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ABSTRACT

Grasping is one of the most common tasks related to robotics
and manipulation which has received an extensive amount of
contributions from the research community. From a design
point of view, the robotic gripper systems are generally man-
ufactured using a significant amount of small moving parts,
in order to establish a balance between size, weight and per-
formance. This balance leads to designs and components that
are less robust than those of, for example, pneumatic grippers.
To the best of our knowledge, most of the literature related to
robotic grasping concentrates and focuses on grasping from
a cognitive perspective. However, in order to ensure the ex-
ecution of grasping tasks over extended periods of time, re-
ducing down times and increasing gripper availability, even
in demanding scenarios without access to maintenance, other
phenomena such as component tear and degradation have to
be monitored and analyzed. This paper proposes an unsu-
pervised learning model based approach for the estimation of
the degradation states and the detection of abnormal working
conditions of the actuator components for a class of robotic
anthropomorphic hand. The approach allows an easy imple-
mentation and establishes the basis for the development of re-
maining useful life estimation algorithms for the components
of other gripper systems. Our proposed architecture consists
of an automatic degradation estimator and working condi-
tion detector, based on an unsupervised model combining K-
means with a geometric approach. The model estimates the
hand’s actuators degradation and determines its working con-
dition from the online data collected during grasping tasks.
The proposed method is able to work both online and of-
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fline, requires a low amount of data and is independent of
the grasped object properties such as mass, geometry, shape,
etc. It was experimentally tested on a real Schunk SVH Hand
used to assist humans during the assembly process in the au-
tomobile industry.

1. INTRODUCTION

The phenomenon of the degradation is of central importance
in condition based monitoring (CBM) and prognostics and
health management (PHM), as it provides engineers, practi-
tioners and scientists crucial information in order to deter-
mine the current health status of a component or equipment
and therefore, plan the necessary actions for maintenance, in-
spection or repair of degraded systems, aiming to improving
the maintenance schedule, reducing maintenance costs and
extending the lifetime of the systems and equipment (Huynh,
Grall, & Berenguer, 2019; Walck, Haschke, Meier, & Ritter,
2017; Lei, Li, & Lin, 2016).

In the literature, the approaches for the degradation estima-
tion can be grouped in two families: first, the model based
approaches, which attempt to reconstruct the dynamics of the
deterioration by means of a physical model, i.e. crack growth,
fatigue or wear dynamics. Given the mathematical and sys-
tem’s knowledge required to represent the physical degrada-
tion, the Wiener process is one of the most popular tools for
modeling the deterioration of a system. Generally the physi-
cal models have a limited applicability due to the occurrence
of multiple and non linear degradation processes on the oper-
ating assets (Loutas, Roulias, & Georgoulas, 2013). (Wang,
Hu, & Fan, 2018) propose a deterioration model with a non
linear variability that takes into account the cumulative effect
of the degradation in the system. The model is then used to
determine the Remaining Useful Life (RUL) with application
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to bearings. (Lei et al., 2016) propose a stochastic model
with 4 variability sources in combination with a particle filter
algorithm to estimate the degradation states for subsequent
RUL estimation of machinery. (Huynh et al., 2019) devel-
ops a new parametric stochastic framework for maintenance
decisions that uses the Gamma process for the degradation
modeling. (Garay & Diedrich, 2019) proposes a linear model
for the estimation of the degradation of a glue machine in the
automotive industry, enabling the prediction of faults weeks
before their occurrence. In a similar way, (Zheng, 2019) es-
timates the degradation of bearings using a linear model and
the Hilbert Entropy.

The second family of approaches are the data-driven methods,
which are based upon the system’s historical collected data in
order to construct a representation of the degradation. These
approaches are mostly based on machine learning techniques,
including supervised and unsupervised learning. (Khelif et
al., 2017) and (Patil et al., 2015) propose a Support Vector
Machine (SVM) model used as regressor for the degradation
estimation of turbines and batteries respectively. (Loutas et
al., 2013) propose a probabilistic Support Vector Regression
framework that determines a bounded RUL of bearings based
on vibration signals. Their method allows the implementa-
tion of general purpose prognostics frameworks using limited
or small amount of historical data. (Tobon-Mejia, Medjaher,
Zerhouni, & Tripot, 2012) propose a Mixture of Gaussian
Markov Hidden Model (MoG-HMM) to compute the best fit
across the degradation phenomenon of ball bearings. (Ro-
drigues, 2018) obtains the degradation state of each individ-
ual component of a multiple component system based on par-
ticle filters. (Peng, Cheng, Qiao, & Qu, 2017) uses a recurrent
neural network (RNN) to estimate the future health states of a
gearbox attached using noise-to-signal ratio as current health
state indicator.

From the above introduction, it is clear that there exists a vast
amount of research regarding degradation estimation of sin-
gle components. Most of the literature focuses on the deteri-
oration estimation of systems and components than can be di-
rectly measured, i.e bearings, turbofans, batteries, pumps, etc.
However, the estimation of the degradation phenomenon of
multiple components is much more challenging (Rodrigues,
2018). In robotic grasping, gripper systems are built using a
significant amount of small components, i.e. spindles, small
gearboxes, couplings, pulleys, tendons, etc. in order to keep
a certain equilibrium between performance and size (Walker,
De La Rosa, Elias, Godden, & Goldsmith, 2010), leading
to a very limited amount of sensor data for building a rep-
resentation of the degradation phenomenon. Furthermore,
according to the best of our knowledge, most of the litera-
ture related to robotic grasping concentrates and focuses on
grasping from a robot-centric cognitive perspective. How-
ever, in order to ensure the execution of grasping tasks over
extended periods of time in demanding scenarios without ac-

cess to maintenance (such as the outer space, deep sea or
hazardous environments), the degradation states of the grip-
per systems have to be taken into account. In our knowl-
edge, this problem has been partially tackled by (Walck et al.,
2017) with their implementation of a force limiting algorithm
that imitates the human muscle fatigue dynamics to protect
the tendons of an anthropomorphic hand from being cut off
due to high long-term tensions during grasping, allowing the
proper functioning of the hand for more than 3 years without
tendon breakage. Also, (Suehiro, Ozawa, & Van Heerden,
2017) propose a model based switching control architecture
to cope with tendon breakage for redundant tendon-driven-
mechanisms (TDM) in a fault-tolerant fashion.

This paper attempts to tackle and contribute to the problem
of the degradation estimation on a real robotic hand that com-
prises multiple small and immeasurable components. Our ap-
proach is based on an unsupervised learning model that takes
advantage of the K-means algorithm to estimate the degra-
dation states of the fingers of the robotic hand. Upon these
estimations, our approach also provides an operation condi-
tion indicator based on predefined degradation thresholds.

The remainder of this paper is organized as follows: Sec-
tion 2 describes the justification for the development of the
proposed method. The section 3 describes the system under
study. Section 4 presents the methodology followed for the
development of our approach. The sections 5 through 6 pro-
vide the experimental results of our method tested on a real
robotic hand and other aspects such as parameter tuning and
limitations of the method. Lastly, in section 7 brief conclud-
ing remarks are presented.

2. BACKGROUND AND MOTIVATION

The degradation phenomenon has been studied by several au-
thors (Lei et al., 2016; Si, Zhang, & Hu, 2017; Garay &
Diedrich, 2019) and can be modeled by a Wiener process as
follows:

X(t) = X(0) + θ(t)tb + σB(t) + ε(t) (1)

where X(0) corresponds to the initial degradation.
θ(t)tb, b ≥ 0 is called the non linear variability with
θ ∼ N(µθ, σθ), σB(t) is temporal variability with
σB ∼ N(0, σ2t) and B(t) is a Brownian motion. Lastly,
ε(t) is the random measurement error. Some authors, such
as (Zheng, 2019) and (Garay & Diedrich, 2019), use b = 1,
which turns the model of Eq. (1) into a linear model linear
as:

X(t) = X0 + θ(t)t+ σB(t) (2)

however, the mechanical systems generally exhibit non linear
degradation dynamics (Lei et al., 2016). Also, there exists a
convention around the initial degradation in where X(0) = 0
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(Wang et al., 2018; Si et al., 2017; Lei et al., 2016; Huynh
et al., 2019). In the case of our robotic hand, this assump-
tion cannot be considered, since our conducted studies were
performed after some time the hand had been in operation,
therefore X(0) > 0. Note here, that the cumulative effect of
the degradation is not being taking into account in Eq. (1).
Another difficulty with the models given by Eqs. (1) and (2)
is the parameter initialization, since in our case the fingers of
the hand incorporate multiple immeasurable components in-
teracting together, such as spindles, gearboxes and couplings,
therefore it is not possible to choose the right parameters. The
high complexity of such an engineering system would require
a degradation model for each one of the components. In other
words:

XNet(t) =
n∑

i=1

(
Xi(0) + θi(t)t

bi + σiBi(t) + εi(t)
)

(3)

which makes its applicability to our particular system unfea-
sible.

Despite these difficulties several authors have been able to
overcome the drawbacks of the model of Eq. (1) by using ma-
chine learning techniques, such as Support Vector machines
(Loutas et al., 2013; Khelif et al., 2017; Patil et al., 2015),
Gaussian Mixture Hidden Markov Models (Tobon-Mejia et
al., 2012) and neural networks (Peng et al., 2017), however
their approaches are based on well known existing datasets
and therefore, their applicability is restricted to the amount
of historical data available, which is generally hard to obtain
(Ramasso & Gouriveau, 2014; Garay & Diedrich, 2019).

3. EXPERIMENTAL SETUP

3.1. The Robotic Hand Under Study

The anthropomorphic hand used in our experiments corre-
sponds to a Schunk SVH 5-fingered Hand which is able to
provide sensor data in terms of joint angular positions and
motor currents. The hand is driven by 9 motors actuating 20
joints (Ficuciello, 2019) by means of lead screw mechanisms
that convert prismatic motion into rotational motion (Ruehl
et al., 2014). A description of the nomenclature of this hand
is presented in Figure 1. The hand is controlled by a position
controller and a current controller working in cascade that are
interfaced via a driver compatible with the Robot Operating
System (ROS). Since there aren’t built-in finger tip force sen-
sors available on this hand, the grasping is performed by a
grasp controller actuating in motor space based on the motor
torque measurements and therefore, it is only possible to de-
termine the enclosure of an object (Kappassov, Corrales, &
Perdereau, 2015). Figure 1 depicts the nomenclature con-
vention used for the hand and the system’s architecture is
depicted in Figure 2. For further details regarding the soft-

ware and hardware related to the hand, readers are referred to
(Schunk Hand SVH Assembly and Operating Manual, Last
access: 2020-05-16 00:56:44) and (ROS Driver, Last access:
2020-05-16 01:02:10).

Index Finger Distal

Middle Finger Distal

Index Finger Proximal

Middle Finger Proximal

Finger Spread

Thumb Flexion

Ring Finger

Little Finger

Thumb Opposition

Figure 1. Schunk Hand SVH Nomenclature

Perception Clustering
Algorithm

Task Rep-
resentation World Model Degradation

Estimation

Robot Motion Grasp Control Operation
Condition

Execution

Grasp
Database

Historical
Database

Sensor data

Figure 2. Diagram of the architecture

3.2. Training Data

The hand was set to perform a free movement on a regular ba-
sis: once a day during ten minutes. During this time both the
position and motor current signals of each motor of the hand
were recorded using ROS at a frequency of 100Hz and after-
wards stored on a local database. Given the limited variety of
available sensor data, the free movement was chosen to be a
free open-close movement across the mechanical movement
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range of all the fingers of the hand in order to isolate it from
external disturbances and loads and have a better picture of
the actual system’s behavior. Otherwise, the measurements
would be influenced by the effects of the loads, disturbances
and other phenomena like heat transfer, deformation, etc. The
Figure 3 show the angular position and its corresponding mo-
tor current signal for a specific finger.
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Figure 3. Measured signals on the interval [0, 10]

From these experiments, several statistical parameters were
calculated per day as well as using a moving window of 1000
records, such as the mean µ, variance σ, Skewness S, Kurto-
sis K. Some of the features are summarized in Table 1

Root Mean Square

√
1

n

∑n
i=1 x

2
i

Variance σ =
∑n

i=1

(xi − µ)2

n

Skewness S =
∑n

i=1

(xi − µ)3

σ3

Kurtosis K =
∑n

i=1

(xi − µ)4

σ4

Table 1. Time-domain features

The aforementioned experiment has been conducted for more
than 50 days for every of all the 9 motors of the hand, which
leads to a dataset size of about 27 million records. The whole
data set consists primarily of the measurable signals such as
motor current, angular position and desired angular position,
and a set of features are computed and inserted in a sepa-
rate process after the experiment. It is important to note here,
that during the course of each individual experiment it is not
possible to classify the actual run as normal or abnormal at
first glance, because the target positions were always reached
by the fingers. The inspection of the current consumption of
each motor indicates whether the finger is working under ab-
normal conditions. The set of features, include among others,
the ones described in Table 1 and the structure of the dataset
is shown in Figure 4, where 1 ≤ Ed ≤ 53, 1 ≤ i ≤ 9 and
j = 1 or j = 2, depending on the finger.

Experiment
day Ed

Finger i

Motor j

Current [mA]

Target Posi-
tion [rad]

Feedback Po-
sition [rad]

Mean (µ)

Std. Deviation (σ)

Other features

Figure 4. Dataset structure

4. METHODOLOGY

4.1. Observed Dynamics of the Measured Signals

On healthy fingers, the motor current is mostly concentrated
on a whole single data unit or cluster across the corresponding
mechanical movement range in absence of loads (grasping).
However, as the fingers degrade over time, it is observed that
their associated motor currents begin to split and form addi-
tional clusters, whose distance increases over time. All the
motors of the hand’s fingers exhibit the same dynamic behav-
ior during free motion in healthy conditions. When they are
traveling to the closed position (fist), the motor currents are
negative and positive when traveling back. On a healthy fin-
gers the distance between these clusters is small. This can be
visualized in Figures 5 and 6.
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Figure 5. Behavior of the current signal of a healthy finger
during free motion
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Figure 6. Behavior of current signal of an unhealthy finger
during free motion

4.2. Proposed Method

Based on the previous observation, we trained an unsuper-
vised learning model based on K-Means to analyze the evolu-
tion of the clusters over time. The angular position θ1, motor
currents Cm and their corresponding spectrum frequencies
Cmf were used as features for the models, since they were
the signals that revealed most information about the degra-
dation. It is important to note that, even though the angular
velocity of the fingers could be analytically determined in ab-
sence of velocity sensors, this signal actually covers up some
information about the underlying phenomena. The K-Means
algorithm determines the centroids of the clusters in the data
and based on the position of the centroids, the euclidean dis-
tance between them is computed by

Dijk =
√
X2

ijk + Y 2
ijk (4)

where i, j, k > 0, i 6= j, j > i and Xijk = (xik −
xjk); Yijk = (yik − yjk). A vector D ∈ Rk×p contains
all the distances between the clusters centroids across the en-
tire database, with k = 1, . . . , 53, p = n(n− 1)/2 and n > 2
being the number of clusters.

Several parameters such as the sum, min, max, µ, σ as well
as the area covered by the centroids, were calculated from
vector D, in order to deal with the classification errors pro-
duced by the K-means algorithm and also to be able to con-
struct the estimated degradation index.

According to (Loutas et al., 2013), a good condition based
monitoring descriptor, in this case the estimated degradation
index, must have a monotonic behavior and a low volatility.
These measures were determined using the Spearman’s Rank
Correlation coefficient and the standard deviation σ over the
previous parameters respectively.

The Figure 7 shows that the minimum distance between the
clusters’ centroids given by mini,j

{
Dij ∈ Rp×1

}
exhibits

1Not to be confused with θ(t) in Eq. (1)
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Figure 7. Spearman and volatility analysis

the most monotonic and the least volatile behavior for un-
healthy fingers among the parameters, while the sum and the
area performed worst. Therefore based on this analysis, our
estimated degradation index over discrete time k is defined
as:

X̃(k) = min
i,j

{Dijk} ; i, j > 0, k ≥ 0, i 6= j, j > i (5)

The normal operation condition of the hand is found by es-
tablishing a pre-specified deterioration threshold δ, so that
0 ≤ d(k) ≤ δ, with δ a pre-specified threshold. When
d(k) > δ, the hand is working under abnormal conditions,
requiring further inspection or repair. This threshold has been
set based on the empirical observation of the estimated degra-
dation index X̃(k).

The complete algorithm is briefly described in algorithm 1 for
a single motor. The same principle is used to determine the
degradation index of the all hand’s fingers.

5. EXPERIMENTAL RESULTS

5.1. Offline Evaluation

The method was tested offline across the entire database, that
is the data collected over 50 days of experiments. The esti-
mated degradation index associated to the thumb joints is pre-
sented in figure 8. On the other hand, the results obtained for
two healthy fingers are presented in Figure 8. These fingers
have been working normally all the time and haven’t exhib-
ited any behavior that can indicate a significant degradation.

It is important to note that for the offline tests, about 1000 dat-
apoints were extracted from the database in a random fashion.
Concretely, for each individual motor and for each experi-
ment day Ed, an integer random number nr ∈ [1, 59000] was
first generated, in order to extract the next 1000 datapoints
starting from nr. In other words, the extracted datapoints
correspond to the interval [nr, nr + 1000] in the time series,
providing thus, time Independence to the proposed method.
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Algorithm 1: Degradation estimation and working condition detection algorithm
Result: Operation condition and degradation index

set n > 2, X̃(0) = 0, ts > 0, Oc = 0, k = 0, δ = r, P ∈ Rn×2,w =
n(n− 1)

2
;

repeat
obtain m samples for θ ∈ Rm×1 and motor currents Cm ∈ Rm×1 from the hand for time kts;
compute the feature vector F ∈ Rm×1;
compute P from the K−means algorithm for n clusters;
for 0 ≤ i ≤ n do

for i+ 1 ≤ j ≤ n do
if i > j then

dijk =
√
(Pxik

− Pxjk
)2 + (Pyik

− Pyjk
)2 ∈ Rw×1, k ≥ 0;

end
end

end
set X̃(k) = mini,j {dijk} , k ≥ 0;
if X̃(k) > δ then

set Oc = 1;
else

set Oc = 0;
end
wait ts ;
k → k + 1;

until;
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Oiling

Collision

k (days)

X̃
(k
)

Estimated Degradation Index

Thumb Opposition
Thumb Flexion

Figure 8. Estimated degradation index for the thumb

5.2. Online Evaluation

The method was implemented and tested online during grasp-
ing applications. For this purpose, a Kuka IIWA Robot with
the Schunk Hand 5-Fingered hand attached was commanded
to perform a cyclical grasping task, consisting of the grasping
of a test cube from a pick-up point to be transported to a de-
livery point and backwards, by means of a Thumb-2-Finger
grasp (Thumb, Index and Middle fingers). In Figure 10 a
diagram of the experimental setup is shown. The estimated
degradation algorithm was executed online after the comple-
tion of 3 grasps, for which the robot travels to a safe main-
tenance position away from any contact that the hand could

0 10 20 30 40 50
0

10

20

30

40

k (days)

X̃
(k
)

Estimated Degradation Index

Little finger
Index Finger Distal

Figure 9. Estimated degradation index for 2 healthy fingers

make with any object. Right after reaching the maintenance
position, the hand is commanded to travel in between the lim-
its in absence of grasping loads, time during which the motor
currents Cm and the angular positions θ are recorded at a fre-
quency of 100Hz using ROS. Lastly, the robot returns to the
last delivery point and continues with the cyclical grasping
application and the computation of the deterioration is per-
formed in a background parallel task. Here it is important to
note, that considering our sensor limitation, the data to feed
the model was collected in between grasps to prevent that any
contact could be made with any object by the hand, in order
to isolate the behavior of the components from external loads
and disturbances.
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Kuka IIWA

Delivery point

Pick-up point

Aluminium Test Cube

Schunk 5-Fingered Hand

Figure 10. Experimental Setup

According to (Capek, Hughes, & Warden, 2018), a person
looses up to 50% of the hand function when loosing the
thumb, making this finger the most important of the hand.
Even though the hand under study is very far from the human
hand in every aspect, the thumb of the our robotic hand is also
the most critical finger. For this reason, and given our knowl-
edge before hand that the thumb is in a degraded condition,
for the online evaluation only the estimated degradation of the
thumb is shown in Figure 13. In Figure 11 and 12 the hand
appears to be grasping an aluminum and a plastic test cube
used for this purpose, performing a Thumb-2-Finger grasp.

Figure 11. Schunk hand grasping an aluminum test cube dur-
ing online test

Figure 12. Schunk hand grasping a plastic test cube during
online test
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Figure 13. Online estimated degradation index

6. DISCUSSION

6.1. Results

As it is seen in Figure 8, the estimated degradation index X̃
for the thumb was low for most of the time. However, during
the development of a research project, the hand under study
collided (day 38 in Figure 8) against parts of the robot it was
attached to. This caused a significant crack on a structural
screw hole of the hand that prevents it from falling down at
the wrist, which makes the hand to be shifted down, causing
the structure to be supported by the thumb and in turn, in-
creasing the load on its associated motors and metal-to-metal
friction. Our estimated degradation index is consistent with
the consequences of this failure as the index increased sig-
nificantly right after the occurrence of the failure event, as it
is seen in Figure 8. Also it is important to note that mainte-
nance actions such as oiling can partially alleviate degraded

7
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situations, since this particular spot was oiled at the day 42
(Figure 8) in order to prevent further wear and chirping at the
finger level due to the increased friction. The degradation in-
dex decreased right after oiling as it is observed in Figure 14,
however, this action did not recover the degradation to a level
prior the collision event. Another consequence of the fail-
ure is that it also influenced the dynamics of the surrounding
motors, as X̃(k) of the motor associated to the thumb flex-
ion increases along with X̃(k) for the motor associated to the
thumb opposition. In Figure 15 the place that was oiled is
shown.

Screw
thread
crack

Hand
Wrist gap

Z−

Hand and palm

Down
shift due
to gravity

Wrist

~g = [0, 0,−9.81]

Figure 14. Screw hole crack

Friction spot (oiled)

Friction spot (oiled)

Hand-Wrist Gap

Dorsal side

Wrist

Thumb

Hand Palm

Figure 15. Metal-to-metal friction spot

In Figure 9, the estimated degradation index is shown for 2
different fingers, which have been working under normal be-
havior. The failure mentioned before has no influence on the

dynamics of these fingers, which is also consistent with the
Figure 9.

The operation condition of the hand given by the value of
X̃(k) was established based on empirical experience. From
the plots of Figure 8 and 9, 3 different stages are defined as
follows:

1. Normal stage: In this stage the components of the fingers
are working normally and there is no need for inspection
or further analysis. In this stage the value of X̃(k) ranges
between 0 ≤ X̃(k) ≤ 20.

2. Warning stage: When 20 > X̃(k) ≤ 50, the method
indicates that the hand is working under abnormal con-
ditions and the components show some signs of degrada-
tion. This stage could also indicate mechanical problems
located at the limits of the joints. Preventive maintenance
actions such as oiling are recommended.

3. Critical stage: In the critical stage, immediate further
inspection and analysis are needed to prevent a rapid
deterioration of the system components. In this stage
X̃(k) > 50 and it could indicate major problems that
can lead to catastrophic failures.

In view of Figures 8 and 13, the approach is able to provide
consistent results no matter if the method is tested offline us-
ing the historical database or online using direct data from
grasping applications.

The method proposed in this paper was also compared to
the approach presented by (Zheng, 2019). Following his
methodology, an estimated degradation index (health index)
was computed based on the Hilbert-Huang-Entropy as fol-
lows:

HHE = −
n∑

i=1

pi ln(pi) (6)

where pi is defined as:

pi =
h(wi)∑n
i=1 h(wi)

(7)

Here, the term h(wi) denotes the Marginal Hilbert Spectrum
and is defined as follows:

h(wi) =

∫
Re

{
n∑

i=1

Ai(t) exp

(
j

∫
wi(t)dt

)}
(8)

In this approach, the health index is built upon the envelopes
of the signal in Eq. 6, which implies a significant volatility
of the signal. Furthermore, since our measured signal spans
between R+ and R−, an additional conversion is mandatory

8
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in order to compute the Hilbert-Huang Entropy properly. It
turns out, that, unlike the work in (Zheng, 2019), in our case
it is the lower envelope of the HHE that exhibits most mono-
tonic behavior, decreasing immediately after the crash and re-
covering after the oiling. The Figure 16 depicts the evolution
of the HHE based degradation index computed for the Thumb
Flexion and its corresponding upper and lower envelopes.

0 10 20 30 40 50

−4

−2

0

2

4

Time [day]

H
ilb

er
t-

H
ua

ng
E

nt
ro

py

Behavior of the Hilbert-Huang-Entropy over time

Hilbert-Huang Entropy - Thumb Flexion
Upper envelope
Lower envelope

Figure 16. Hilbert-Huang entropy based estimated degrada-
tion index

6.2. Choice of the Number of Clusters

A key aspect for training the K-means algorithm is the choice
of the number of clusters, which has a clear relationship with
the optimization objective of this algorithm given by:

min
c1,...,cm
µ1,...,µK

J(c1, . . . , cm, µ1, . . . , µK)

with

J =
1

m

m∑
i=1

‖ xi − µci ‖2 (9)

The Figure 17 shows that the value of J decreases as the num-
ber of clusters increases. Using 5 or 6 clusters for the algo-
rithm has shown to have a good balance between performance
and accuracy. These are the values we have used during our
tests.

6.3. Limitations

Given the complexity of the structure of the hand’s finger
components and the impossibility to measure small parts, it is
not possible by this method to identify accurately which com-
ponent is exhibiting problems or has a high level of degra-
dation, but to detect that the system needs at least inspec-
tion or further analysis. Another important issue to remark
is that this approach is unlikely to be ported to such robotic
hands based on TDMs only using tendon data (tension, dis-
placement, etc.). The reason for this is that the TDMs have
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Figure 17. Cluster number analysis

a different nature and dynamics and exhibit phenomena like
hysteresis.

Additionally, given the nature of the hand and the limited
amount of sensors, this method is not able to perform the
estimation of the deterioration during grasping time, where
the hand components are subjected to loads, disturbances and
phenomena that are inherent to the nature of the grasped ob-
jects involved. The reason for this is that it is very difficult
to distinguish the grasping event from an event such as a col-
lision or contact with an object. Other type of sensors, such
as fingertip force sensors are required to overcome this issue,
which are not available for this research.

7. CONCLUSION

The approach for the estimation degradation presented in this
paper, allows the online and offline detection of this phe-
nomenon maintaining a low complexity using real data from
a real system. According to the best of our knowledge, at
the publication moment of this paper, this work represents
the first attempt of a PHM approach applied on a real robotic
hand. Even though this paper presented both online and of-
fline evaluations of this method, our approach does not re-
quire necessarily a large amount of data nor existing datasets
for estimating the degradation. Generally the acquisition of
such datasets is a difficult task that requires a significant
amount of time (Ramasso & Gouriveau, 2014). During the
online tests of the method, between 1200 and 1500 data points
were necessary to be collected for computing the estimated
degradation index defined in Eq. (5). However, the validation
of this method required failure data, which is also difficult to
obtain. The failure mentioned in this paper may be recreated
by exerting a controlled force on the dorsal side of the hand
pointing to the palmar side, largely enough to produce the
necessary stress on the structural screw hole shown in Figure
15, causing the thread hole to be ripped off. The collision
suffered by the hand described in section 6.1 happened ac-
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cidentally in a similar manner against a robot. In the case
of the abnormal condition depicted in Figure 6, one possible
way to recreate the failure might be exerting multiple times a
counter force on the index finger while traveling to the closed
position, so that is able to produce a higher torque than the
torque the associated motor is able to output, and thus forc-
ing the lead screw to move in the opposite direction than the
intended one.

From what is seen in Figure 8, the estimated degradation
index has correlation and consistency regarding the failure
events the hand suffered during the development of the re-
search project. Oiling decreased immediately and consis-
tently the value of the X̃(k), however it did not solve the
situation. It was a palliative solution. Considering the rate
of change of X̃(k) after oiling, such a maintenance action
must be well informed and propagated to other engineers and
analysts in an industrial setting, since it could lead to ignore
a complex failure or postpone an urgent repair or inspection
due to the oiling cover-up of the underlying phenomenon, po-
tentially causing catastrophic failure.

Another important remark about this method is its indepen-
dence of several aspects related to grasping, such as, object
properties as mass, shape, texture or geometry and robotic
variables, such as speed, acceleration, etc. Additionally, ac-
cording to (Ertel, Lehmann, Medow, Finkbeiner, & Meyer,
2014), using the air flow analogously as this paper used the
motor current, this method could also be tested on pneumatic
driven gripper systems used in the industry.

Our research has open new interesting topics and problems
that we want to tackle in the future: RUL estimation of the
hand’s components, degradation estimation under loads, re-
configurable control and identification of the degrading com-
ponents. Another important open question that rose from this
research is, whether our estimated degradation index from Eq.
(5) is equivalent to the real phenomenon given in Eq. (1). At
this time, this particular issue needs more research. Addition-
ally, we expect to test our approach on other similar robotic
hands or gripper systems to evaluate the transferability.
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