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ABSTRACT 

A metric of giving an overview of mechanical damage has 

been proposed to practically realize the structural health 

monitoring of mechanical system using big data. In the case 

that a mechanical system includes many local hot spots, such 

as welded and bolt joints, where structural health should be 

monitored, the health monitoring system for all the spots 

could be a large and expensive one. To overcome this 

drawback and increase the number of machines under 

structural health monitoring, the concept of a hierarchical 

monitoring was applied to the structural health monitoring of 

wind turbines in this study. In the first stage of the 

hierarchical monitoring, an overview of mechanical damage 

is given using the proposed metric, and accordingly, target 

machines are extracted for additional evaluation. The local 

damage can be accurately evaluated at the hot spots in the 

additional evaluation, namely, the second stage of the 

hierarchical monitoring. As the result of employing the 

metric of giving the overview for several wind turbines, the 

extracted turbines corresponded to the turbines that are 

operated under severe wind conditions and expected for the 

accumulation of mechanical damage. It can be therefore 

concluded that the concept of the hierarchical monitoring is 

effective to the expansion of the monitoring target. 

1. INTRODUCTION 

The technologies on the prognostics and health management 

(PHM) of machines, such as wind turbines and trains, have 

been developed aggressively for last two decades. The 

technologies cover various topics: data acquisition, signal 

processing and modeling, and operation and maintenance 

(O&M) practice. Although all these topics are important to 

realize an effective PHM, the modeling techniques are crucial 

to evaluate the current and future health state of the machines. 

The modeling techniques are classified into two techniques, 

i.e., data-driven modeling and physics-based modeling (for 

example, Alemayehu, & Ekwaro-Osire, 2017). As for the 

data-driven modeling, there are many contributions based on 

conventional survival analysis, Maharanobis-Taguchi system, 

neural networks, support vector machines, etc. (for example, 

Hasegawa, Ogata, Murakawa, Kobayashi, & Ogawa, 2017; 

Asgarpour & Sorensen, 2018). These data-driven techniques 

usually use the fault history data with or without the normal 

condition data of the machines, and some simple techniques 

have already been utilized in the process of O&M practices. 

As well as the data-driven techniques, the physics-based 

modeling techniques are widely proposed to evaluate the 

health state of the machines accurately (Zhao, Tian, & and 

Zeng, 2013; Alemayehu, & Ekwaro-Osire, 2015; Ewing, 

Thies, Shek, & Bittencourt, 2019). In the case of the physics-

based modeling, it is a challenge to prepare a model of 

calculating mechanical responses accurately with low 

computational cost. Data assimilation is one of the techniques 

for improving the accuracy of the physical model, and hence, 

the data assimilation was applied to the physics-based 

modeling of wind turbines (Namura, Muto, Ueki, & Takeda, 

2020). 

The physics-based modeling has the advantage of evaluating 

the state of the machines with fewer data compared to the 

data-driven modeling, and accordingly, it can be applied from 

the start of machine operation, when fault history does not 

exist. Nowadays the physics-based modeling is usually 

utilized to evaluate the structural health of a specific part or 

component included in the machines, such as gear, welded 

joint, bolt, bearing, gearbox, welded structure, etc. (for 

example, Soualhi, Hawwan, Medjaher, Clerc, Hubert, & 

Guillet, 2018). On the other hand, it is expected for 

maintenance practitioners in industry to evaluate the 

structural health state not only for a specific part or 

component but also for all critical components and all the 

machines. They would like to determine which part or 
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component to inspect and prioritize all machines in order of 

the health sate depending on the result of the evaluation. 

To realize the evaluation of the structural health for all the 

parts and components in a whole machine, a hierarchical 

structural health monitoring is promising and therefore 

introduced in this study. In the first stage of the hierarchical 

health monitoring, an overview of mechanical damage is 

given to prioritize all the target machines and extract the 

machines to be investigated in the second stage according to 

a metric proposed. In addition to the concept of the 

hierarchical health monitoring, an illustrative system 

configuration and damage evaluation results are shown by 

addressing the structural health monitoring of wind turbines. 

As for the condition monitoring of wind turbines, various 

kinds of technologies have already been proposed and 

applied in industrial practices (for example, Stetco, 

Dinmohammadi, Zhao, Robu, Flynn, Barnes, Keane, & 

Nenadic, 2019; Reddy, Kumar, & Raju, 2011). The proposed 

monitoring is unique in terms of monitoring all critical 

components with a physics-based model of whole wind 

turbine, i.e. the digital twin of wind turbine, and hierarchical 

monitoring concept. 

2. HIERARCHICAL STRUCTURAL HEALTH MONITORING 

A hierarchical health monitoring is introduced to practically 

realize real-time evaluation of mechanical damage and 

decision making for maintenance. The hierarchical health 

monitoring is performed using a metric based on an overview 

of the mechanical damage. A hierarchical monitoring system 

has been constructed to confirm the effectiveness of the 

monitoring. 

The applicability of this hierarchical health monitoring is 

limited in terms of failure mode and data required for the 

monitoring. It is well known that the failure rate of 

mechanical components changes according to the bathtub 

curve, which represents three different failures through 

operating life, i.e., early failures, random failures, and wear-

out failures. The proposed metric can be employed to 

compare the fatigue damage of the components between 

target machines, and therefore, this hierarchical monitoring is 

applicable to the monitoring of the wear-out failures. In 

addition, the loads applied to the components should be 

known to utilize the proposed monitoring because the 

proposed metric is evaluated with the applied load as derived 

in section 2.2. The easiest way to obtain the loads is the 

computational simulation of target machine, namely digital 

twin. In this case, the design information of target machine is 

required for the simulation as well as the data measured for 

the control and/or maintenance of machines, and hence, the 

manufacturer of target machine can easily apply the proposed 

monitoring.  

2.1. Concept of Hierarchical Structural Health 

Monitoring 

The fatigue damage of mechanical structures is generally 

evaluated at hot spots, such as welded parts, bolt joints and 

gears, according to Palmgren-Miner rule. 

 𝐷 = ∑
𝑛𝑖

𝑁𝑖
𝑖

 (1), 

where, ni is the number of stress amplitude σi observed in a 

stress time history, and Ni is the number of cycles to fatigue 

failure based on material database, for example, stress-strain 

curve of welded parts and bolts. The damage evaluation 

according to Eq. (1) is widely used, and the effectiveness of 

the evaluation is proven. It is, however, difficult to use Eq. 

(1) when monitoring the structural health of a whole machine, 

such as a wind turbine, a train and construction machinery. 

There are many hot spots where fatigue damage should be 

evaluated in a mechanical system. In the case of the wind 

turbine, Hitachi HTW2.0-80, the number of bolts connecting 

a blade to the hub of the turbine is more than 50. The tower 

of the turbine is constructed using welded and bolt joints, and 

accordingly, there are 20 welded sections and the number of 

bolts arranged at a flange part of the tower ranges from 70 to 

140. As a result, a monitoring system for evaluating the 

structural health, i.e., fatigue damage, at all the hot spots 

could be a large and expensive one. To overcome this 

drawback and increase the number of machines under the 

structural health monitoring, the concept of a hierarchical 

monitoring was applied to the monitoring of wind turbines in 

this development as shown in Figure 1. 

In the first stage of the hierarchical monitoring, an overview 

of mechanical damage is evaluated for all machines to be 

monitored, and then target machines are extracted among all 

machines for additional and detailed damage evaluation. A 

metric is employed to give an overview of mechanical 

damage here. The damage metric plays an important role in 

the hierarchical monitoring, and therefore, it is introduced in 

the following section. The detail of mechanical damage can 

be accurately evaluated at the hot spots in the additional 

monitoring. 

 

Figure 1. Concept of hierarchical structural health 

monitoring. 

 

Components

Elements & Parts

Overview
evaluation

Local
evaluation

Function
A

Large Medium Large LargeSmall

80 50 95 20 75

…B C D ZZ

0.7 0.8 0.6

Relative damage

Target

Prioritization
&

・Frame
・Gearbox
・Generator, etc.

・Gear ・Bearing
・Welded part
・Bolt, etc.

Machines under health monitoring

The first stage

The second stage

Quantitative damage



 

3 

2.2. Structural Health Monitoring based on an Overview 

of Mechanical Damage 

A metric for giving an overview of mechanical damage is 

defined as 

 𝐷 𝑓𝑎𝑐𝑡𝑜𝑟 = ∑ 𝑅𝑖
𝑚 ∙ 𝑛𝑖

𝑖

 (2), 

where, Ri is the force or moment that occurs at a point on a 

component included in a machine, and ni is the number of 

load amplitude Ri observed in a force or moment time history. 

The parameter m is the slope of the stress-strain curve. The 

force and moment occurring at a point have six elements, i.e., 

three forces and three moments, and accordingly, six D 

factors are calculated at a point. In the case that fatigue failure 

of a component largely depends on the forces and moments 

occurring at a point on the component, the risk of the fatigue 

failure can be estimated according to the D factors. For 

example, the fatigue damage of the bolts connecting a blade 

to the hub of a wind turbine depends on the forces and 

moments that occurs at the root of the blade. The D factors 

estimated from the forces and moments at the root of the 

blade give an overview of the fatigue damage of the bolts. 

Thus, the D factors give an overview of fatigue damage 

without the local damage evaluation with Eq. (1). This skip 

of the local evaluation saves computational cost dramatically 

and makes structural health monitoring practical, e.g., the 

number of damage evaluations for the blade bolts is 

decreased from more than 50 to six. 

The advantage of the damage evaluation with the D factor is 

that the priority of maintenance is determined by comparing 

the D factors among the machines under the health 

monitoring. On the other hand, local and quantitative damage 

evaluation cannot be performed with the overview, and 

therefore, the local and quantitative evaluation is executed for 

the machines that are extracted according to the D factor. 

2.3. Illustrative System of Hierarchical Health 

Monitoring 

A trial system for monitoring the structural health of wind 

turbines is constructed to confirm the effectiveness of the 

proposed health monitoring. The configuration of the system 

is shown in Figure 2. The data of the wind turbines are 

collected every one second and 10 minutes with supervisory 

control and data acquisition (SCADA) system. The SCADA 

data with the sampling frequency of 1 Hz is employed to 

realize the proposed health monitoring, and hence, the 1 Hz 

data is accumulated to a data storage once. The data 

accumulated is then transferred to a high-performance 

computer on which the digital twins of wind turbines run to 

obtain the forces and moments that occur at several key 

points of wind turbines. Although the condition monitoring 

methods based on the SCADA data have already been 

proposed (for example, Yang, Court, & Jiang, 2013; Pandit, 

& Infield, 2018; Leahy, Hu, Konstantakopoulos, Spanos, 

Agogino, & O’Sullivan, 2018), the SCADA data is 

specifically utilized as the inputs of the digital twin in this 

study. The forces and moments obtained are transferred from 

the high-performance computer to a data server that executes 

two applications, i.e., a database software for keeping the 

forces and moments and a digital dashboard software. 

Furthermore, the damage evaluation as mentioned in the 

previous section runs on a couple of high-end PCs. The 

results of the damage evaluation can be checked by accessing 

the data server from client PCs. 

3. STRUCTURAL HEALTH MONITORING OF WIND 

TURBINES 

The damage evaluation according to the D factor was applied 

to several wind turbines, and the priority of maintenance was 

made depending on the evaluation results. 

3.1. Results of Structural Health Monitoring 

The damage evaluation introduced in the previous chapter 

was applied to five wind turbines; the type of the wind 

turbines is Hitachi HTW2.0-80, and the turbines are operated 

at three different sites as shown in Table 1. The forces and 

moments were calculated at four points, namely, blade root, 

the tip of low speed shaft, tower top and tower bottom, on a 

wind turbine by using the digital twin of them. As the digital 

twin, the aero-servo-elastic simulation of the turbine was 

carried out in the time domain with OpenFAST provided by 

the National Renewable Energy Laboratory in the U.S.A 

(NREL). In this study, the digital twins run for 10 minutes 

every 30 minutes on the system shown in Fig. 2 because the 

CPU time of the simulation should catch up with the real time. 

The D factors were accordingly evaluated with the outputs of 

10 minutes’ simulation and accumulated every 30 minutes. 

Figure 3 shows the average D factors of the tip of low speed 

shaft over two months, i.e., from October 1st to November 

30th, 2019. The structural reliability of the gearbox in the 

drivetrain of wind turbines depends on the forces and bending 

moments applied to the tip of low speed shaft. In particular, 

the rotational torque and two bending moments are critical to 

the reliability of the gear box. 

 

Figure 2. Configuration of hierarchical structural health 

monitoring system. 
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The wind turbines listed in Table 1 can be therefore 

prioritized according to the D factors for the torque and 

bending moments when planning the inspection of the 

gearbox. In the case of the D factor for the bending moment 

around vertical axis, the D factors of the site C are obviously 

larger than those of the site A and B, even though there is not 

a certain tendency among the D factors for the rotational 

torque. On the other hand, in the case of the D factor for the 

bending moment around horizontal axis, the D factor of the 

site A is obviously larger than those of the site B and C. As a 

result, it can be mentioned that the gearboxes of the wind 

turbines at site A and C had been more damaged than the gear 

box at the site B for the two months. When the fatigue lives 

of the turbine gearbox are different each other, there is a high 

possibility that the mechanical damage by the bending 

moment is one cause of the difference. In such case, failure 

history data are useful to determine which the D factor to pay 

attention to. 

In order to compare the mechanical damage of the gearbox 

during the lifetime of the wind turbines, the D factors were 

accumulated from the start of operation to the end of 

December 2019 and shown in Figure 4. Although the D 

factors for the bending moment around vertical axis at the site 

C were larger than that at the site A in Fig. 3, the lifetime D 

factors of the site A are larger than those of the site C because 

of the long operation period for the site A. The accumulation 

of the D factor should be therefore confirmed to make a 

decision on the extraction of the candidates to be analyzed in 

the second stage of the hierarchical structural health 

monitoring and the plan of maintenance.  

In this example, the wind turbines at the site A and C should 

be extracted preferentially to evaluate the fatigue damage of 

the hot spots, i.e., gears, bearings, in the gearbox in the 

second stage because the lifetime D factors of the site A is 

the largest among all the turbines and those of the site C is 

the second largest for the bending moment around vertical 

axis even though the shorter operation period of the site C. 

 

Table 1. Wind turbines monitored and start date of 

operation. 

 

No. Site WT number 
Start month and year of 

operation 

1 A 1 March, 2012 

2 B 1 March, 2014 

3 

C 

1 

September, 2014 4 2 

5 3 

 

 

 

a) D factors for rotational torque 

 

b) D factors for bending moment around vertical axis 

 

c) D factors for bending moment around horizontal axis 

Figure 3. Average D factors evaluated at the tip of low 

speed shaft. 

 

3.2. Analysis of Environmental Root Cause 

Since the D factor is directly derived from the forces or 

moments, it is easy to identify the environmental cause of a 

mechanical damage by investigating why the forces and/or 

moments become large for a wind turbine damaged. The 10 

minutes mean and standard deviation of the wind speed and 

direction are summarized in Table 2. The mean and standard 

deviation were averaged over two months, namely, from 

October 1, 2019 to November 30, 2019. It can be noticed that 

the standard deviation of the wind direction at the site C is 

larger than the deviations at the site A and B.  
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a) Accumulated D factors for rotational torque 

 

b) Accumulated D factors for bending moment around 

vertical axis 

 

c) Accumulated D factors for bending moment around 

horizontal axis 

Figure 4. Accumulated D factors related to the damage of 

the gearbox of wind turbine. 

 

On the other hand, any specific tendency cannot be observed 

for the wind speed. To confirm these results visually, the 

time-series data of a wind turbine in the site C are compared 

with that in the site A for the wind speed and direction in 

Figure 5. It is visually obvious that the wind direction 

changes more frequently at the site C. In addition to the time-

series data, the relation between the wind speed and direction 

is shown as wind rose for the wind turbines of the site A and  

Table 2. 10 minutes mean and standard deviation of wind 

speed and direction averaged over two months. 

 

No. 
Site, WT 
number 

Wind speed 
[m/s] 

Wind direction 
[deg.] 

Mean 
Standard 
deviation 

Mean 
Standard 
deviation 

1 A-1 6.68 0.80 204.8 22.1 

2 B-1 6.29 0.63 225.4 23.5 

3 C-1 5.91 0.92 217.4 81.2 

4 C-2 5.66 0.98 139.9 89.9 

5 C-3 6.36 0.96 217.2 84.0 

 

 

 

a) Wind conditions of the site A-1 

 

 

b) Wind conditions of the site C-2 

Figure 5. Time-series data for the wind conditions of the 

target wind turbines. 
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C in Figure 6. The wind direction of the site A is distributed 

around west, but that of the site C is distributed over all 

directions. 

In the case that the wind direction changes frequently, there 

are many opportunities for the large difference between the 

wind direction and the yaw direction of wind turbine. As the 

difference becomes large, the bending moment around 

vertical axis becomes large at the tip of the low speed shaft. 

It can be therefore concluded that the D factor caused by the 

bending moment around vertical axis can be accumulated 

more rapidly because of the frequent change of the wind 

direction at the site C. 

4. CONCLUSION 

A hierarchical health monitoring is proposed to realize a 

practical and real-time structural health monitoring of 

machines under operation. The fatigue damage of structures 

is conventionally evaluated at local hot spots, such as welded 

parts and bolts. There are huge hot spots in a whole machine, 

and consequently, it is not practical to construct a structural 

health monitoring system by applying the conventional 

damage evaluation. To overcome this drawback, a metric of 

giving an overview of mechanical damage was proposed and 

employed in the first step of the hierarchical health 

monitoring. An overview of mechanical damage is evaluated 

with the forces and bending moments that occur at a point on 

machine structure, and the forces and moments can be 

calculated by using the digital twin that simulates the 

behavior of machine. 

An illustrative system of the hierarchical structural health 

monitoring was constructed for evaluating the fatigue 

damage of wind turbines. As the result of evaluating the 

damage using the metric proposed, the damage caused by the 

bending moment was accumulated more quickly at the tip of 

low speed shaft for three wind turbines included in a site. 

In addition, the root cause of the damage was easily obtained 

by analyzing the relation between the bending moment and 

the wind condition of the site. It can be therefore concluded 

that the practical and real-time structural health monitoring is 

realized by the hierarchical health monitoring with the metric 

giving the overview of mechanical damage. 
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