
given a set of 4D waypoints. In Schopferer & Benders (2020),
the authors use a multi-objective cost function that optimizes
flight time, altitude, and risk. They quantify risk based on
collision with objects (such as buildings), and pre-compute
a search graph. During replanning, K-Nearest-Neighbors is
utilized to reduce the search space and the A* algorithm is
used to find a new path within that search space. In Primat-
esta et al. (2019), the authors compute a discretized risk-map
that associates a given cell on the map with a given level of
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risk based on population density, and utilize Dubins curves to
generate a smooth trajectory.

In this paper, we take into account the uncertainty in weather
conditions (e.g., wind speeds, wind gusts) and the health state
of a UAV in analyzing risk and safety of low-altitude UAV
flights in urban areas. We discuss our UAV system and the
environment in which it operates next, and then discuss our
approach to risk analysis for safe flights.

3. SYSTEM DESCRIPTION

In this section, we describe the octocopter airframe model, its
subsystems, and the control system responsible for flying the
UAV.

3.1. UAV Model

The octocopter airframe dynamics are modeled based on
Newton-Euler equations of motion for a rigid body (Valava-
nis & Vachtsevanos, 2015). The octocopter if composed of a
central hub with 8 arms extending radially and a motor at the
end. The derived body forces considered are

Fb = FM + FD +mgRIBez, (1)

where Fb ∈ <3 is the resulting force acting on the body
frame, FM ∈ <3 is the resultant force generated by the mo-
tors, FD ∈ <3 is the drag force resulting due to the movement
of a UAV through the air, m is the mass of the UAV, g is the
gravity acceleration, RIB ∈ <3×3 is the rotation matrix from
the inertial frame to the body frame, and ez = [0 0 1]T .

The rotation matrix is calculated based on the Euler angles
[φ, θ, ψ] (Mahony et al., 2012). The order of rotations from
the inertial frame to the body frame considered in this work
is yaw (Z)-pitch (Y)-roll (X) assuming the UAV is moving
forward in the positive X direction. The equations of motion
derived from equation (1) are

v̇b =
1

m
(FM + FD) + gRIBez −wb × vb (2)

ẇb = I−1
b (MM −wb × Ibwb), (3)

where vb ∈ <3 and wb ∈ <3 represent the linear and angular
velocity vectors of the UAV in the body frame, MM is the
torque generated by the motors, and Ib ∈ <3×3 is the inertial
matrix of the UAV. Next, we describe how each force and
torque is calculated.

3.1.1. Motor forces and torques

The eight rotating motors including propellers are used to
generate motor forces FM and torques MM . The disposi-
tion and rotation of the motors is shown in Figure 1. For each

motor i, the force and torque generated are given by

FMi
= cTω

2
Mi

(4)

MMi = cQω
2
Mi
, (5)

where cT is the coefficient of thrust and cQ is the torque con-
stant. Both parameters can be easily estimated from static
thrust tests (Mahony et al., 2012). The net force applied to the
airframe is the summation of the forces generated by the mo-
tors. The net torque acting on the octocopter arises from the
aerodynamics (the combination of the produced rotor forces
and air resistances) applied to the N-rotor vehicle.

l1 l2

x

y

w1w8w7

w2

w3w4w5

w6

Figure 1. The octocopter seen from above. Showing the num-
bering of each motor and their rotational directions

3.1.2. Drag force

Form drag is the most common and easily modeled aerody-
namic effect. Form drag arises due to the movement of a
reference area through a fluid. The general expression of the
form drag force is

FDrag = −1

2
ρCDAv

2
b , (6)

where ρ is the air density, CD is the drag coefficient, A is
the reference area that is perpendicular to the velocity of the
object (vb). Drag force generated due to translation of the
octocopter is given by

FD = −1

2
ρCD

 Ayzvb,x|vb,x|
Axzvb,y|vb,y|
Axyvb,z|vb,z|

 , (7)

where |.| is the absolute value (necessary since the aerody-
namic drag always act in opposite direction of the velocity
vector), A represents the cross-sectional area of the UAV in
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each plane, and vb,i represents the velocity of the i axis in the
body frame. The torque generated due to drag is considered
negligible in this work.

3.1.3. Wind effect

Wind is a major disturbance source for light aerial vehicles,
such as the octocopter. Being able to remain stable and mini-
mize wind disturbances is a requirement for the use of UAVs
in urban scenarios. Reactive approaches to wind rejection
have been the subject of prior research (Gougeon et al., 2018).
Modeling the effect of the wind disturbance is achieved by
generating a wind velocity vector varying randomly around a
nominal value and transforming this vector into the resulting
wind forces and moments acting on the octocopter.

The wind velocity vector is defined by

vw = vw,nom + vw,rand, (8)

where vw,nom is the nominal component and vw,rand is the
stochastic component. A valid representation of the latter
term can be generated by using Dryden’s turbulence model
(Gougeon et al., 2018). The wind affects the translation of
the octocopter by modifying the drag force as follows

Fwind
Drag =

1

2
ρCDAv

2
a (9)

va = RIB ∗ vw − vb, (10)

where va represents the apparent velocity of the UAV subject
to the wind velocity in the inertial frame vw. The change
in the moment dynamics caused by the wind acting on the
propellers of the motors is assumed to be negligible in this
work.

3.2. Propulsion system

The propulsion system of the octocopter is formed by a set of
BrushLess DC Motors (BLDCM), an Electronic Speed Con-
troller (ESC), and a Lithium Polymer battery. Each motor is
powered by the battery through the ESC, which controls the
angular speed through a PWM signal. The dynamics of the
ESC are neglected in this work. We assume, therefore, that
the voltage supply of the battery and the current consumed by
the motors are averaged with respect to the duty cycle value
of the control signal.

3.2.1. Motor model

A BrushLess DC motor is a type of permanent magnet syn-
chronous motor driven by a DC supply voltage. The main
feature of this type of motor that makes it suitable for aerial
robotic applications is its long operating life and high torque-
weight ratio. The mathematical model that describes the dy-
namics of the angular speed of each motor can be described

by the following equations

ω̇i =
1

Jm
(Keic − Tload −Dfω − Tf ), (11)

ic =
1

Req
(vDC −Keωi), (12)

where Req = 2
3

∑3
j=1Rj is the equivalent electric resistance

of the coils, Ke is the back electromotive force constant, ωi is
the angular velocity of the ith BLDCM, Tf is the static fric-
tion torque, Df is the viscous damping coefficient that allows
to estimate the dynamic friction torque (Dfω), Jm is the iner-
tia of the BLDCM, vDC is the input voltage control signal, ic
is the current demanded from the battery pack, and Tload rep-
resents the torque load generated by the propellers. The first
equation represents the mechanical dynamics and the second
one the electrical dynamics. The relationship between the
torque load and the angular velocity is non-linear and can be
defined from experimental data according to the dimensions
and material of the propellers.

3.2.2. Battery model

Lithium Polymer (LiPo) batteries transform the energy re-
leased by spontaneous chemical reaction to electricity work.
LiPo batteries have desirable properties, such as high dis-
charge rate (C-rate), high energy, and power densities. This
has motivated their use for electric aerial vehicles. A LiPo
battery pack is formed by individual cells connected to each
other in series or in parallel (Julien et al., 2016).

The electric dynamics of a battery cell can be modeled
through an Equivalent Circuit Representation. The output
voltage of the battery Vbat will depend on the open circuit
voltage (effective voltage that depends on the state of charge
(SoC) of the battery), the diffusion voltage (transitory re-
sponse of the voltage given an input current), and the voltage
that characterizes the ohmic over-potential due to the internal
resistance of the battery. The state of charge of the battery
represents the proportion of the charge available at a given
time compared to the total charge available when the battery
is fully charged (SoC ∈ [0, 1]). The equations that charac-
terize the behavior of the battery considering the effects men-
tioned above are the following

V̇SoC = − ic
Q

(13)

i̇d =
ic

RdCd
− id
RdCd

(14)

Vout = Vocv −Rdid −R0ic, (15)

where Q represents the total capacity of the battery, ic the
input current, Rd and Cd are the diffusion resistance and ca-
pacitance, id the current going through the diffusion resis-
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tance, R0 represents the internal resistance, Vocv is the open
circuit voltage, and Vout is the output voltage of the battery.
The open circuit voltage depends non-linearly on the state of
charge of the battery. The function that characterizes such re-
lationship can be experimentally estimated and approximated
as a polynomial by using charge and discharge data.

3.3. Control scheme

The hierarchical control scheme implemented for the octo-
copter is shown in Figure 2. This control approach is com-
monly used for multicopters since it allows for stabilization
of the position and orientation of the octocopter with respect
to a trajectory. The low level is in control of vehicle attitude,
and the top level is in control of position along a trajectory
forming nested feedback loops.

Control 
allocation

Motors

Battery pack

Airframe
Altitude 

controller

Position 
controller

Attitude 
controller

Z_ref

x_ref, y_ref

[x, y,Ψ]

z

Fz

Tx,Ty, Tz

VDC ω 

i

V_out

Position, attitude

[ Φ,Θ,Ψ] 

 Φref

Ψ_ref 

 Θref

Wind 
speed

Figure 2. Hierarchical control scheme for the octocopter

The reference trajectory for the octocopter can be defined
for each time step in terms of position and yaw angle
[xref , yref , zref , ψref ]. Altitude is controlled through a Pro-
portional Integral Derivative (PID) controller based on the
reference input. This controller generates the required force
in the z direction (Fz). The position controller block esti-
mates, based on the current position of the vehicle and yaw
angle, the reference for the pitch (θref ) and roll (φref ) an-
gles. The attitude controller block is formed by three PID
controllers for pitch, roll, and yaw (θ,φ,ψ). This block gen-
erates the required torque in each direction (Tx,Ty ,Tz). The
control allocation block transforms the required torques and
force into a reference voltage (VDC) for each BLDC motor of
the octocopter based on the maximum voltage that the battery
can provide (Vout). Finally, the motor block generates the an-
gular velocities according to the motor’s dynamics (ω). These
angular velocities together with the wind vector are used to
calculate the forces and torques acting on the body frame ac-
cording to the equations of motion described before.

3.4. Degradation of Components

The state of health of a component describes the actual phys-
ical condition in comparison with its nominal condition. The
degradation of the components of the octocopter from mis-
sion to mission affects their respective state of health as well
as the state of health of the octocopter. The motors, battery,
and sensors of the octocopter are susceptible to degradation

mechanisms that eventually may cause the failure of the sys-
tem.

BLDC motors are susceptible to mechanical degradation in
the form of general motor or bearing wear, and less common
electrical degradation in the form of contact corrosion and in-
sulation deterioration (Abramov et al., 2014). An increase
in winding resistance results in increased power consumption
under load (and decreased consumption under no-load condi-
tions), as depicted in the FMECA chart provided in (Kulkarni
& Corbetta, 2019). The mechanical degradation is associated
with the static and dynamic friction parameters (Tf and Df )
of the motor model presented before. The winding resistance
change is associated with the electric resistance of the coils
(Req).

The state of health of the battery decreases with time due to
aging mechanisms caused by the charge/discharge cycles and
the damage due to deep discharges. The aging of the battery
causes an energy loss leading to capacity loss (a reduction of
battery capacity), and the increase of the battery impedance
(power fade). Capacity loss is evidenced in the battery model
by the reduction of the total capacity parameter Q, and the
power fade by the increase of the internal resistance R0 [33].

4. DECISION-MAKING FRAMEWORK FOR SAFETY
ANALYSIS

Our goal to maintaining system safety during a mission will
be to minimize overall risk of failure by considering a num-
ber of risk factors along with uncertainties in the environ-
ment and operating state of the vehicle (UAV). A mission
plan is defined in terms of a set number of way-points C =
{c1, c2, ..., cn} and the desired cruise speed. We will con-
sider mission failure to be caused by two factors: (1) the loss
of control of the vehicle resulting in a collision with other
objects or (2) a crash into the ground. Another reason for
mission failure is when the remaining useful life (RUL) of
the UAV is smaller than the time required to complete the
mission. The primary causes of mission failure considered in
this work are: (1) adverse weather conditions and/or (2) sys-
tem performance degradation. System performance degrada-
tion might be caused by the degradation or fault of different
components of the UAV, such as the battery, the motors, and
the Inertial Measurement Unit.

LetG be a graph where the set V represents all the way-points
that must be visited by the UAV and A represents the set of
arcs between way-points. The optimization problem can be
formalized as follows:

min
Γij∈Γij

fmfail(Γij), (16)

where Γij represents a trajectory between way-point ci and
cj , Γij represents the set of possible trajectories between the
two way-points, and the function fmfail estimates the proba-
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bility of mission failure. In the context of dynamic systems,
the optimization problem above is subject to the following
constraints:

• Dynamics of the system:

xij
n+1 = f(xij

n ,u
ij
n , ϑ

ij
n ,w

ij
x ), (17)

where xn, un, ϑn, and wx represent the set of variables
that characterize the dynamics of the UAV, the inputs of
the system, the degrading parameters of the system com-
ponents, and the uncertainties associated with the system
model at time step n, respectively. This constraint means
that the system dynamics must be satisfied between any
two way-points i and j to be flown.

• Bounded risk of collision:

Fmax
c (Γij) < τc, (18)

where Fc represents the maximum probability of mission
failure because of collision with an obstacle along the
trajectory Γij .

• Bounded remaining useful life:

Frul(Γij) < τrul, (19)

where Frul represents the probability of mission failure
because of the RUL being smaller than the time required
to complete the mission.

The risk of mission failure function is defined as follows

fmfail(Γij) = max(Fc(Γij), Frul(Γij)) (20)

Instead of trying to solve a multi-objective optimization prob-
lem which might not be tractable, here we minimize the max-
imum of the two risks considered. In the next subsections, we
describe how each of these terms is computed.

4.1. Risk of collision

Risk analysis conducted on projected UAV flight paths en-
ables the safe operations of these vehicles in urban scenarios.
Total risk of collision of a mission is accumulated along the
respective trajectory by considering a set of K static obsta-
cles in the environment. The average risk can be calculated
according to

Risktot =
1

K

K∑
k=1

∫
Γ

f(Γ, obstk)dΓ, (21)

where f(Γ, obstk) is a function that calculates the probability
of collision of the UAV with obstacle k when it follows tra-
jectory Γ. In order to solve this equation, the trajectory of the
UAV must be expressed in a discrete form by considering a

sampling time thus the total risk can be expressed as follows

Risktotn =
1

KN

K∑
k=1

N∑
n=1

f(Γ(n), obstk), (22)

where Γ(n) represents the position of the UAV at time n, and
f(Γ(n), obstk) takes the following form

f(Γ(n), obstk) = p(Dn
obstk

< dsafek), (23)

where Dn
obstk

represents the distance between the UAV at
time n of the trajectory and the obstacle k, and dsafek rep-
resents a minimum distance separation that must be kept be-
tween the UAV and the obstacle. We assume the position
of the UAV at time n as a stochastic variable such that the
variable Dobstk is also stochastic and follows a normal dis-
tribution, Dobstk ∼ N (µ, σ). This equation evaluates the
inverse cumulative distribution function of Dobstk at dsafek.
The parameters of this distribution are estimated by propagat-
ing the estimated uncertainties of the UAV position variable
through the reference trajectory.

The position of the UAV is represented by the coordinates
of its center of mass. Assuming a two dimensional map, we
consider a set of static obstacles that can be represented as
a rectangle defined in terms of four coordinates in a plane
obsti = (x, y), i = 1, ..., 4. For a realization of the trajec-
tory, the distance is computed as dobstk = |ξ − νk|, where ξ
is a vector of the coordinates of the UAV and νk is the closest
vertex of obstacle k. The distance threshold dsafek must be
empirically defined to account for the dimensions and orien-
tation of the UAV, and the errors introduced in the discretiza-
tion of the obstacle.

Another practical measure to consider is the maximum risk
of collision along a trajectory defined by

Riskmax
n = max

n∈N

K∑
k=1

f(Γ(n), obstk) (24)

We calculate Fc as Risktot and Fmax
c as Riskmax.

4.2. Safety Analysis

Safety analysis is based on system-level prognostics and it
encompasses two distinct but related problems:(1) estimat-
ing the current system state and the degradation rates of indi-
vidual components; and (2) predicting future system perfor-
mance by deriving system RUL functions.

For our system-level prognostics approach, we follow an ana-
lytic framework that tracks the degradation rate of individual
components, such as the battery and motors from mission to
mission. Based on the degradation parameters estimated, we
use stochastic simulations to compute and predict the change
in system performance, e.g., the ability to maintain a specified
trajectory over time. The system-level prediction problem is

6



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020

designed to compute the system RULn distribution function
at time instant n defined by

RULn = (EOLn − n)∆t, (25)

where ∆t is the sampling time of the system, n ∈ N repre-
sents the sampling step, and EOLn represents the end of life
of the system defined by

EOLn = inf{z ∈ Z : z ≥ n & T (℘z) = 1}, (26)

where T (℘z) is the following system performance threshold
function

T (℘z) =

{
1 if 0 ∈ R(℘z)
0 if 0 6∈ R(℘z)

(27)

R(℘z) denotes a set of performance constraint functions that
map the performance of the system to a Boolean domain
[0, 1]. A value of 1 implies that the constraint is satisfied,
and a value of 0 implies that it is not. Such set of constraints
is defined based on the system degradation model.

Definition 4.1 (System degradation model) System
degradation model of a system is given by

xn+1 = f(xn,un, ϑn,wx) (28)
%n+1 = g(%n, αn,xn,wd) (29)

yn+1 = h(xn,un, ϑn,wy), (30)

where n represents the current time step, ϑn is the set of de-
grading parameters, g is the set of degradation functions, αn

is the set of degradation model parameters in the system, wx,
wd, and wy capture the system model uncertainties, the set
of uncertainties in the degradation models, and the measure-
ment noise, respectively.

The risk of not completing the mission can be calculated at
each time step n as follows

Frul(Γij) = p(RULn < tend), (31)

where tend = N ∗∆t represents the time planned for the UAV
to reach the final way-point.

5. SYSTEM-LEVEL PROGNOSTICS METHODOLOGY

We follow the system-level prognostics methodology pro-
posed in Khorasgani et al. (2016). Figure 3 presents
the methodology, which combines the estimation of system
states, parameters, and degradation parameters, with a predic-
tion strategy to compute the risk of mission failure functions
at each time step n.

Different state estimation methods can be used to estimate
the probability density function of the states and parameters
of the UAV and its components. The estimation of the atti-
tude, velocity, and position has been accomplished through
complementary filtering techniques (Mahony et al., 2012),
Kalman filtering methods and its extensions (Burri et al.,

System
State 

Estimation

Prediction

un yn

p(   ,   ,    |     )xn ϑ  n α  n y0:n

un+1, ...

Riskn
tot

, Risk n
max

p(                    |      )y0:nRUL  < t  n end

Figure 3. System level prognostics methodology

2015; Yang et al., 2017; Al-mashhadani, 2019). Inertial and
visual sensor fusion algorithms can be employed in case vi-
sual sensors are available (Corke et al., 2007). The state es-
timation of the motors is performed in this work through the
extended Kalman filter since non-linearity is smooth. Nu-
merous methods have been proposed for the estimation of the
states and parameters of the battery, i.e. unscented Kalman
filter, particle filter, etc (Plett, 2015; Sierra et al., 2019). We
considered implementations of the unscented Kalman filter
for tracking the attitude and position of the UAV (Merwe et
al., 2004), as well as for tracking the state variables of the
battery (Kulkarni et al., 2018).

The distribution of RULn, and the accumulated and max-
imum risk (Risktotn , Riskmax

n ) associated with the current
trajectory are calculated though stochastic simulations con-
sidering the distribution of the system states and parameters
p(xn, ϑn, αn|yn), the distribution of future inputs to the sys-
tem, the distribution of the system model uncertainties and
the uncertainties in the degradation models at each time step
n. We therefore generate multiple samples in a Monte Carlo
fashion representing the system, and and simulate each one
to the end of the trajectory and to the system’s end of life.

6. EXPERIMENTAL STUDY

We will demonstrate the feasibility of the proposed decision-
making framework for evaluating three alternative trajecto-
ries between two way-points. Figure 4 shows a map of the
obstacles in the environment as well as the staring point, the
goal, and the three trajectories considered for evaluation. We
test the proposed decision making framework in an offline
setting, which includes the prediction step of the system-level
prognostics methodology.

Uncertainty propagation is performed in a Monte Carlo fash-
ion by simulating the behavior of the octocopter system de-
scribed in Section 3 along the initial reference trajectory. For
the jth Monte Carlo trajectory realization, we sample from

7
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Figure 4. Map of obstacles with three possible trajectories
between two way-points

the initial distribution of states to set up the initial condition
and record the states of the UAV with respect to the reference
path. Thus, a set of M trajectories are collected, where M
is the number of Monte Carlo samples. The two sources of
uncertainty considered for this experiment are noise affecting
the sensors, and the random component of the wind vector
presented in equation 8.

We consider three test scenarios: (1) nominal flight condi-
tions, (2) aggressive wind conditions, and (3) the degradation
of one of the BLDC motors. The performance test defining
the EOL of the UAV is determined by the state of charge of
the battery becoming smaller than 20 %. Other system-level
performance tests can be defined but here we just use this to
demonstrate how the proposed decision making framework
can be used. Figure 5 presents three realizations of the trajec-
tory under nominal conditions. From a safety analysis per-
spective, the three trajectories present a low risk of collision
and a low risk of the RUL being smaller than the time re-
quired to complete the mission. In this case, other criteria
can be used to select the best trajectory. Figure 6 shows the
RUL at the end of each trajectory. The blue trajectory is com-
pleted in less time thus the RUL at the end is larger than for
the other trajectories. This means that by following the blue
trajectory the octocopter can complete more missions before
reaching the EOL condition.

Figure 7 presents three realizations of the trajectory under ag-
gressive wind conditions (nominal speed of 11 m/s and wind
gusts with maximum speed of 0.5 m/s). The wind is sim-
ulated in the positive x axis direction. Figure 8 shows the
risk of collision with the closest obstacle at each time step
of each trajectory. We considered safek = 1 m. The aver-
age risk (Risktot) is 0.096, 0.1228, and 0.0446 for the blue,
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Figure 5. Example of the three trajectories under nominal
conditions
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Figure 6. Remaining useful life for the octocopter at the end
of each trajectory
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Figure 7. Example of the three trajectories under aggressive
wind conditions

red, and yellow trajectory, respectively. The maximum risk
(Riskmax) is 0.7539, 0.7096, and 0.3037 for the blue, red,
and yellow trajectory, respectively. These results show that
while the blue trajectory is more unsafe than the red one on
average, the maximum risk of collision is higher for the for-
mer one. The yellow trajectory is the safest one in terms of
risk of collision.

Figure 9 presents three realizations of the trajectory under
the degradation of one of the BLDC motors. The degrada-
tion consists of the increase in the coil resistance which re-
sults in a loss of power for motor 2 (see Figure 1). This de-
graded component will affect the flight performance of the
octocopter as it can be appreciated in Figure 10. The aver-
age risk (Risktot) is 0.2267, 0.2035, and 0.099 for the blue,
red, and yellow trajectory, respectively. The maximum risk
(Riskmax) is 0.9697, 0.9705, and 0.8686 for the blue, red,
and yellow trajectory, respectively. These results show that
the yellow trajectory is the safest on average and also with re-
spect to the maximum risk. However, it is not safe to fly under
these conditions given that the maximum risk of collision is
high.

7. DISCUSSION

Risk assessment for mission planning has been widely stud-
ied in recent years. Risk of mission failure is linked to dif-
ferent causes, such as uncertain weather conditions (Rubio-
Hervas et al., 2018), measurement uncertainty (De Filippis
et al., 2011), and collision with obstacles (Brown & Rogers,
2016). The novelty of our risk assessment method is that
adopts a holistic approach and integrates the different risk
factors with the state of health of the UAV. This is especially
important in urban scenarios where the interactions between

a) Blue trajectory

0 50 100 150 200 250 300
0

0.5

1

b) Red trajectory

0 100 200 300 400 500 600 700 800
0

0.5

1

c) Yellow trajectory

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

Figure 8. Risk of collision with the closest obstacle at each
time step under aggressive wind conditions
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Figure 9. Example of the three trajectories under the degra-
dation of a BLDC motor
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b) Blue trajectory
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Figure 10. Risk of collision with the closest obstacle at each
time step under the degradation of a BLDC motor

the environment and the UAV play an important role in deter-
mining the risk of mission failure. The risk to people on the
ground is another safety measure that has been widely stud-
ied. Capristan and Foster (2017) propose a framework for
assessing the threat to people by calculating the potential im-
pact area and the effects of the impact in real-time. Primatesta
et al. (2019) propose a path planning strategy that tries to en-
force flight operations over low density population areas. The
framework we propose can seamlessly integrate with these
proposals because the risk to people in the ground can be cal-
culated according to the predicted time of mission failure and
the population density in the estimated impact area.

Our decision-making framework is applied to offline trajec-
tory selection, which is determined before UAV commences
its mission, therefore, Monte Carlo simulations can be con-
sidered to estimate the distribution of the stochastic variables.
However, optimal decision making in real time is a more com-
plex problem. For real time assessment of the risk of mis-
sion failure, a state estimation-state prediction approach can
be used. Online trajectory re-planning requires the use of op-
timization methods in real time. Previous work has studied
the suitability of classic methods like rapidly exploring ran-
dom trees and the A* graph search algorithm for real time
path planning (Zammit & Van Kampen, 2020). The suitabil-
ity of evolutionary methods for online path planning has also
been proposed recently (Krishnan & Manimala, 2020). Over-
all, some of these options could be considered depending on
how the path planning problem is formalized.

8. CONCLUSIONS AND FUTURE WORK

This paper discusses a decision-making framework to support
safe urban operations of individual unmanned aerial vehicles

(UAV) flights. The core of the proposed approach includes
a module for risk analysis of mission failure that considers
both the risk of collision with obstacles and the risk of not
completing the mission because of an unsafe operating state
of the vehicle. The risk analysis is computed along a trajec-
tory defined by a set of way points by considering a number of
factors, such as the uncertainties in the environment and the
current operating state of the vehicle. We tested the proposed
approach with an octocopter by comparing the risk of mis-
sion failure for three trajectories under different conditions.
The risk of mission failure increases under aggressive wind
conditions or a degraded motor for some trajectories more
than for others. The proposed decision-making framework
encompasses multiple measures of risk to select the trajec-
tory with lowest risk. In the future, we plan to develop a a
path planning and trajectory optimization algorithm to work
in conjunction with the proposed framework to minimize the
risk of mission failure both for before take-off planning and
online trajectory re-planning.
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