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ABSTRACT 

The Fault Isolation Manual (FIM) is considered as a specialist 

system that carries the expectations and expertise of 

engineers and technical team concerning the aircraft 

components and systems operation. It is basically a manual 

that supports the maintainers regarding the actions to perform 

in determined situations to properly isolate a fault. Although 

the FIM is the most common tool that assists maintainer on 

the troubleshooting process today, it does not adequately 

consider field experience and it does not explore situations 

where the maintenance operator has limited resources, such 

as a lack of tools and equipment. These drawbacks are 

essentially caused by the lack of flexibility or adaptability of 

this method since it is a static manual. There are several 

dynamic methods studied in the field of system 

troubleshooting and aircraft maintenance such as Artificial 

Neural Networks, Support Vector Machine, K Nearest 

Neighbor and many other machine learning algorithms. 

These techniques are considered very powerful and useful; 

however, the training process of the data-driven strategies 

requires a large amount of data to provide a reliable result.   

In this context, the present work proposes a combination of 

data-driven with legacy knowledge-based approaches. The 

following techniques are employed to integrate the concepts 

mentioned: decision trees that explore the legacy knowledge 

with its topology based on the FIM, truth tables and decision 

analysis that explores Bayes’ rule to assist the decision-

making process and a principle of case-based reasoning, 

technique that enables the learning from the field experience. 

1. INTRODUCTION 

According to Kinnison and Siddiqui (2013), maintenance is 

the process of ensuring that a system continually performs its 

intended function at its designed-in level of reliability and 

safety. Besides that, maintenance of an aircraft has a 

significant impact on the direct operating costs for an airline. 

Complex systems such as aircraft and power plants are 

submitted to failures whose root cause cannot be identified 

without detailed maintenance investigation. The process of 

identifying the faulty components and repairing them is 

called troubleshooting. 

Some troubleshooting strategies consist of a combination of 

actions and checks. In such cases, each possible answer for a 

check question may lead to a different set of troubleshooting 

actions (or a different sequence of troubleshooting actions). 

In many applications, the set of all possible actions and 

questions are known. Then, the troubleshooting problem can 

be expressed by finding the optimal sequence of actions and 

questions (Vianna, 2016). 

Decision analysis is a formalized approach to making optimal 

choices under conditions of risk or uncertainty. In situations 

where the decision-maker face no uncertainty or risk, the 

possible alternatives can be modeled by a deterministic 

model. Facing risk or uncertainty, the best decision or 

alternative becomes, depending on the variables involved, 

much less evident. In these cases, a probabilistic model is one 

form to represent a complex problem and find its best 

solution. 

According to Arsham (2020), when decisions are being made 

under risk, there are several approaches widely recognized, 

such as: determining the best alternative based on the 

expected payoff, the most probable states of nature, the 

expected opportunity loss (EOL) and many others. In another 

modeling environment, there is a scenario where the 

decision-maker can buy a reliable information. That is one 
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approach naturally present on the traditional troubleshooting 

strategies since each experiment is performed to improve the 

prior knowledge of the faults to provide a more precise 

reference of expected payoff for each alternative. 

The mathematical rule that is capable to establish a relation 

between posterior and prior knowledge is the Bayes’ theorem 

(Nyberg, 2018). It is given by: 

 

 𝑃(𝐴 | 𝐵) =  
𝑃(𝐵 | 𝐴) ∗ 𝑃(𝐴)

𝑃(𝐵)
 (1) 

 

Where A and B are events and P(B) ≠ 0. P(A | B) is the 

conditional probability of event A given event B is true. P(A 

| B) is the conditional probability of event B given event A is 

true. P(A) and P(B) are the probabilities of occurrence of the 

events A and B, respectively.  

In decision analysis, a powerful tool used to represent a 

strategy or sequence of actions that contains conditional 

control statement is the decision tree (Chen, Zeng, Lloyd, 

Jordan and Brewer, 2004). While decision trees are not 

always the most competitive classifiers in terms of prediction, 

they enjoy the crucial advantage of yielding human-

interpretable results. In addition, another important tool used 

in various fields of science is the truth table. It aims to 

represent a system or process based on its inputs and outputs. 

A decision tree can be easily converted into a truth table that 

describes the possible existing paths.   

In the domain of Fault Detection and Isolation (FDI), model-

based techniques usually employ residual analysis generated 

by the difference between system outputs measurements and 

their physical models’ estimations (state observer as a 

broadly known method of modeling). On the other hand, 

concerning the data-driven techniques, Manjurul Islam and 

Kim (2019) states that SVM is still a state-of-the-art FDI 

algorithm in many cases. Artificial Neural Networks (ANN) 

also have been applied in FDI for distinct purposes. 

Cirrincione et al. (2020) presents how a shallow Multilayer 

Perceptron can overperform more complex neural networks 

in FDI applications. Concerning hybrid techniques, (Jung et 

al., 2018) combined a state observer and an ANN to detect 

and isolate small faults of actuators in closed-loop control 

systems. The role of the ANN is to analyze residues and the 

model-based classification results in decision reasoning 

process.  Sun, Li, Hua and Jin (2020) proposed a hybrid 

approach to control and detect anomalies for fuel cell stack 

cooling control using Active Disturbance Rejection Control 

(ADRC), a data-driven technique, to estimate uncertainty, 

and evaluate residuals to a proportional integral derivative 

(PID) control. The extended state observer (ESO) represents 

the physical model responsible for the residual generation. 

Finally, Liao and Köttig (2016) proposed a data-driven and 

model-based hybrid/fusion prognostics framework interfaces 

a classical Bayesian model-based prognostics approach, 

namely particle filter, with two data-driven methods in 

purpose of improving the prediction accuracy. The first data-

driven method establishes the measurement model to account 

for indirect measurements. The second data-driven method 

extrapolates the measurements beyond the range of available 

measurements to feed them back to the model-based method 

which further updates the particles. 

2. PROBLEM AND HYPOTHESES  

Various authors address the matter of improvement of fault 

isolation and detection process since it is, in many cases, 

considered not fully efficient. However, the Fault Isolation 

process optimization is not a commonly addressed subject. 

Even with several criticisms on the fault isolation framework 

and practices, the main aircraft manufactures do not adopt a 

deeply different way of generating it. 

For years, fault isolation and correction strategies were object 

of study. However, most of the authors and approaches 

employed, in general, two methods. The first method is an 

entirely data-driven approach that implements techniques 

such as Artificial Neural Networks (ANNs) (Cirrincione et 

al., 2020), (Jung et al., 2018), Support Vector Machine 

(SVM) (Manjurul Islam & Kim, 2019) and many other 

machine learning algorithms. This strategy is limited and 

very dependent on the volume of data available. The second 

approach corresponds to the implementation of a specialist 

systems based on the company/developer legacy knowledge. 

Conventional aeronautical Fault Isolation Manual (FIM) 

(Embraer, 2020) exemplifies this approach. The limitation of 

this approach is the reduced capacity for updating and 

evolving according to the field experience. 

The hypothesis of this study is that there is a gap between the 

fully data driven approach and the legacy knowledge-based 

systems. Therefore, the solution to cover this gap consists in 

combining aspects of these two different types of approach, 

adding their advantages and minimizing their vulnerabilities 

and limitations. Therefore, two main techniques are 

employed in the present study: decision trees that explore the 

legacy knowledge as its topology; and case-based reasoning, 

technique that enables the learning from the field experience. 

3. PROPOSED METHOD 

3.1. General Approach 

As commented before, a troubleshooting strategy is basically 

a sequence of tests and experiments executed as a mean of 

isolating one or a small group of faults to finally perform a 

corrective action to fix the fault. If the fault isolation process 

ends prematurely, some faults may not be isolated thus 

requiring the maintainer to go through a “trial and error” 

approach to solve the problem. Although this situation may 

lead to increased aircraft downtime and workload, sometimes 

maintainer may face situations when lack of resources and 

infrastructure limits the isolation process and a “trial and 
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error” approach may be the best left alternative to recover a 

fault.  

The complete troubleshooting process englobes the fault 

isolation and the repairing process. The fault isolation refers 

to all tests and experiments performed before the corrective 

action that correctly fixes the fault. An experiment, also 

called test, is a type of action that intends to acquire 

symptoms or gain information about the system in order to 

isolate a fault. Some examples of experiments are checking 

continuity on system wires, checking power source, testing 

equipment fuses and many others. The repairing process 

comprehends only the execution of an effective corrective 

action. A corrective action is an action that aims to fix the 

fault such as replacing a component or repairing a wiring 

damage. The relation between the troubleshooting cost and 

fault isolation cost can be observed by the equation below: 

 

 
𝐶𝑜𝑠𝑡(𝑡𝑠) =  𝐶𝑜𝑠𝑡(𝐹𝑎𝑢𝑙𝑡 𝐼𝑠𝑜𝑙𝑎𝑡𝑖𝑜𝑛) +

𝐶𝑜𝑠𝑡(𝑅𝑒𝑝𝑎𝑖𝑟𝑖𝑛𝑔 𝑎𝑐𝑡𝑖𝑜𝑛)  
(2) 

 

In this work two probabilistic models are proposed, the 

heuristic model and the global optimization. Both models 

follow a similar structure of steps presented in Figure 1. The 

main difference between the two models resides in the 

calculation of the expected economy (step 2). Basically, the 

first step is to gather all data and structure the problem using 

decision trees and truth tables to simply manipulates and 

perform the necessary operations. After that, the most 

important metric is determined which is the expected 

economy of each experiment (heuristic case) or for the whole 

TS (global optimization case). Using this parameter, it is 

possible to decide if it is better to perform an experiment or a 

corrective action. If an experiment is selected, the current 

representation of the system is updated and the process of 

choosing the next best action restarts. If a corrective action is 

elected, the effectiveness of the solution is verified. If the 

corrective action correctly fixes the fault, the TS ends and the 

fault repaired is added to the fault history database of the 

algorithm. In case of negative, the current TS scope of 

possibilities is updated, and the decision-making process 

starts again.    

 
Figure 1. Same flowchart for both models. 

3.2. Heuristic Model 

The heuristic model follows a greedy approach in which the 

next action is performed based only on the possible outcome 

for current state of the troubleshooting process. In this way, 

each decision is a short-term goal that is not necessarily the 

best alternative to optimize the whole TS. It requires a low 

processing capacity and it is a fast solution if compared to the 

global optimization model. This model uses a mix of trial and 

error method and experiment oriented approach.  

The actions detailed in FIM block diagram can categorized in 

two sets: the experiments and the corrective actions. 

Considering that the corrective actions available are 

described by the set A = {A0, A1, A2,…, Am}. Each corrective 

action has an associated fault represented by the set F = {F0, 

F1, F2,…, Fm}. The corrective action and its associated fault 

have the same index. Thus, the action A0 correctly fixes the 

fault F0, the action A1 correctly fixes the fault F1 and so on. 

Each fault has only one corrective action associated. In 

addition, the set E = {E0, E1, E2,…, En} represents the 

experiments available. The decision variable at each 

troubleshooting step are all possible experiments and 

corrective actions not yet performed. The outcome also called 

Expected Immediate Cost (EIC) of the corrective actions is 

estimated according to Eq. (3). 

 

 
𝐸𝐼𝐶(𝐴𝑖) = 𝐶𝑜𝑠𝑡(𝐴𝑖) ∗ 𝑃(𝐹𝑖) +

(𝐶𝑜𝑠𝑡(𝐴𝑖) + 𝐷𝑇𝐶) ∗ (1 − 𝑃(𝐹𝑖))  
(3) 

 

The EIC incorporates the corrective action chance of being 

non-effectiveness, adding the downtime cost (DTC) to its 

original cost. The DTC was estimated based on the 

methodology proposed by Saltoglu, Humaira and Enalhan 

(2009). The costs and probabilities of the corrective actions 

and faults are, respectively, represented by the functions 
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Cost() and P(). Then, in order to maximize the economy of 

each experiment and reduce the risk of the model (favoring 

the experiments over the corrective actions), the greatest 

expected value will be used as reference of EIC without 

experimentation as shown in Eq. (4). 

 

 
𝐸𝐼𝐶𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =

max (𝐸𝐼𝐶(𝐴1), 𝐸𝐼𝐶(𝐴2), . . , 𝐸𝐼𝐶(𝐴𝑚))  
(4) 

 

Assuming that an experiment will be performed before any 

corrective action, The EIC needs to be determined for both 

potential results of the experiment. Therefore, the EIC with 

experimentation is given by the Eq. (5).    

 

 
𝐸𝐼𝐶(𝐸𝑖) = 𝐸𝐼𝐶(𝐸𝑖 = 𝑡𝑟𝑢𝑒) ∗ 𝑃(𝐸𝑖 =

𝑡𝑟𝑢𝑒) + 𝐸𝐼𝐶(𝐸𝑖 = 𝑓𝑎𝑙𝑠𝑒) ∗ 𝑃(𝐸𝑖 = 𝑓𝑎𝑙𝑠𝑒)  
    (5) 

 

Where: 

 

𝐸𝐼𝐶(𝐸𝑖 = 𝑡𝑟𝑢𝑒) =

min (
𝐸𝐼𝐶(𝐴1|𝐸𝑖 = 𝑡𝑟𝑢𝑒), 𝐸𝐼𝐶(𝐴2|𝐸𝑖 = 𝑡𝑟𝑢𝑒), … ,

𝐸𝐼𝐶(𝐴𝑚|𝐸𝑖 = 𝑡𝑟𝑢𝑒)
)  

(6) 

 

and: 

 

𝐸𝐼𝐶(𝐸𝑖 = 𝑓𝑎𝑙𝑠𝑒) =

min (
𝐸𝐼𝐶(𝐴1|𝐸𝑖 = 𝑓𝑎𝑙𝑠𝑒), 𝐸𝐼𝐶(𝐴2|𝐸𝑖 = 𝑓𝑎𝑙𝑠𝑒), … ,

𝐸𝐼𝐶(𝐴𝑚|𝐸𝑖 = 𝑓𝑎𝑙𝑠𝑒)
)  

(7) 

 

Finally, the economy (Econ) of each experiment which is the 

main decision-making metric can be found using the Eq. (8). 

 
𝐸𝑐𝑜𝑛(𝐸𝑖) = 𝐸𝐼𝐶𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 − 𝐸𝐼𝐶(𝐸𝑖) −

𝐶𝑜𝑠𝑡(𝐸𝑖)  
   (8) 

3.3. Global Optimization Model 

The global optimization model, on the other hand, follows an 

exhaustive search approach. It relies on the determination of 

the best sequence of actions (experiments and corrective 

actions) to minimize the entire troubleshooting process. In 

order to do so, it starts by simulating all possible sequences 

of corrective actions only.  

 𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑚!} (9) 

where: 

 

 𝑠1 = {𝐴1, 𝐴2, … , 𝐴𝑚} (10) 

 

 𝑠2 = {𝐴2, 𝐴1, … , 𝐴𝑚} (11) 

 

 𝑠𝑚! = {𝐴𝑚, 𝐴𝑚−1, … , 𝐴1} (12) 

 

Each strategy s has m elements and m possible subsets. The 

subsets are the effective corrective actions performed in a 

determined scenario. For example, a strategy given by 𝑠𝑧 =
{𝐴1, 𝐴2, 𝐴3} will have the following subsets: 𝑠𝑧1 =
{𝐴1},𝑠𝑧2 = {𝐴1, 𝐴2} and 𝑠𝑧3 = {𝐴1, 𝐴2, 𝐴3}. The Expected 

Cost of Repair (ECR) for a subset 𝑠𝑖𝑗  of strategy 𝑠𝑖 is 

defined by: 

 𝐸𝐶𝑅(𝑠𝑖𝑗) =  ∑ 𝐶𝑜𝑠𝑡(𝐴𝑘) + 𝐷𝑇𝐶 ∗ (𝑗 − 1)

𝑗

𝑘=1

 (13) 

Where j is the number of elements of the subset. The next 

step is to calculate the ECR of the complete troubleshooting 

strategy using the formula described in Eq. (14). 

 

 𝐸𝐶𝑅(𝑠𝑖) =  ∑ 𝐸𝐶𝑅(𝑠𝑖𝑗) ∗ 𝑃(𝐹𝑗)

𝑚

𝑗=1

 (14) 

 

Therefore, the ECR used as reference will be: 

 

 
𝐸𝐶𝑅𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =

min (𝐸𝐶𝑅(𝑠1), 𝐸𝐶𝑅(𝑠2), … , 𝐸𝐶𝑅(𝑠𝑚!))  
(15) 

 

The ECR for the complete troubleshooting using experiments 

is calculated by determining the expected value of a 

troubleshooting process that only performs a corrective 

action when it has a 100% certainty of the system fault. To 

meet this condition, it is necessary to consider all path costs 

as shown in Eq. (16).  

 

 𝐸𝐶𝑅(𝐸1, 𝐸2, … , 𝐸𝑛) = ∑ 𝑃𝐶(𝐹𝑖) ∗ 𝑃(𝐹𝑖)

𝑚

𝑖=0

 (16) 

 

The path cost (PC) of each fault is basically the cost of all 

necessary experiments to isolate a single fault plus the cost of 

the corrective action that fixes the fault found. 

Mathematically the path cost can be expressed by: 

 

 𝑃𝐶(𝐹𝑖) = 𝐶𝑜𝑠𝑡(𝐴𝑖) + ∑𝐶𝑜𝑠𝑡(𝐸𝑗)  (17) 

 

Where 𝐸𝑗  includes all experiments that are essential to 

diagnose a fault with complete certainty. 

Finally, the economy for the global optimization model is 

given by: 

 

 
𝐸𝑐𝑜𝑛 =  𝐸𝐶𝑅𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 −

𝐸𝐶𝑅(𝐸1, 𝐸2, … , 𝐸𝑛)   
(18) 

 

After each decision (experiment or corrective action), the 

fault probabilities are updated depending on its outcome. The 

probabilities of the remaining faults are determined by 

Bayes’ rule as showed in Eq. (1). 
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After the fault isolation and repairing process is complete, the 

initial probabilities of each fault are revised for the next 

troubleshooting process. It is consolidated by incorporating 

the last fault fixed to the database and calculating each fault 

proportion relative to the total fault history record. 

4. CASE STUDY 

The proposed method was implemented in three datasets 

presented at the end of the paper.  

It is assumed that only single failures happen at the system 

being studied. Also experiments presents no false positive or 

false negative indications. 

5. MODELS RESULTS 

5.1. Dataset 1 Simulation 

To simulate the performance of the models created, a dataset 

with 1000 samples of faults was generated. Along with the 

faults, the dataset also contains the result of each experiment 

to its associated fault. The results of the experiments, 

obviously, respect the relations between experiments and 

faults established by the decision tree. The fault probabilities 

in this dataset follow exactly the same probabilities inputted 

into the models. This dataset is identified by dataset 1 and it 

can be seen on Table 1. 

 

After the 1000 simulations of fault isolation and repairing 

process for each one of the troubleshooting strategies 

(heuristic model and global optimization model), the mean 

cost of troubleshooting is presented on Table 2. 

The “TS mean cost” refers to the average cost of fault 

isolation and repairing process. Thus, it includes all the 

actions (experiments and corrective actions) executed to 

diagnose and fix the fault. The Global optimization model 

show itself as the best strategy presenting a cost reduction of 

3,5% compared to the heuristic approach. The Table 2 also 

presents a comparison of the “Fault isolation mean cost” 

between the two models in question. It is worth noting that 

the cost of the repairing action is common to all models since 

each fault is only fixed by a unique corrective action and the 

dataset of faults used was the same to all model simulations. 

Thus, analyze the fault isolation cost is very valuable to 

observe the real gain of performance since the repairing 

action cost is a fixed term. In addition, this metric tends to be 

fairer to measure the performance gain due to the fact that if 

the repairing action cost is much greater than the fault 

isolation cost, the TS cost reduction of an optimized strategy 

will always be irrelevant or barely noticeable. Using the 

metric of fault isolation mean cost is possible to observe a 

cost reduction of more than 50% when comparing the Global 

optimization and heuristic model. 

   

 

5.2. Dataset 2 Simulation 

The second simulation also aims to model the costs incurred 

for each one of the strategies, however it uses a different 

dataset from the previously simulation. This new dataset is 

called dataset 2. Although the structure of columns, number 

of samples (1000) and format of data are similar (Table 1), 

the quantity and probability of each fault is slightly different 

from dataset 1. The probability changes can be seen in Table 

8 (appendix). 

Even though the dataset has been modified, the probabilities 

inside the models continue the original ones. Thus, there is a 

contrast between what is modeled, and the real data 

consumed. The intention of this simulation is to reproduce a 

real operative scenario where the probabilities considered to 

structure the FIM do not match perfectly with the 

probabilities of the faults on the field.  

In this scenario, the Global Optimization Method is the one 

that presents the lower troubleshooting mean cost. The 

difference between the method with lower costs incurred 

(Global Optimization Model) compared to the heuristic 

model in this simulation is approximately -1.3%. It shows 

that overall performance was very similar.  The comparison 

of the fault isolation mean cost can be seen in Table 3. As 

expected, the difference between the models were more 

evidenced. Observing this metric, the fault isolation cost 

reduction of the Global Optimization method compared to the 

heuristic model was approximately 23%. It can be seen that 

when the mismatch of probabilities between model and 

dataset are greater, the superiority of the Global Optimization 

method over the heuristic method is less appreciable. 

Table 1. Dataset 1 structure. 

 

Sample E0 E1 … E8 E9 F 

0 F F  F F F0 

1 T F  T T F8 

. 

. 

. 

. 

. 

. 

     

999 F F  F F F0 

 

Table 2. First simulation results. 

 

 
Heuristic 

Model 

Global 

Opt. 

Model 

Variation 

TS mean  

cost [US$] 
7136.7 6884.5 -3.5% 

Fault isolation 

mean cost [US$] 
444.2 192.0 -56.7% 
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5.3. Dataset 3 Simulation 

The third simulation also aims to model the costs incurred for 

each one of the strategies, however it uses a different dataset 

from the previously simulation. This new dataset is called 

dataset 3. Although the structure of columns, number of 

samples (1000) and format of data are similar (Table 1), the 

quantity and probability of each fault is completely different 

from dataset 1. The probability changes can be seen in Table 

8 (appendix). 

Even though the dataset has been modified, the probabilities 

inside the models continue the original ones. Thus, there is a 

contrast between what is modeled, and the real data 

consumed. The intention of this simulation is to reproduce a 

situation where the probabilities considered to structure the 

FIM is disconnected to the real probabilities of the faults on 

the field. This is considered a possible scenario since the FIM 

can be elaborated on initial expectations of MTBF of 

components which could be not strictly respected in some 

cases or when there are changes in suppliers of the 

components over the years and there FIM is not updated to 

incorporate such probability changes. 

In this scenario, the heuristic model is the one that presents 

the lower troubleshooting mean cost. The difference between 

the method with lower costs incurred(heuristic) compared to 

the Global optimization model in this simulation is 

approximately 1.1%. It shows that the gain of performance 

was not extremely relevant.  The comparison of the fault 

isolation mean cost can be seen in Table 4. As expected, the 

difference between the models were more evidenced. Even 

with this accentuation of contrast on the results, the fault 

isolation cost reduction of the heuristic model compared to 

the Global Optimization was close to 5%. Again, there was 

not a significant gain of performance. 

 

5.4. Limited resources case 

This simulation aims to represent not a frequent but possible 

real case scenario in an airline maintenance operation.  In a 

limited resources situation, the maintenance crew do not 

possess or do not have access to tools and equipment to 

perform experiment actions and follow the FIM instructions, 

as a result, there are basically two alternatives in order to 

execute the troubleshooting: the maintenance team must 

perform only a portion of the experiments oriented by the 

FIM and execute corrective actions assuming the risk of 

being non-effective or  the company must travel to another 

site to gather the necessary equipment and then flight back to 

the original site the aircraft was located. The second 

alternative will generate significantly additional costs 

considering the transportation and logistics expenses. For this 

case, these kinds of charges were estimated in around 

US$8904 that represents the direct operating cost (DOC) of 

two flights of 1h of a medium narrow body commercial 

aircraft according to the Form 41(financial data) provided by 

the U.S. Department of Transportation in 2013. For this 

simulation, the resource limitation can be exemplified as the 

unavailability of an oscilloscope that generate the extra 

experiment cost of US$8904 which was added to an arbitrary 

experiment for all models. The experiment selected to 

incorporate this extra cost was E2. The dataset 1 was used to 

run the 1000 simulations. The probabilities inputted in both 

heuristic and global optimization model were compatible to 

the fault probabilities of the dataset.  

The mean costs of TS using the FIM, heuristic and global 

optimization model are exposed in Table 5. The cost 

reduction presented by the Global Optimization strategy is 

extremely significant. The fault isolation mean cost of the 

heuristic model reaches more than 3 times the fault isolation 

cost of the other model. It shows that the heuristic model does 

not show an efficient capability of adaptation in this case.  

Table 3. Comparison of models’ results in second 

simulation. 

 

 
Heuristic 

Model 

Global 

Opt. 

Model 

Variation  

TS mean 

cost [US$] 
7276 7178 -1.3% 

Fault isolation 

mean cost [US$] 
426 328 -23% 

 

Table 4. Comparison of models’ results in third simulation. 

 

 
Heuristic 

Model 

Global 

Opt. 

Model 

Variation  

TS mean 

cost [US$] 
3300.42 3336.2 +1.1% 

Fault isolation 

mean cost [US$] 
650.9 686.7 +5.5% 
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5.5. Processing Time 

Due to the enormous quantity of mathematical operations, the 

algorithm developed for the global optimization approach 

only determine the expected value of a portion of all possible 

sequences. A limit of 1000 loops per search was established 

to allow completing the simulation in a reasonable period of 

time. To run the 1000 troubleshooting simulations, the global 

optimization model took approximately 300 minutes. In 

comparison, the heuristic model consumed only 6 minutes. 

6. CONCLUSION  

This work proposes a method to assist the troubleshooting 

process using a data driven approach as well as knowledge 

base information. A heuristic approach using a greedy 

solution is proposed as well as a global optimization approach 

using an exhaustive search solution. Both methods were 

evaluated in three different datasets and two possible 

scenarios, the first one with unlimited resources and the 

second one with limited resources. Results showed that the 

global optimization presented better results although more 

computational effort was required. It worth noting that the 

exhaustive search model performs better than the heuristic 

model in a high/medium certainty environment. The heuristic 

model can add value in scenarios of high uncertainty and 

restricted computational resources. Future work includes 

considering multiple failure conditions, the addition of 

combinatorial optimization techniques to narrow the 

exhaustive search and evaluation of different heurists from 

the ones proposed in this work. 

REFERENCES 

Airline Operating Costs and Productivity. ICAO. (2017). Retrieved from: 
https://www.icao.int/MID/Documents/2017/Aviation%20Data%20an

d%20Analysis%20Seminar/PPT3%20-

%20Airlines%20Operating%20costs%20and%20productivity.pdf  
Arsham, H. (1994). Tools for Decision Analysis: Analysis of Risky 

Decisions. 9th Edition. Retrieved from: 

http://home.ubalt.edu/ntsbarsh/opre640a/partIX.htm 
Barlas, I. (2003). A Multiagent Framework for a Diagnostic and Prognostic 

System. Georgia Institute of Technology. 

Bengtsson, M., Olsson, E., Funk, P., & Jackson, M. (2004). Technical 
Design of Condition Based Maintenance System - A Case Study 

using Sound Analysis and Case-Based Reasoning. Department of 

Innovation, Design and Product Development. Mälardalen University. 

Boral, S, Chaturvedi, S.K, & Naikan, V.N.A. (2019). A case-based 

reasoning system for fault detection and isolation: a case study on 

complex gearboxes. Journal of Quality in Maintenance Engineering. 

Emerald Publishing Limited 
Chen, M., Zheng, A.X, Lloyd, J., Jordan, M.I., & Brewer, E. (2004). 

Failure Diagnosis Using Decision Trees. Proceedings of the First 

International Conference on Autonomic Computing (ICAC '04), New 
York, NY 

Cirrincione, G., Kumar, R. R., Mohammadi, A., Kia, S. H., Barbiero, P., & 

Ferretti, J. (2020). Shallow versus Deep Neural Networks in Gear 
Fault Diagnosis. IEEE Transactions on Energy Conversion, v. 8969, 

n. c, pp. 1. 

Cook, A., Tanner, G., Jovanić, R., & Lawes, A. (2009). The cost of delay 
to air transport in Europe – quantification and management, 13th Air 

Transport Research Society (ATRS) World Conference, Abu Dhabi 

Deng, W., Wen, B., Zhou, J., Wang, J., & Chen, Z. (2014). The study of 
aircraft fault diagnosis method based on the integration of case and 

rule reasoning. 2014 Prognostics and System Health Management 

Conference (PHM-2014 Hunan). 

Doganis, R. (2009). Flying Off Course IV: Airline Economics and 

Marketing, Taylor & Francis Ltd - M.U.A.  

Hessburg, J. (2001). Air Carrier MRO Handbook, McGraw-Hill 
Jung, D., Ng, K. Y., Frisk, E., & Krysander, M. (2018). Combining model-

based diagnosis and data-driven anomaly classifiers for fault isolation. 

Control Engineering Practice. Elsevier Ltd, v. 80, n. September, pp. 
146-156. 

Kara, A.Q., Ferguson, J., Hoffman, K., & Sherry, L. (2013). Estimating 
Domestic U.S. Airline Cost of Delay based on European Model. 

Transportation Research Part C: Emerging Technologies, Volume 33, 

pp. 311-323. doi:10.1016/j.trc.2011.10.003 
Khan, S., & Yairi, T. (2018). A review on the application of deep learning in 

system health management. Mechanical Systems and Signal 

Processing, Elsevier Ltd, v. 107, pp. 241-265. ISSN 10961216. 
Kinnison, H. A., & Siddiqui, T. (2013). Aviation Maintenance 

Management, 2nd edition, McGraw-Hill. 

Kolodner, J. (1993). Case-Based Reasoning, Morgan Kaufmann Publishers, 
San Mateo CA. 

Liao, L., & Köttig, F. (2016). A hybrid framework combining data-driven 

and model-based methods for system remaining useful life prediction. 
Applied Soft Computing. 44. 10.1016/j.asoc.2016.03.013.   

Medlin, J.A. (1990). An evaluation of fault isolation manuals from the 

maintenance technician' s perspective. 
Morris, N. M., & Rouse, W. B. (1985). Review and Evaluation of 

Empirical Research in Troubleshooting. Human Factors the journal of 

the Human Factors and Ergonomics Society. Vol. 27(5), pp. 503-530. 
Manjurul Islam, M. M., & Kim, J. M. (2019). Reliable multiple combined 

fault diagnosis of bearings using heterogeneous feature models and 

multiclass support vector Machines. Reliability Engineering and 
System Safety, Elsevier Ltd, v. 184, n. 7, pp. 55-66. 

Nyberg, S.O. (2018). The Bayesian Way: Introductory Statistics for 

Economists and Engineers. Wiley, 1st Edition 
Rosales, L. J. S., Yang, J.B, & Chen, Y.W. (2014). Analysing delays and 

disruptions in Aircraft Heavy Maintenance.  The 32nd International 

Conference of the System Dynamics Society. Delft, Netherlands. 
Saltoglu, R., Humaira, N., & Enalhan, G. (2016). Aircraft Scheduled 

Airframe Maintenance and Downtime Integrated Cost Model. Istanbul, 

Turkey. 
Sun, B., Xu, L., Pei, X., & Li, H. (2003). “Scenario-based Knowledge 

Representation in Case-based Reasoning Systems”. Expert Systems, 

pp. 92-99. DOI: 10.1111/1468-0394.00230 
Sun, L., Li, G., Hua, Q., & Jin, Y. (2020). A hybrid paradigm combining 

model-based and data-driven methods for fuel cell stack cooling 

control. Renewable Energy, Elsevier Ltd, v. 147, p. 1642-1652. 
Vianna, W.O.L., & Rodrigues, L.R. (2016). Troubleshooting Optimization 

Using Multi-Start Simulated Annealing. 2016 Annual IEEE Systems 

Conference (SysCon).  

BIOGRAPHIES  

Table 5. Results of the models in limited resources 

scenario. 

 

 Heuristic  

Model 

Global 

Opt. 

Model 

Variation 

TS mean  

cost [US$] 
9389.11 7515.8 -20% 

Fault isolation 

mean cost [US$] 
2696.6 823.3 -70% 
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APPENDIX 

 

 

 

 

Table 6. Faults and corrective actions data. 

 

Fault ID Probabilty 

Associated 

corrective 

action (A) 

Cost (A) 

[US$] 

F0 15,10% A0 110 

F1 17,05% A1 18030 

F2 0,10% A2 1640 

F3 0,10% A3 1930 

F4 0,10% A4 2330 

F5 0,10% A5 290 

F6 15,10% A6 930 

F7 0,10% A7 30 

F8 20,10% A8 350 

F9 15,10% A9 1460 

F10 17,05% A10 18030 

 

Table 7. Experiments costs. 

 

Experiment ID 
Cost (E) 

[US$] 

E0 30 

E1 30 

E2 180 

E3 60 

E4 360 

E5 540 

E6 90 

E7 30 

E8 540 

E9 120 

 

Table 8. Fault probabilities changes in datasets. 

 

Fault ID Dataset 1 Dataset 2 Dataset 3 

F0 15.10% 16.6% 2.4% 

F1 17.05% 14.1% 6.5% 

F2 0.10% 0.2% 27.5% 

F3 0.10% 0.2% 4.2% 

F4 0.10% 1.1% 9.1% 

F5 0.10% 0.4% 10.5% 

F6 15.10% 11.7% 10.6% 

F7 0.10% 0.4% 18.6% 

F8 20.10% 17.1% 6.5% 

F9 15.10% 16.9% 1.0% 

F10 17.05% 21.3% 3.1% 

 


