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ABSTRACT 
The manner in which a prognostics problem is framed is 
critical for enabling its solution by the proper method. 
Recently, data-driven prognostics techniques have 
demonstrated enormous potential when used alone, or as part 
of a hybrid solution in conjunction with physics-based 
models. Historical maintenance data constitutes a critical 
element for the use of a data-driven approach to prognostics, 
such as supervised machine learning. The historical data is 
used to create training and testing data sets to develop the 
machine learning model. Categorical classes for prediction 
are required for machine learning methods; however, faults 
of interest in US Army Ground Vehicle Maintenance Records 
appear as natural language text descriptions rather than a 
finite set of discrete labels. 

Transforming linguistically complex data into a set of 
prognostics classes is necessary for utilizing supervised 
machine learning approaches for prognostics. Manually 
labeling fault description instances is effective, but extremely 
time-consuming; thus, an automated approach to labelling is 
preferred. The approach described in this paper examines key 
aspects of the fault text relevant to enabling automatic 
labeling. A method was developed based on the hypothesis 
that a given fault description could be generalized into a 
category. This method uses various natural language 
processing (NLP) techniques and a priori knowledge of 
ground vehicle faults to assign classes to the maintenance 
fault descriptions. 

The core component of the method used in this paper is a 
Word2Vec word-embedding model. Word embeddings are 
used in conjunction with a token-oriented rule-based data 

structure for document classification. This methodology tags 
text with user-provided classes using a corpus of similar text 
fields as its training set. With classes of faults reliably 
assigned to a given description, supervised machine learning 
with these classes can be applied using related maintenance 
information that preceded the fault. 

This method was developed for labeling US Army Ground 
Vehicle Maintenance Records, but is general enough to be 
applied to any natural language data sets accompanied with a 
priori knowledge of its contents for consistent labeling. In 
addition to applications in machine learning, generated labels 
are also conducive to general summarization and case-by-
case analysis of faults. The maintenance components of 
interest for this current application are alternators and 
gaskets, with future development directed towards 
determining the remaining useful life (RUL) of these 
components based on the labeled data. 

1. INTRODUCTION 

The primary method of prediction in prognostics is the use of 
physics-based models, which formally model the mechanical 
system in question from a priori knowledge of the system 
(Batzel & Swanson, 2009; Yang, Ito, Yang, & Liu, 2016). 
These approaches are often designed for a specific 
component or maintenance event in question, and thus do not 
always generalize to new prognostic problems (Aivaliotis, 
Georgoulias, & Chryssolouris, 2018; Lee, Wu, Zhao, 
Ghaffari, Liao, & Siegel, 2014). A data-driven approach, on 
the other hand, usually requires only a limited amount of a 
priori knowledge and generalizes well to new prediction 
problems in a given space (Sutharssan, Stoyanov, Bailey, & 
Yin, 2015). Machine learning based approaches have 
demonstrated their effectiveness in diverse fields, ranging 
from biology to finance (Kirillov, Kirillov, Iakimkin, 
Khodos, Kaganovich, & Pecht, 2017; Liu, Gebraeel, & Shi, 

Brandon Hansen et al. This is an open-access article distributed under the 
terms of the Creative Commons Attribution 3.0 United States License, 
which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original author and source are credited. 



 

2 

2013; Mccollom & Worth, 2011; Terrissa, Meraghni, 
Bouzidi, & Zerhouni, 2016). One caveat to the application of 
machine learning methods is that labelled example instances 
are required to create a model. Furthermore, the quality of the 
example instances directly affects the accuracy of the model.  

In order to perform prognostics, a point of instance has to be 
determined for prediction (Batzel & Swanson, 2009). A data-
driven modeling approach to prognostics necessitates 
previous examples of these instances to infer a set of rules 
and parameters to use for making predictions on new 
instances (Qu, Liu, Ma, & Fan, 2019). Having these instances 
in a consistent and discrete format is more useful than having 
them in a variable and fuzzy format. The mechanical faults in 
US Army Ground Vehicle Maintenance Records are recorded 
in natural language text, which, while more descriptive, does 
not lend itself to discrete prediction in a data-driven 
approach. A means for determining labels from the 
descriptions is needed, and this paper presents a method for 
accomplishing that.  

Vehicle fault descriptions for maintenance events employ 
different terms and jargon when recorded. The terminology 
used by technicians and mechanics varies, but has a 
consistent structure, with given terms used either in 
conjunction or as synonyms to other terms. Terms in the 
description are associated with the faults described; 
hypothetically, each fault within a class of faults has a 
number of terms used to identify it. Determining these sets of 
terms allows for the identification of a fault label from a fault 
description by comparing the terms in the description to the 
set of terms correlated with the fault.  

With this understanding, we propose a method of identifying 
these terms and using them to identify a description as 
belonging to a class of zero or more faults. The methodology 
for this uses a multi-step process integrating various 
techniques in text analysis and NLP. The core element used 
in this approach is the Word2Vec (W2V) word-embedding 
algorithm (Mikolov, Sutskever, Chen, Corrado, & Dean, 
2013), which transforms the fault text corpus into a numeric 
vector space by which contextually similar terms identify a 
rule set around a single term that is used to identify the class. 
The rule set then serves as the data structure to compare sets 
of tokens found in the fault descriptions. The association of a 
fault description with a class depends on how the tokens 
compare to each other based on the rule set.  

Applications for this classification function include creating 
labels for training samples for use by machine-learning 
algorithms and for general text summarization. The labels 
created in the context for machine learning can serve as either 
the class for prediction or as a feature. For future research on 
text classification and tagging, the primary goal is to use these 

models for creating classes for prediction by a prognostics 
model. The labels also serve as a good means for 
summarizing an entry — that is, for understanding the theme 
of an overall description and its underlying semantics. The 
generalizability of the approach also allows it to apply in 
circumstances other than fault labeling. All of the 
applications listed above generalize to any task requiring 
discrete class labeling or textural summarization based on a 
defined corpus.  

2. BACKGROUND 

The modern precursor of prognostics dates to the 1930’s - 
40’s as corrective maintenance activities. This means simply 
that when something broke, someone fixed it. In the early 
1960’s the concept of preventative maintenance was 
introduced with the first-generation aircraft health 
management system used in the B727, and B737 classic 
(Wheeler, Kurtoglu, & Poll, 2010). Approximately fifteen 
years later – in the mid-1980's – predictive practices made an 
appearance. Furthermore, it was not until the early 2000’s 
that condition-based maintenance and prognostics began to 
be used in predicting the remaining useful life (RUL) of 
specific parts of a system. Clearly, the field of prognostics 
and health management (PHM) is still very young, and there 
is much room for more research.  

On the other hand, there has been a notable amount of 
research performed in the field of PHM that is focused on 
issues like crack growth of wind turbines and other rotary 
vehicles (Corbetta, Sbarufatti, Manes, & Giglio, 2015), 
lithium-ion battery life (Tang, Hettler, Zhang, & DeCastro, 
2014; Xing, Williard, Tsui, & Pecht, 2011), gearbox health 
management (Jiang et al., 2019), and even human health and 
performance (Ahmetov et al., 2008). A plethora of different 
methods of prediction have been used to accurately describe 
the RUL of sensor systems, engineered resilient systems, and 
others. The most common methods or models of prediction 
fall under just a few categories: physics-based models, data-
driven models, and a hybrid approach of these. Some tools 
used to drive these methods include particle filtering, 
regression-based models, neural networks, NLP, Kalman 
filtering, Markovian Process-based models, and threshold 
regression models.  

2.1. The Importance of PHM 

Using these tools with real time data in physics-based and/or 
data-driven models allows us to make predictions with 
greater accuracy, providing the time necessary to make wise 
decisions in the maintenance of a ground vehicle, aircraft, 
naval vessel, or sensor system, etc. Time is paramount when 
making decisions about saving money and maintaining 



 

3 

reliability and safety of a vehicle. Critical issues for 
consideration include the vehicle availability, cost-benefit 
balance, when and where to replace or maintain components, 
and best approaches to maintenance.  

As the drive to produce innovative technology continues, the 
cost and complexity of the technology increases, giving rise 
to the importance of PHM. There are now military weapon 
platforms that have built-in PHM capabilities (Goebel et al., 
2017). There are numerous other systems that are being 
designed to have similar capabilities onboard to aid in 
maintaining a healthy balance between cost and benefit. In 
fact, research has been performed on considerations of sensor 
system selection that will drive these capabilities (Cheng, 
Azarian, & Pecht, 2010).  

In the realm of Army Ground Vehicles (GV), PHM has great 
application in predicting the RUL of transmission gearboxes, 
power steering units, batteries, suspensions, and more. 
Conducting PHM on Army Ground Vehicles gives the 
Department of Defense (DOD) the opportunity to save 
money, increase availability of ground vehicles, and better 
ensure the reliability and safety of these vehicles. In the 
following sections, we will describe a process for creating a 
training set data from US Army GV maintenance logs to 
create a machine learning algorithm that will predict the RUL 
of GV alternators.  

This endeavor supports the DOD’s implementation of 
Condition Based Maintenance (CBM) under the DOD 
instruction 4151.22 (Bell, 2008).  According to this 
instruction, CBM should be a principal consideration to 
implement proper maintenance practices for US military 
systems. Based on the implementation of CBM to US 
military systems, the DOD intends to reduce the maintenance 
costs and improve the management of their assets. A 
complete CBM system consists of eight infrastructure areas: 
sensors, data management, condition monitoring, health 
assessment, analytics, decision support, human interfaces, 
and communications (Bell, 2008). 

PHM serves as a part of the analytics aspect of CBM through 
prognostics assessment. Therefore, properly categorizing the 
US Army GV maintenance logs is critical for our downstream 
goal of utilizing the health and usage monitoring system 
(HUMS) data to support CBM. 

2.2. Previous Works 

In this section we examine previous work performed in the 
area of using HUMS data to develop machine learning 
algorithms to predict RUL of GV systems. These works 
helped guide the early stages of planning and provide 
information on available tools, the current state of technology 

and research in this field, and techniques that have been used 
to solve a given problem.  

Alternator components have received considerable research 
attention in the field of PHM. Oh, Azarian, Pecht, White, 
Sohaney, and Rhem (2010) propose a physics-of-failure 
(PoF) approach for fan PHM in electronics applications. Cui, 
Shi, and Zhang (2017) present a method of fault detection for 
rotating rectifier (RR) of aircraft generators. Nadarajan, 
Panda, Bhangu, and Gupta (2015) developed a hybrid model 
for a wound rotor synchronous generator to detect and 
diagnose faults in stator windings.  These various model-
based approaches focus on detecting specific component 
faults.  One main limitation of these approaches is that they 
may not be feasible to implement for a complete complex 
system. As an example, the vehicle power generator has 
received research attention. Hardware supported experiment 
data was used for the prognostics of the generator (Bayba, 
Siegel, & Tom, 2012). However, alternator failure is 
complicated. It may be caused by a series of components’ 
cooperation, and even by the work environment’s ambient 
temperature and overload (Puzakov, 2020). For military 
vehicles, these methods are not sufficient since they operate 
in extreme environments with large electrical loads 
connected to the vehicle (Banks, Reichard, Hines, & Brought, 
2008). Thus, developing a robust prognostic algorithm based 
on a large fleet of vehicles has attracted researchers’ attention 
(Du & Zhang, 2018). One requirement for developing these 
robust prognostic algorithms is the use of maintenance 
records containing fault descriptions to determine prominent 
faults within a GV system. A method for extracting this 
information is presented in the following sections.   

3. METHODOLOGY 

Ground Vehicle maintenance data is recorded as textual 
information in the form of logbook entries, where each entry 
is associated with a single maintenance event. This text is of 
two categories: (1) non-restricted, or natural language text, 
which provides a description of the maintenance event, and 
(2) restricted, or categorical, text, which consists of a limited 
number of possible entries representing categories of 
maintenance. Given that the fault descriptions in the logs are 
non-restricted text, the analysis of this text necessitates the 
use of NLP techniques. NLP is a collection of language 
analysis tools used for analyzing and evaluating naturally 
produced text that contains linguistic and grammatical 
structures.  

3.1. Early Exploration 

The first steps undertaken were data cleaning and 
exploration. The original GV maintenance data contained 



 

4 

161,864 observations of 57 variables. Included in these 
variables were fault descriptions, correction narratives, and 
vehicle families. After further exploration, it was noted that 
one particular family of vehicles appeared to be the most 
expensive to maintain; therefore, early explorations of this 
data focused mainly on this family and was later expanded to 
the entire dataset. After exploring additional variables, it was 
clear that the fault descriptions and correction narratives 
would be the two most valuable variables in the data for our 
purpose. 

The first step of exploring these fault and correction variables 
was to take away non-unique entries based on their vehicle 
identification number, maintenance occurrence, and 
maintenance date. The next step was to remove unwanted 
punctuation, change all entries to lower case letters, and 
remove stop words, e.g., “a,” “an,” “the,” “for,” etc., so that 
a corpus of words could be created that were unique per entry. 
This corpus would also be void of the most commonly used 
words that added no “value” to the entry. For instance, the 
phrase “the windshield is cracked” would yield “windshield 
cracked”. This cleaned dataset was used to create several n-
grams used to find the frequency of the most common words, 
pairs of words, and groups of three words in the dataset. The 
results showed that there were indeed words more commonly 
used than others, implying that there were components or 
problems that stood out in the selected family of vehicles. By 
determining which components showed up most often, and 
comparing these components with cost and man hours, it was 
determined that the engine and electrical system are two areas 
for which improved maintenance could be very impactful. 
The next step was to develop a plan to logically associate the 
maintenance log data with the sensor data that corresponded 
to the maintenance event on a component.  

3.2. Text Tagging 

The goal of the text tagging task is to extract entries of a 
particular category from the natural language text of the GV 
fault descriptions to create training data for a machine-
learning model. The first step is to determine the set of 
categories that exists in the maintenance log, and then use a 
rule-based system to decide which categories apply to which 
entries based on the fault description text. Given that the fault 
descriptions and rule-base for a particular malfunction are 
mentioned plainly through the vocabulary of the text, the 
rule-base for a particular fault is represented as a series of 
tokens (words or abbreviated words); if the tokens are present 
in the fault description text to some degree, that record will 
be classified within the fault category. We used this method 
to identify particular types of faults from the maintenance 
log. Subsequently, we use the fault categories to train a model 

with related vehicle operational and maintenance log data to 
predict on the same fault category.  

The next task is to find the collection of tokens to form a rule-
base for the text classification. The GV fault text entries are 
English sentences and have a consistent structure for 
tokenization. The tokens themselves are the words separated 
by spaces in the text. After this text is converted from the raw 
text to a series of tokens, vectorization can be used to find 
numerical relations between tokens based on their relative 
ordering. With these relationships established, the vector 
synonyms adapt to form a rule-base for classifying token 
groups in the maintenance log entries. 

The preprocessing stage of NLP consists of cleaning the fault 
description text, putting it into a standard format, and then 
tokenizing it. The purpose of textual preprocessing is to 
reduce a text to its most basic characteristics and to remove 
any unnecessary components while maintaining the basic 
structure of the text. This basic structure of the text is 
comprised of tokens and their ordering. The process of 
cleaning the text includes removing numbers, punctuation, 
special characters, and stop words. The stop words used are 
from the Natural Language Toolkit (NLTK) library (Bird, 
Klein, & Loper, 2009). Format standardization includes 
removal of unnecessary spacing, conversion of all characters 
to the same case, lemmatization, and finally tokenization. 
After this process, the text is no longer in its original 
character sequence format but is a set of atomic units, i.e., 
tokens. This process is shown in Figure 1. 

The tokens of the GV fault descriptions text are vectorized to 
create a word embedding based on the tokens’ relative 
ordering. The word embedding is a mapping of the tokens to 
a vector space; that is, the underlying meaning and 
relationship of the original text is captured in a numeric 
format. This is an essential step, because machine learning 
models can operate only on numeric data. W2V, a two-layer 
neural network that produces a vector space from a corpus of 
text, is the algorithm used to produce the word embedding for 
this work. The word embedding quantitatively maps words 
based on similarity. This provides the ability to discover 
which words in the corpus have a high relational value 
between each other, e.g., synonyms, or words that are related 
to each other through specific semantic contexts. 
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Figure 1. Overview of text tagging methodology, including 
steps for tokenization and preprocessing, vectorization, and 
rule base creation. 

 
A graphical representation of a semantic vector space is 
shown in Figure 2. Similar tokens often appear in comparable 
positions within the corpus of text and can be used to identify 
a category of entries. For a given class believed to exist in the 
corpus of text, a set of related tokens is found in the space 
based on proximity. This set of similar tokens, along with the 
original term, is used to create the rule-base to find categories 
of faults within the text. To create a rule-base set, a group of 
class tokens is compiled based on the classes believed to exist 
in the corpus. 

Each class token in the rule-base set has a subgroup of 
associated tokens representing synonyms of the class token. 
The rule-base set is then compiled using the word 
embeddings produced by the W2V algorithm. 

When tagging a section of fault tokens with a maintenance 
label, the criteria for whether a tag applies to the text or not 
is based on whether it shares tokens between the tags’ rule-
base and the token set for the fault text. For the current 
implementation, the number of tokens needed in common 
between the rule-base and fault token set must be one or more 
for it to be classified under that tag. This constitutes a fault 
text entry. A fault text entry can have zero or more tags 
applied to it depending on whether the tags match any of the 
rule-base criteria. These tag sets represent the final 
classification of the maintenance entries.  

 

 
Figure 2. Vector representation of tokens from the Word2Vec 
algorithm with distances between each word representing the 
strength of their relatedness. Clusters represent a high density 
of related words. 

4. RESULTS  

We performed two types of tests with the text tagging method 
to determine its efficacy. The first test was a general 
comparison of the method’s performance when applied to 
each the three separate text columns in the maintenance data 
set: Fault Description, Correction Narrative, and Remarks. 
Performing this test requires applying the text tagging 
methodology across each of the listed columns and 
comparing the relative frequency of tags in each column to 
determine if the method tags consistently with related entries 
for the same maintenance instance. The basic hyper-
parameters used in this instance include full text 
preprocessing, a rule base size of five tokens (not including 
class), and a class set of twenty (several of the most common 
occurrences are displayed in Table 1).  

To determine how tag frequencies compare across different 
text columns within the same set of instances, we use 
correlation analysis to see if the frequency of tag frequencies 
follows a similar pattern between each pair. Table 2 shows 
the correlation matrix for the text from the Fault Description, 
Correction Narrative, and Remarks fields. 

For this particular test, there is a high degree of similarity 
between each text column pair, demonstrating that labeling is 
consistent across text column instances. 

The second set of experiments pertains to the differentiation 
of results when hyper-parameters are changed; in particular, 
these experiments evaluate the effect on the rule base when 
including stop words and changing the window size of the 
Word2Vec model. There is a selection of six different class 
tokens in this comparison based on an a priori analysis of the 
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maintenance logs and an understanding of common 
maintenance tasks. 

Table 1. Frequency of tags found in each text column. 

 Frequency 

Class 
Token 

Fault 
Description 

Correction 
Narrative 

Remarks 

Tire 14641 12789 10713 

Battery 9297 9331 6899 

Engine 8948 4497 6537 

Door 8109 4940 4694 

Oil 6472 3506 4891 

Hose 6143 7834 5775 

Sensor 5112 3989 4434 

 

Eight different Word2Vec models were trained on the GV 
fault description data. These are divided into two sets: the set 
with stop words removed and the set that did not have stop 
words removed (Bird et al., 2009). Each set of four models 
has a window size ranging between two and five. 

Table 2. Relative tag frequencies between text columns 
with accompanying correlation matrix demonstrating 
similarity between them. 

 
 Fault 

Description 
Correction 
Narrative 

Remarks 

Fault 
Description 

1.000000 0.867311 0.953622 

Correction 
Narrative 

0.867311 1.000000 0.931809 

Remarks 0.953622 0.931809 1.000000 

 

For the analysis, we use a similarity matrix for comparing the 
different rule-bases created by the Word2Vec model. The 
values in each cell represent the percentage of shared tokens 
between the rule-bases created by each model for the 
particular class under examination. For each experiment a 
‘class’ and an ‘n_synonyms’ is selected. The class is the 
keyword used to generated the rule-base using the Word2Vec 
models, while the n_synonyms is the number of similar 
tokens retrieved for the rule-base. 

For example, to compare the similarity between the rule-
bases for class ‘inoperative’ for a model using a window size 
of two and a model using a window size of three with an 

n_synonyms value of five each, we would get the two rule-
base sets:  

['inop', 'inoperable', 'broken', 
'burnt', 'shorted'] 

for window size of two, and 
['inop', 'inoperable', 'broken', 

'burnt', 'unserviceable'] 

for a window size of three. Comparing the two sets, we see 
they share four out of their five words, giving them a 
similarity score of 80%. 

This process was repeated for six different classes between 
all eight models where the n_synonyms variable was set to 
twenty. The words selected are from common fault types in 
the GV maintenance log data. They are: ‘alternator’, ‘engine’, 
‘suspension’, ‘transmission’, ‘battery’, and ‘tire’. Similar 
results were obtained for the six classes.  

Figure 3 represents the results of the experiment for 
alternators. This graph shows a title with the class used for 
the rule-base and the number of synonyms composing the 
rule base. The labels on the top and side of the graph represent 
the models.  

 
Figure 3.  Chart for alternator comparing the token set 
similarity discovered for the same class under different 
hyper-parameters within the tagging methodology. 

The similarity matrix shows that models trained with stop 
words have higher inter-model similarity than those trained 
without stop words. This supports the case for using the 
methodology with stop words intact, because having high 
model agreement when other parameters are controlled for 
suggests stronger synonym relationships for the tokens 
selected in the rule-base. The advantage to retaining stop 
words can be explained by the fact that they give better 
contextual clues for the tokens of interest when training the 
W2V model.  
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5. CONCLUSION 

Prognostics for US Army Ground Vehicles is a research area 
of great significance. Improved maintenance practices based 
on advanced machine learning algorithms that leverage 
collected maintenance and operational data have the potential 
to greatly reduce maintenance costs, and improve fleet 
reliability and maintainability. Currently, there is no method 
for determining a subset of operational data that is related to 
a particular recorded maintenance event. Using NLP 
techniques on maintenance data to automatically create 
labelled operational data will facilitate the creation of large 
sets of training data that can be used to create data-driven 
prognostics models for vehicle components.  

In this paper, we have presented a method for capturing a 
consistent set of maintenance labels from the maintenance 
logbook data. For future work, we will cross-correlate these 
labels with the operational data to produce a training set for 
prognostics algorithms. 
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