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ABSTRACT

Recently, there has been an increasing surge of interest on de-
velopment of parallel-hybrid models of different Deep Neural
Networks (DNNs) architectures for Remaining Useful Life
(RUL) estimation. In this regard, the paper introduces, for
the first time in the literature, a new parallel-hybrid DNN-
based framework for RUL estimation, referred to as the Noisy
Multipath Parallel Hybrid Model for Remaining Useful Life
Estimation (NMPM). The proposed NMPM framework com-
prises of three parallel paths, the first one utilizes a noisy
Bidirectional Long-Short Term Memory (BLSTM) that used
for extracting temporal features and learning the dependen-
cies of sequence data in two directions, forward and back-
ward. The second parallel path, employs noisy MultiLayer
Perceptron (MLP) that consists of three layers to extract dif-
ferent class of features. The third parallel path utilizes noisy
Convolutional Neural Networks (CNN) to extract a comple-
mentary class of features. The concatenated output of the
three parallel paths is then fed into a Noisy Fusion Center
(NFC) to predict the RLU. The proposed NMPM has been
trained based on a noisy training mechanism to enhance its
generalization behavior, as well as strengthen the model’s
overall accuracy and robustness. The NMPM framework
is tested and evaluated using CMAPSS dataset provided by
NASA illustrating superior performance in comparison to is
state-of-the-art counterparts.

1. INTRODUCTION

Prognostics and Health Management (PHM), along with
Deep Neural Networks (DNNs) have been revolutionizing
maintenance by enabling predictive analytics to predict the
likelihood of future failures and provide early warnings by
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permits unrestricted use, distribution, and reproduction in any medium, pro-
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determining the failure patterns and factors that could affect
industrial operations. Remaining useful life (RUL) is the key
metric for predictive maintenance solutions. In order to build
an effective maintenance strategy, maximize machine uptime,
and minimize maintenance costs, an accurate RUL predic-
tion is a substantial task. Therefore, the existing RUL predic-
tion solutions need to be continually developed and strength-
ened. There exist three classes of RUL prognostic solutions,
i.e., physics based, data driven, and hybrid prognostic meth-
ods (Kan, Tan, & Mathew, 2015). Among them, the hybrid
solutions are the most promising approaches for remaining
useful life (RUL) estimation. The hybrid method itself, has
many types and styles (Xia et al., 2018). The focus of this pa-
per is the hybrid methods that used DNN architectures. The
hybrid model are explicitly designed to avoid the weaknesses
and limitations of the individual underlying approaches, by
combining the different features and advantages of each ap-
proach, resulting in an improved prognostic outcome. This
main advantage has led to gain a lot of attention from many
researchers.

Prior Work: (Zhao, Yan, Wang, & Mao, 2017) proposed a
hybrid deep learning approach by using series integration of
CNN architecture and a BLSTM, followed by fusion center
of fully connected layers for the prediction task. (Jayasinghe,
Samarasinghe, Yuen, Low, & Ge, 2018) utilized the integra-
tion of LSTM layers and temporal convolution layers along
with data augmentation to predict the RUL values. (Song,
Shi, Chen, Huang, & Xia, 2018) designed a hybrid method
for improving the RUL prediction accuracy of turbofan en-
gines, by combining an auto-encoder as a feature extractor,
and bidirectional LSTM (BLSTM) in order to capture the
bidirectional long-range dependencies of features. (Hinchi &
Tkiouat, 2018) introduced a series hybrid method through the
integration of the LSTMs and the CNNs layers for bearing
RUL estimation. Also (Zhao, Wang, et al., 2017) designed a
hybrid model by using the Gated Recurrent Unit (GRU) and
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Figure 1. The proposed NMPM solution.

the Bi-directional GRU (BGRU) architectures for machine
health monitoring task. (Al-Dulaimi, Zabihi, Asif, & Mo-
hammadi, 2019) introduced a parallel hybrid DNN, named as
(HDNN). It designed by using two parallel paths ( CNN and
LSTM) followed by a fusion center to combine their outputs
and then estimate the RUL. Moreover, (J. Li, Li, & He, 2019)
Used CNN and LSTM in parallel paths, and then another
LSTM to fuse the extracted features. Then a fully connected
neural network for mapping these features to RUL. (Kong,
Cui, Xia, & Lv, 2019) proposed a hybrid DNN framework
that employed the CNN and LSTM integrated with health in-
dicator (HI), for extracting different classes of features to ef-
fectively prognostication. (Yu, Kim, & Mechefske, 2019) has
employed Restricted Boltzmann Machine (RBM) and vanilla
LSTM to form a semi-supervised model for exploring the im-
pact of unsupervised pre-training in residual lifetime estima-
tion. Finally, we have proposed a new parallel hybrid deep
neural network (NBLSTM) (Al-Dulaimi, Zabihi, Asif, & Mo-
hammed, 2019), which Integrates the Bi-directional LSTM
(BLSTM) and LSTM, in one path, parallel with another path
based on CNN layers, then the output of both paths com-
bined to form the RUL. Adding noise layers is an effective
technique that has been adopted to improve the performance,
generalization and robustness of the approach.

Contributions: This paper proposes a noisy multi-path par-
allel hybrid model for RUL prediction, referred to as the
(NMPM). The (NMPM) method integrates three parallel
paths followed by another one to combine the outputs and
form the target result. The key contributions of this paper
are: (i) A new multi-path parallel hybrid DNN framework
that integrates three neural networks architectures (BLSTM
and LSTM, MLP, and CNN) is proposed for estimating re-
maining useful life of complex systems. (ii) To the best of our
knowledge, the NMPM is the first multi-path parallel hybrid
DNN model for RUL estimation. (iii) The efficiency of the
proposed NMPM solution is then verified and evaluated using
the C-MAPSS dataset provided by NASA (Saxena & Goebel,
2008) and the achieved outcomes were the best among the
existing methods.

The paper is organised in the following way: Section 2 to
describe the dataset. Section 3 to develop and describe the
proposed NMPM model. Section 4 presents the experimental

results. And finally, Section 5 will be the last section in the
paper, that presents the conclusion.

2. DATA

In this section, a general overview of the dataset used to verify
the efficacy of the proposed solution is given.

2.1. The NASA (C-MAPSS) Dataset

The C-MAPSS is the most popular simulated dataset for RUL
prediction, which was produced on the Commercial Modu-
lar Aero-Propulsion System Simulation (C-MAPSS) (Saxena
& Goebel, 2008). This software simulates several scenarios
of the degradation behavior and the faults impact of the five
main modules (High Pressure Compressor (HPC), High Pres-
sure Turbine, Low Pressure Compressor, Low Pressure Tur-
bine, and Fan) for the turbofan engine, over different sets of
operating conditions and failure modes. According to these
conditions and failure modes, the dataset can be grouped into
4 sub-datasets, which are FD001 to FD004 as shown in Ta-
ble 1, that are composed of multivariate temporal data col-
lected from 21 sensors. Each sub-dataset contains training
sets including run to fail records of different engines, in ad-
dition to testing sets that include a number of instances of
incomplete data ending before failure, the RULs of which are
to be calculated using the proposed prediction models. Each
sub-dataset has been considered as a matrix of size R × 26,
where R corresponds to the total length of the trajectories.
Each record contains 26 columns each one of them corre-
sponds to a particular variable. The first two fields are for
the engine ID and the cycle index, respectively, then the next
three columns represent the operating conditions, followed by
the readings of 21 sensors. A trajectory in a specific dataset
reflects a particular engine’s lifetime. Each engine has differ-
ent initial condition, yet, it considered to start in the healthy
state, but the last cycle is classified as the failure of the sys-
tem. During testing, the trajectories terminate at a specific
time prior to failure to estimate the RUL of each engine.
The true RUL measurements for test trajectories are avail-
able for verification purposes. For this study only (FD002
and FD004) sub-datasets have been considered. More details
on the C-MAPSS dataset can be found in (Saxena, Goebel,
Simon, & Eklund, 2008).
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Dataset
C-MAPSS

FD001 FD002 FD003 FD004
Train Trajectories 100 260 100 249
Test Trajectories 100 259 100 248
Conditions 1 6 1 6
Fault Modes 1 1 2 2

Table 1. C-MAPSS Dataset Details (Saxena & Goebel,
2008).

2.2. Data Preparation

2.2.1. Data Normalization

As multiple sensors were used to collect the data and that un-
der different operational conditions, in such cases the reading
values will be in different scales, therefore the normalization
is an essential step before feeding to the deep learning model.
The min-max normalization is employed to unify the values
to be within a specific range and to ensure impartial involve-
ment from the readings of each sensor, and given by

x̄i =
2(xi −min xi)

max xi −min xi
− 1, (1)

where x̄i and xi, respectively denote the normalized data and
time sequence for the ith sensor. The normalized data is
within [−1, 1]. In this study, only 14 sensors out of 21 sen-
sors, were selected as in reference (C. Zhang, Lim, Qin, &
Tan, 2016), where, not all of the sensors measurements are
useful and informative.

2.2.2. The piecewise linear target RUL

The piece-wise linear degradation is adopted in this paper, as
it is the most popular and successful strategy for the utilized
dataset (Al-Dulaimi, Zabihi, Asif, & Mohammadi, 2019), as
it is the logical choice to have constant value of RUL when the
system is healthy (new or maintained) and degradation is neg-
ligible, and after the initial period, the RUL decreases linearly
with time and the degradation is increasing as in Fig. 2. In this
study, the point of inflection when the degradation starts, has
been chosen to be a value of 125.

2.3. Performance evaluation indicators

In order to evaluate, analyze, and compare performance of
the proposed NMPM model with others, two commonly used
performance evaluation indicators, i.e., Scoring function, and
Root Mean Square Error (RMSE), are adopted.

(i) Scoring Function: It is a function defined during the
PHM data challenge competition (Saxena et al., 2008)
in 2008 by the PHM community, that is given by

Figure 2. Representation of piece-wise approach.

S =

Mte∑
i=1

si, (2)

where si =

{
e−

hi
13 − 1 for hi < 0

e
hi
10 − 1 for hi ≥ 0,

where S is the computed score, Mte is the total num-
ber of testing data samples, and hi = RULi − RULi

(estimated RUL - true RUL, with respect to the ith data
point).

(ii) The RMSE: A typical widely used performance indicator.
That is given by

RMSE =

√√√√ 1

Mte

Mte∑
i=1

h2i . (3)

The lower the assessment metrics, the better the proposed
method perform.

3. THE PROPOSED FRAMEWORK

The key idea behind the proposed model is to extract as much
information (features) as possible from the available datasets
to better characterise the underlying problem. Our intuition is
based on the following statement: “the more features you re-
ceive, the better the results you achieve (Brownlee, 2018)”.
Furthermore, collecting more features would enhance the
process of learning data attributes as, consequently, more in-
formation will be available to form the target values. To this
end, an integrated idea has been used by utilizing three suc-
cessful classes of DNNs, which are BLSTM, MLP, and CNN,
to form a multipath parallel hybrid model. The proposed
method, however, is not limited to these three techniques, and
one can use another DNN model within the proposed parallel
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hybrid structure, in case the new model can outperform any
of the selected architectures. The outputs of the three paths
are then combined to predict the RUL using fully connected
neural networks.

3.1. Framework description

The main components of the proposed NMPM are listed be-
low, as presented in Fig. 1

3.1.1. The Bidirectional Long Short Term Memory
(BLSTM) Path

The first path in the proposed NMPM model, has been de-
signed based on one of the most successful DNNs architec-
tures which is the BLSTM, in addition to the LSTM. The
LSTM/BLSTM networks are the most efficient recurrent neu-
ral network models used in practice, they are specifically pro-
posed to address the vanishing gradient problem, using their
ability to capture time-dependent relationships through a gat-
ing system to provide a memory-based structure (Bhardwaj,
Di, & Wei, 2018). The gating system is designed based on
three gates (i) An input gate it∈ RM×1, that controls the cell
state updating procedure based on ht−1 and xt, where M is
the number of nodes, ht−1 denotes the LSTM output at time
(t− 1), and xt represents the input to LSTM at time t. (ii) A
forget gate denoted by f t∈ RM×1, that decides on the con-
tents to be maintained or forgotten. (ii) A forget gate denoted
by f t∈ RM×1, that decides on the contents to be maintained
or forgotten, and (iii) An output gate denoted by ot∈ RM×1,
that computes the next value of the hidden state.

The BLSTM is the modified version of the LSTM architec-
ture, that designed to capture the temporal dependencies be-
tween extracted features and take full advantage of the input
data, as it used two LSTM layers to be applied in both direc-
tions of the hidden sequences (Schuster & Paliwal, 1997), i.e.,
forward

−→
h t and backward

←−
h t, which are then joined to cal-

culate the output sequence. Fig. 3 presents the block diagram
of the BLSTM network. At each time step t, the BLSTM
model calculates both directions (

−→
h t, &

←−
h t) separately, and

then concatenates the outputs to form the BLSTM output de-
noted by ht

bi. The corresponding hidden layer functions of
the BLSTM architecture, are defined as

−→
i t = σ(

−→
Wi
−→x t +

−→
Ui
−→
h t−1 +

−→
bi ), (4)

−→o t = σ(
−→
Wo
−→x t +

−→
Uo
−→
h t−1 +

−→
bo), (5)

−→
f t = σ(

−→
Wf
−→x t +

−→
Uf
−→
h t−1 +

−→
bf ), (6)

−→a t = tanh(
−→
Wc
−→x t +

−→
Uc
−→
h t−1 +

−→
bc), (7)

−→c t =
−→
f t ◦ −→c t−1 +

−→
i t ◦ −→a t, (8)

−→
h t = −→o t ◦ tanh(−→c t), (9)
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Figure 3. Block diagram of BLSTM.

and
←−
i t = σ(

←−
Wi
←−x t +

←−
Ui
←−
h t+1 +

←−
bi ), (10)

←−o t = σ(
←−
Wo
←−x t +

←−
Uo
←−
h t+1 +

←−
bo), (11)

←−
f t = σ(

←−
Wf
←−x t +

←−
Uf
←−
h t+1 +

←−
bf ), (12)

←−a t = tanh(
←−
Wc
←−x t +

←−
Uc
←−
h t+1 +

←−
bc), (13)

←−c t =
←−
f t ◦←−c t+1 +

←−
i t ◦←−a t, (14)

←−
h t = ←−o t ◦ tanh(←−c t). (15)

Then, the concatenated output vector ht
bi is given by

ht
bi =

−→
h t⊕
←−
h t. (16)

where terms Wi, Wo, Wf , and Wc ∈ RM×L together with
terms Ui, Uo, Uf , Uc ∈ RM×M constitute the weight ma-
trices; Terms bi, bo, bf , bc∈ RM×1 represent biases; Term
σ(·) denotes the sigmoid non-linear function; Operator “◦”
represents an entry-wise product operation, which is per-
formed by two vectors element-wise multiplication, ct is the
cell state at time t, and; finally, tanh(·) denotes the activa-
tion function. The BLSTM and LSTM have already shown
outstanding results on a variety of issues (You, Jin, Wang,
Fang, & Luo, 2016; S. Wang & Jiang, 2015; Sun, Su, Liu,
& Wang, 2016; Graves & Schmidhuber, 2005; Graves, Jaitly,
& Mohamed, 2013), significantly, in machine health moni-
toring (Al-Dulaimi, Zabihi, Asif, & Mohammed, 2019). This
path consists of four layers, the first layer is a Gaussian noise
layer that has zero mean and (0.01) standard deviation, fol-
lowed by BLSTM layer defined by 10 cell structure with re-
turn sequences. The next two layers are LSTM layers defined
by 10, and 21 cell structures, respectively. All cells in the
LSTM layer have the same configuration in terms of parame-
ter values and structure.

3.1.2. The Multilayer Perceptron (MLP) Path

MLP is among the most widely used neural networks, as it
forms the basis for all neural networks (Trenn, 2008). It is a
feed forward artificial neural network architecture, that made
of three main parts: an input layer, an intermediate layer (one
or more) and output layer, where each layer is fully connected
to the following layer of nodes, in other words, this multi-
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layered perceptron consists of interconnected neurons that
transmit information among themselves, similar to the human
brain (Trenn, 2008). MLP often applied to supervised learn-
ing models, which employ back-propagation method to train
the network. It has been used in a broad range of fields, like
image identification, stock analysis, and election voting pre-
dictions (Trenn, 2008), in addition to the impressive success
in PHM applications (X. Li, Ding, & Sun, 2018). This path
based on the following settings: Three fully connected layers
defined by (30, 27, and 10) neurons, respectively. The first
layer of which followed by a noisy layer that has zero-mean
Gaussian noise and (0.01) standard deviation. A dropout of
(0.2) has been used, and the activation function was the recti-
fied linear unit (ReLU), used for all layers.

3.1.3. The Convolutional Neural Networks (CNN) Path

The outstanding capability to identify spatial and temporal
dependencies, made the CNN as one of the most powerful
feature extraction tools. It has been effectively utilized in a
broad range of applications, for example, computer vision,
biomedical, speech recognition, and Remaining useful life
estimation (X. Li et al., 2018; Babu, Zhao, & Li, 2016; Ren,
Sun, Wang, & Zhang, 2018), to name but a few. The CNN
has two main parts, i.e., feature extraction part and the clas-
sification part (W. Zhang, Peng, & Li, 2017). This path of
the proposed NMPM model has been designed based on the
following layers: two CNN layers, one max pooling layer,
one Gaussian noise layer, and one layer of global average
pooling. The path starts with a Gaussian noise layer that has
zero-mean and (0.01) standard deviation, followed by the first
CNN layer that has 10 filters of size (11 × 1), and then one
max pooling layer that has (2× 1) filter, followed by the sec-
ond CNN layer that has 100 filters of size (11 × 1). The last
layer of this path is a global average pooling layer. The recti-
fied linear unit (ReLU) was the activation function for all the
CNN layers. In this paper, the input data to the CNN path
of the proposed model NMPM is a 2D structure of the time
sequence and the number of selected features. More details
about the CNN layers can be found in (Al-Dulaimi, Zabihi,
Asif, & Mohammadi, 2019).

Max Pooling: It is a sub-sampling technique employed for
the size reduction of the feature maps through selecting the
maximum value for each patch, while preserving the impor-
tant information. Hence reducing the number of model pa-
rameters and simplifying the computational complexity of the
network. In addition to control the overfitting problem.

Global Average Pooling: It is an operation that involves cal-
culating the average value of all the elements in the feature
map. The overfitting is usually avoided at this layer, since the
global average pooling has no parameter to optimize, which
result in speeding up the training of the model (Lin, Chen, &
Yan, 2013).

3.1.4. The Fusion Path

The Fusion path acts as “Fusion Centre” that combines the
output features formed by the three parallel paths to make the
final prediction. Three different fully connected layers are
used to build the fusion centre. The first layer has 103 neu-
rons followed by a Gaussian noise layer that has zero mean
and (0.01) standard deviation, then a dropout of 0.3, followed
by the second and the third layers that have 107, and 1 neu-
rons, respectively. The rectified linear unit (ReLU) was the
activation function for all the layers.

3.2. Noisy Training

The training is a key process that involves finding patterns
that map the input data attributes to the targeted values we
want to predict) (Goodfellow, Bengio, & Courville, 2016). To
evaluate how well the proposed algorithm models the given
data and find those patterns, the cost function is used, which
is an indicator to show the error between the predicted results
and the real values. Thus, the training process aims at min-
imizing the cost function by finding the optimal parameters
(weights and biases). The proposed NMPM model, has used
the mean squared error (MSE) as the cost function, and it is
given by

MSE =
1

Mtr

Mtr∑
i=1

h2i , (17)

where Mtr denotes the number of training samples, and
hi represents the error between the true and the estimated
RUL, i.e., (hi = RULi − RULi). Minimizing the cost
function leads to make the estimated RUL as close as
possible to the actual RUL. Adaptive moment estimation
(Adam) (Kingma & Ba, 2014) is utilized for minimizing loss
function. Each training set has been divided randomly into
85% and 15% for testing and validation, respectively. The
Grid search (Bergstra, Bardenet, Bengio, & Kégl, 2011) ap-
proach along with several experiments have been conducted
on the train dataset, and hyperparameters that achieved the
best validation prediction performance were considered.

For better generalization and faster learning in the proposed
model, a noisy training has been adopted by injecting Gaus-
sian noise layers in each path of this approach (Yin et al.,
2015), this technique was an efficient way of avoiding the
overfitting issue, because the model learns the main concepts
underlying the problem, instead of only memorizes the full
dataset. Values of the hyperparameters such as the number of
RNN layers, the cells in each layer, the CNN layers, the FC
layers, batch size, standard deviation values and dropout rate,
are selected using the grid search technique, as it is the most
commonly used technique aimed at defining the appropriate
set of hyperparameters for a particular model (Liashchynskyi
& Liashchynskyi, 2019).
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The batch size of 512 is used in addition to the mini
batch gradient descent approach (Brownlee, 2017). The
early stopping (Famouri, Taheri, & Azimifar, 2015) and
dropout (Valchanov, 2018) techniques are used to mitigate the
overfitting problems. The sliding window strategy is adopted
with 30 and 15 window sizes, and step size of 1. Fig. 4 de-
scribes the complete procedures of the proposed NMPM ap-
proach.

4. EXPERIMENTAL RESULTS

In this section, the proposed NMPM framework is evalu-
ated and tested using the benchmarking NASA’s C-MAPSS
dataset. The impacts of various factors on the performance
of the NMPM solution are investigated, including the noisy
training, multiple parallel paths, and time window size. As
well as, comparisons with other existing solutions were con-
ducted and the results were reported.

(a) (b)

Figure 5. Predictions for last recorded measurement sample
associated with different test engine in: (a) FD002 with 259
test engines, and; (b) FD004 with 248 test engines.

(a) (b)

Figure 6. Estimated lifetime RUL predictions for randomly
selected test engine units in: (a) Test engine 45 in FD002,
and; (b) Test engine 214 in FD004.

4.1. The RUL Estimation Results

Figs 5(a) and (b) exhibit the RUL prognostics performance
of all turbofans testing samples from sub-datasets FD002
and FD004, sorted in ascending order (the lowest to high-
est RUL), where the prediction results for both sub-datasets
related to the last recorded measurement sample of all the
datasets. It is observed that the prediction RUL values is
closer to the real values (ground truth), and the prediction ac-
curacy for engines with a smaller RUL can be observed to be
significantly higher when the engine units are close to the end
of their lives (small RUL values), which is expected, as the
engine operates normally in the early stages of its life when
the degradation is negligible, and then the RUL decreases lin-
early with time when the system approaches its “end-of-life”,
and the degradation is more critical. This trend is important
and beneficial to health monitoring of equipment since an ac-
curate prediction is more crucial for making decisions in the
later period. Figs 6(a) and (b) illustrate RUL estimation re-
sults of engine units (45, and 214) selected at random from
FD002 and FD004 sub-datasets, respectively. It is noted that
the predicted RUL values precisely follow the actual values,
which is pointing to the prediction quality of the proposed
model.
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4.2. The Effects of Noisy Training and Multiple Parallel
Paths

Table 2 shows the results of the proposed network with noise
(NMPM) and without adding the noise (WNMPM). It demon-
strates and proves that adopting the used technique of adding
noise layer, has impressively improved the performance of
the proposed model, and that due to preventing the model
from memorizing all training examples, which in turn leads
to boost the exploration performance of reinforcement learn-
ing algorithms, and then enhance the robustness and the gen-
eralization of the proposed model.

Additionally, the use of multiple parallel paths based on dif-
ferent DNNs architectures increases model efficiency, be-
cause it is essential to get as many informative features as
possible from the available datasets in order to develop an
effective solution. Moreover, the proposed model has been
implemented twice and in each time, we removed one of the
parallel paths (BLSTM path or MLP path) following the same
settings of the proposed NMPM, and we found that using the
three paths (as in our model) improves the results more than
65% in terms of score function and more than 29% in terms
of RMSE.

TW=30 NMPM WNMPM

FD002 Score 843.044 956.854
RMSE 14.176 14.979

FD004 Score 991.214 1278.648
RMSE 16.035 16.253

Table 2. The Effects of Noisy Training.

4.3. The Effects of Different Time Window Size

The key point of a high quality prediction model is to ex-
tract more informative features, thus using larger size of time
window ends with more precise RUL estimation. Table 3
Presents the impact of time-window size on the efficiency of
the NMPM model. Where, a smaller window size of 15 is uti-
lized, however, the results are still better than most of those
reported in the literature for window size of 30.

4.4. Comparison with Existing Solutions

To illustrate and evaluate the efficiency of the proposed
NMPM solution, the prediction results of this model are
compared with six different published studies, which are:
NBLSTM (Al-Dulaimi, Zabihi, Asif, & Mohammed, 2019),
HDNN (Al-Dulaimi, Zabihi, Asif, & Mohammadi, 2019),
DSCN (B. Wang, Lei, Li, & Yan, 2019), DAG (J. Li et al.,
2019), CapsNet (Ruiz-Tagle Palazuelos, Droguett, & Pascual,
2019), and CNNTW (Yang, Zhao, Jiang, Sun, & Mei, 2019),
these studies represent the latest and the most successful solu-
tions.The comparison has been conducted based on the most

Metrics FD002 FD004
Score 1165.93 1901.148
RMSE 16.528 18.488

Table 3. The outcomes for the window size of 15.

TW=30 NMPM NBLSTMHDNN DSCN DAG CapsNetCNNTW

FD002 Score 843.044 1056.629 1282.424367.56 2730 1229.72 2494.35
RMSE 14.176 15.038 15.24 20.47 20.34 16.30 19.58

FD004 Score 991.214 1357.20 1527.425168.45 33702625.64 4523.32
RMSE 16.035 17.752 18.156 22.64 22.43 18.96 22.12

Table 4. Performance Comparison of different solutions with
the proposed (NMPM).

complex scenarios within the C-MAPSS datasets, which are
(FD002 and FD004). Due to this complexity (the number of
operation conditions and fault modes), for these two situa-
tions, most of the existing methods fail to deliver competitive
results. Whereas, the proposed NMPM model achieves im-
pressive results.

Table 4 presents the performance comparison results of the
proposed NMPM and the other six approaches. It can be
clearly seen that the proposed NMPM solution has the highest
prediction accuracy across all methods by achieving the low-
est score values and a lowest RMSE values, which implies
that the proposed NMPM is performing significantly better
in turbofan engine RUL prediction. Here, two points can be
highlighted: (i) achieving lower score values represents ear-
lier prediction of RUL, which promotes more efficiency, ef-
fectiveness and safety in real life PHM applications,where,
the score function measure has a higher penalty for late es-
timation) (Saxena et al., 2008), (ii) the model has achieved
these outstanding outcomes with only 56000 parameters.

The results in terms of the score values have been improved,
compared to the best results (NBLSTM) available in the lit-
erature as follows, 20.21%, and 27% for FD002, and FD004,
respectively. While, in terms of the RMSE values, the pro-
posed NMPM model achieved 5.73%, and 9.7% improve-
ments for FD002, and FD004, respectively.

5. CONCLUSION

The paper proposed a novel framework for RUL estima-
tion, i.e., the The Noisy Multipath Parallel Hybrid Model
for Remaining Useful Life Estimation (NMPM). The noisy
training has been adopted for better generalization and faster
learning in the proposed model. The proposed NMPM net-
work has been designed by utilizing three parallel paths each
one of them based on different neural network architectures
(BLSTM with LSTM, MLP, and CNN), the output features of
these parallel paths will be integrated by multi-layered neu-
ral networks that act as the fusion center to estimate the RUL
values. To show the effectiveness of the proposed NMPM so-
lution, different experiments are performed using the most
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complex sub-datasets (FD002 and FD004) of (C-MAPSS)
datasets provided by NASA. The model is evaluated and com-
pared with several methods in terms of the scoring function
and RMSE value, and the results showed the prominent supe-
riority of the proposed NMPM method. Although, the results
were superior against state-of-the-art, the proposed model can
be improved by adopting more flexible methods in selecting
the point of inflection (when the degradation starts). Further-
more, one can pursue incorporation of approaches other than
the piece-wise linear degradation approximation method.
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