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ABSTRACT

In this contribution, we classify the state of corrosion of cars
in images as none, mild, moderate, and severe. We use gener-
ative adversarial networks to help to transfigure non-corroded
car images to the other classes. In other words, the model
ingests an image with a car having no corrosion and generates
an image of this car at any of either mild, moderate, or severe
corrosion levels. We proposed an approach that is able to han-
dle the particularities of this application. For example, we had
to work with only several hundred images as opposed to the
many thousands to million images commonly found in many
computer vision problems. Our data is highly unbalanced with
many more images of cars with no corrosion dominating the
cars with any level of corrosion. Additionally, the data is
poorly labeled, as classification is highly subjective. Despite
the challenges, results indicate that our generative adversarial
networks can be trained with relative accuracy given limita-
tions on the data set. Obviously, these results show that the
performance of the model depends on how well the training
set represents the particular target corrosion level.

1. INTRODUCTION

Undoubtedly, corrosion is an expensive problem for the auto-
motive industry. As a matter of fact, there are studies estimat-
ing that the global cost of corrosion can reach 2.5 trillion US
dollars (around 3.4% of global product), while the national
costs of corrosion generally represent approximately 1–5%
of the gross national product (Koch et al., 2016; Liu, Guo,
Wang, & Yergin, 2018; Hou et al., 2017). Factors that induce
corrosion in vehicles include, but are not limited to, extreme
temperatures, high levels of humidity (through exposure to
rain, snow, and coastal areas), accumulation of dirt, mud, and
debris, presence of wet condensates and appreciable concentra-
tions of chloride ions and de-icing salts. The large variations
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in corrosion-inducing factors across the markets in which the
vehicles are sold coupled with variations in vehicle usage
make predicting vehicle corrosion a daunting task. In this
work, we aim to use the learning and generation capabilities
of generative adversarial networks to aid in this task.

As discussed by Goodfellow et al. (2014), generative adver-
sarial networks consist of a two-player adversarial game with
two main components, a discriminator and a generator. The
discriminator network learns to determine whether a sample is
from the model distribution or the data distribution. The gener-
ative network creates an artificial sample and tries to fool the
discriminator. Recent studies show that generative adversarial
network architectures achieve impressive results especially in
image-to-image translations applications (Zhu, Park, Isola, &
Efros, 2017; Karras, Laine, & Aila, 2019; Shaham, Dekel, &
Michaeli, 2019), and are the main motivation for this work.

In this paper, the discriminator part of the deep learning model
learns how to identify different levels of corrosion (none, mild,
moderate, and severe) present in image containing cars. On
the other hand, the generator part of the model learns how to
transfigure images of cars from one class into another. After
training, the generative adversarial network is able to ingest
the image of an automobile (used or new) and predict how the
same would look like at different corrosion levels. Figure 1
illustrates the results we obtained with our proposed approach.

In our numerical experiment, we propose solutions for the
challenges that are particular to the application. For example,
we dealt with largely unbalanced datasets (the higher the corro-
sion level, the harder it is to acquire relevant and high-quality
images). Additionally, we had to handle highly subjective la-
beling, which imposes all the problems associated with noisy
dataset. Finally, the dataset is relatively small for the complex-
ity of the problem. While in many computer vision problems
the datasets contains many thousands to million images; in
our application, we had to work with only several hundreds.
The methodology we developed here can be used to aid with
visualization of damage over long periods of time. We believe
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Figure 1. The proposed model learns how to transform a car image into 3 different levels of corrosion.

when coupled with modeling of physics of failure, it will serve
as an aid tool to the prognosis community.

The remaining of the paper is organized as follows. Section
2 presents a brief review of the literature, contextualizing
our contribution in terms of generative adversarial networks.
Section 3 details our proposed formulation regarding genera-
tive adversarial network design, loss function definitions, and
segmentation model. Sections 4 and 5 present and discusses
the results of the numerical experiments. Finally, section 6
closes the paper recapitulating salient points and presenting
conclusions and future work.

2. BACKGROUND AND RELATED WORK

Since its introduction, generative adversarial networks have
been extensively studied, especially for computer vision tasks.
Radford et al. (Radford, Metz, & Chintala, 2015) show that
generative adversarial networks with convolutional neural
networks (CNN) can effectively learn useful features from
images. They have also laid the foundation and insights on
how adequately train a generative adversarial network. In the
application presented in this work, we need to condition the
generative network to some specific characteristics (corrosion
level). The concept of conditioning the learning of generative
adversarial networks with prior information, introduced by
Mirza et al. (Mirza & Osindero, 2014), is central to many state-
of-the-art methods, especially for image-to-image translation.

Image-to-image translation, another critical aspect of our appli-
cation, is the task of transforming an image from one domain
to another (in our case, a car without corrosion to different
levels of corrosion). The central premise of image-to-image
networks is the capability to capture the shared and distinc-
tive features of each domain, allowing the transfiguration of
the different features while keeping the common aspects of
different domains. The ‘‘pix2pix’’ framework (Isola, Zhu,
Zhou, & Efros, 2017) successfully comprised conditional ad-
versarial networks as a general-purpose solution to image-
to-image translation problems. The success and impressive
results achieved by ‘‘pix2pix’’ comes along with some sig-
nificant limitations. The effectiveness of the method depends
on very large sets of aligned image pairs. Nevertheless, many

applications (including the presented in this work) do not have
such large supervised datasets available.

In order to learn to translate an image from a source domain
to a target domain in the absence of paired examples. Zhu et
al. (2017) proposed a method called cycle-consistent gener-
ative adversarial network (CycleGAN). The main idea is to
use transitivity as a way to regularize structured data. They
introduced the cycle consistency loss that captures the premise
that if we translate from one domain to the other and back
again, we should arrive at where we started.

We mostly base our work on the findings of the CycleGAN
framework. The main differences are while in CycleGAN
they focus on two pair images, translating for one domain
to another, here we proposed a scenario with multiple do-
mains. Moreover, we build a framework to use unsupervised
data scraped from the internet, increasing the complexity and
robustness of the model.

3. PROPOSED METHOD

The overall model architecture is illustrated in Figure 2. The
main goal of the proposed model is to learn the mapping
functions between four different domains A, B, C and, D
(representing the respective corrosion levels classes: none,
mild, moderate, and severe), as also illustrated in Figure 3.
Given the purpose of this specific application, we only illus-
trate the transformation of car images without corrosion (A)
to some corrosion level (B, C, D). Following the idea of
the cycle consistency (Zhu et al., 2017), for each mapping
from A to other domain (e.g., A → B), we have a return
mapping to A (e.g., B → A). This gives a total of 6 mappings
(A → B, A → C, A → D, B → A, C → A, D → A),
each being modeled by a generative network (blue boxes in
Figure 2). We utilize the architecture from CycleGAN (Zhu et
al., 2017) for our generator models, which have accomplished
notable results in unpaired image-to-image translation prob-
lems. Each of them is composed of 2 stride-2 convolutions, 9
residual blocks (H, Zhang, Ren, & Sun, 2016), and 2 stride- 12
convolutions.

Moreover, we have 4 adversarial discriminators (DA, DB ,
DC , DD) where each one aims to distinguish between images

2



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020

Figure 2. Full network architecture. At first, the mask is applied to the input without corrosion. For all the other rusty classes, the
segmentation model predicts the masks, passing each of them to the mask optimizer, and then the optimized mask is applied to the
rusty images. Following, each sample is passed to the corresponding generator (blue boxes), which produces its corresponding
representation on the other domains. Finally, we have 4 adversarial discriminators (orange boxes) where each one aims to
distinguish between images from the original domain and the translated images.

Figure 3. Cycle-consistency loss illustration.

from the original domain and the translated images (orange
boxes in Figure 2). For instance, DB distinguishes images
between the domainB and the generated images fromA→ B.
Each of our discriminators is constituted of one stride-2 convo-
lutional layer, followed by 3 blocks of one stride-2 convolution
and instance normalization and a final stride-2 convolution.
Additionally, we built a segmentation network to eliminate the
background of the input images, so our generative networks
can focus the learning only on the car as detailed in Subsection
3.2.

3.1. Loss Function Definitions

The overall loss is compound by two main terms. There are
adversarial losses for matching the distribution of generated

images to the data distribution in the target domain. Addition-
ally, there are cycle consistency losses to prevent the learned
mappings from contradicting each other.

The adversarial losses are applied for each mapping as:

minGmaxDLGAN (G,DT∗ , O∗, T ∗) =

Et∼Pdata(t) [logDT∗(t)]

+ Eo∼Pdata(o) [log(1−DT∗(G(o))],

(1)

whereG aims at minimizing the objective against an adversary
D that tries maximizing it; O∗ and T ∗ as origin and target
domain (A,B,C, orD); G is the mapping O∗ → T ∗; F is the
come back mapping T ∗ → O∗; and finally, o ∼ P data(o) and
t ∼ P data(t) are the data distribution for origin o ∈ O∗ and
target t ∈ T ∗ considering the training samples oiNi=1 for each
domain.

To ensure that the learned mappings are cycle-consistent, we
use the cycle consistency loss as:

Lcyc(G,F ) = Eo∼Pdata(o) [F (G(o))− o]
+ Et∼Pdata(t) [G(F (t))− t],

(2)

where the forward cycle consistency is enforced given that,
for each image oi from domain O∗, the image translation
cycle should be able to bring o back to the original image
(i.e., oi → G(oi)→ F (G(oi)) ≈ oi). Similarly, should also
satisfy the backward cycle consistency (i.e., ti → F (ti) →
G(F (ti)) ≈ ti).
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The final loss is a balanced combination:

minG,FmaxDO∗ ,DT∗L(G,F,DO∗ , DT∗) =

LGAN (G,DT∗ , O∗, T ∗)

+ LGAN (F,DO∗ , T ∗, O∗)

+ λ ∗ Lcyc(G,F ),

(3)

where λ controls the relative importance of the two objectives.

3.2. Segmentation Model

As we demonstrate later on Section 4, the preliminary re-
sults of the proposed model show that the backgrounds of
the Rusty Cars dataset had an evident effect on the model
outputs. In order to overcome this undesirable effect, we pro-
posed the addition of a segmentation model to try to eliminate
the background and focus the learning only on the car. We
implement the segmentation model in a U-Net architecture
(Ronneberger, Fischer, & Brox, 2015) with the MobileNetV2
(Sandler, Howard, Zhu, Zhmoginov, & Chen, 2018) as the
backbone. While the MobileNetV2 works as the encoder part
of our U-Net, we employed 5 transposed convolutional 2D
layers as our decoder, using the MobileNetV2 blocks #1, #3,
#6, #13, and #16 outputs as skipped connections to reconstruct
the image mask.

As illustrated in Figure 4, the generated mask is still very noisy.
We further improved the segmentation results by adding a
mask optimization algorithm with an adaptive threshold tech-
nique (Yasira Beevi & Natarajan, 2009). At first, we look
for all background regions with an area of less than 10% of
the total area and transform them into the foreground. This
process guarantees that there are no holes left on our fore-
ground prediction. After that, we employ the same algorithm
scanning for foreground regions with an area of less than 10%
of the total, switching them to the background. Applying this
method, we end up removing the noisy foreground predictions.
We have chosen the threshold of 10% considering the nature
of our dataset, which is composed of car pictures.

Figure 4. Segmentation Model and optimization to generate
masks for the Rusty Cars dataset.

4. NUMERICAL EXPERIMENTS

4.1. Dataset

We started by creating a dataset to solve the problem pre-
sented in the paper. This new dataset was created from scratch
using pictures retrieved by Google Images searches and com-

plimented with samples presented on the Kaggle Carvana
Image Masking Challenge (Kaggle, n.d.) dataset. Details of
the datasets, training methods, ablation studies, and results
can be found throughout this section.

We did not find a readily available and pre-labeled dataset to
solve the proposed problem. Therefore, we created a dataset
based of images freely available . Initially, we have created
a web scraper script that queries Google Images with a given
term and saves a determined number of results. Our base
dataset was composed of the matches of the ”car rust” and
”rusty car” queries. As expected, the search retrieved a couple
of noisy data, which we manually remove from the dataset.
Finally, we classified the images in three corrosion levels
categories: mild, moderate, and severe, as shown in Figure 5.

Figure 5. Examples of images in our Rusty Cars dataset. The
first row shows examples of cars with mild corrosion levels,
we can observe samples of moderate corroded vehicles on the
second row, and the last row shows instances of cars with a
severe corrosion level.

Our dataset was also lacking cars with no corrosion in it.
We then used the Kaggle Carvana Image Masking Challenge
(Kaggle, n.d.) dataset, which contains a large number of car
images. Each car has precisely 16 images, each one taken
at different viewpoints as shown in Figure 6. This dataset
also includes a cutout mask for each of the provided pictures.
In addition to this, we also performed data augmentation,
cropping the images resulting in a partial view of the left,
center, and right part of the car, as shown in Figure 7.

Although we have a massive amount of images picturing cars
with no corrosion provided by the Carvana dataset, the number
of rusty car images with a reasonable quality is deficient. Our
final dataset is composed of 65 mild, 97 moderate, and 73
severe samples. As the goal of this project is not to remove
corrosion from cars, we have opted to repeat the rusty images
during the training process. Therefore, we added 300 random
Carvana pictures to our dataset. The size of all images in our
datasets is 256× 256.
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Figure 6. Examples of images and masks in the Kaggle Car-
vana Image Masking Challenge dataset.

Figure 7. Examples of images in the extended Carvana dataset,
with multiple car models and diverse point of views and dif-
ferent crops.

4.2. Training of Neural Networks

We first trained our segmentation model (even before we
train our generative adversarial network). We trained the
model using the original Carvana dataset across 50 epochs,
using Adam optimizer (Kingma & Ba, 2014) with a 0.001
starting learning rate reducing on the plateau by a factor of
5% and sparse categorical cross-entropy loss. Figure 8 shows
the loss and the accuracy progression during the epochs. It is
noticeable that the segmentation model is overfitting, implying
that some changes need to be done either on the architecture
or the training strategy to overcome this issue.

After that, we pre-process our data to save time during the
training of the generative adversarial network. First of all, we
generate the masked images for our samples without corrosion.
Following, we predict the masks for all the other rusty classes,
passing each of them to our mask optimizer. Finally, the rusty
masked images are created.

The proposed network was trained for 200 epochs with a batch
size of only one sample. Therefore, for each step of each

(a) Loss vs. Epochs (b) Accuracy vs. Epochs

Figure 8. Segmentation model training plots.

epoch, a sample of each of the domains is taken as input, and
their corresponding representation on the other domains are
generated (A → B, A → C, A → D, B → A, C → A,
D → A). Next, the generator and discriminator losses are
calculated, as discussed in Section 3.1. Their values through
the steps are shown in Figures 9, 10, and 11 The λ parameter
described on Equation 3 was fixed to 10.

(a) A → B (b) A → C

(c) A → D (d) B → A

(e) C → A (f) D → A

Figure 9. Generator loss vs. steps

4.3. Testing Neural Networks

We tested our solution without the segmentation model to
analyze its importance to the results. As shown in Figure
15a, when we removed the segmentation model from our
architecture, our network focused on learning the background
changes instead of the car features.

Our next experiment was regarding the influence of the mask
optimizer on the outcomes. After removing it from our schema,
the results were generated with some holes due to the poor
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(a) A → B → A (b) A → C → A

(c) A → D → A (d) B → A → B

(e) C → A → C (f) D → A → D

Figure 10. Generator cycle consistency loss vs. steps

(a) DA (b) DB

(c) DC (d) DD

Figure 11. Discriminator loss vs. steps

quality of our predicted masks. Figure 15b shows that our
model learned to reproduce the effects of a poorly generated
mask applied to the original image.

We evaluated our model using our extended Carvana dataset
(Figure 7) described here. For each of the samples without
corrosion that we randomly selected, we generated its corre-
sponding representation on each of the other domains (mild,
moderate, and severe).

Overall, our proposed network could learn the characteristics
presented in different levels of corrosion, as illustrated in

Figures 12, 13, and 14. It is possible to observe that the rust
starts on the car fenders and the lower part of the doors for
mild levels, then it continues to spread over the doors and
the hood in moderate levels, and finally to the whole car in
severe conditions. Our model could handle images showing
the whole car and also partial view scenarios, where only a
small part of the car is visible.

5. DISCUSSION

After analyzing the results presented in the previous section,
we can establish that the implementation of the image-to-
image generative adversarial network with cycle consistency
with multiple classes, and therefore, multiple domains, is pos-
sible. While the results here exhibited thus far not perfect
recreations, they validate the concept. We believe that results
would get dramatically better with potentially less problematic
set of images of rusty cars.

The model was able to transfigure the input images (with
no corrosion) to the different corrosion levels classes, even
considering the large variability in point of view, scale, and
incomplete images. Unfortunately, many examples manifested
inconsistency in the colors of the transformed cars, especially
in the severe class. We believe that it might be a direct artifact
of the low number of samples in the rusty car dataset This
subset has just a few color variations; and in the most severe
case, the brown ‘‘rusty’’ color predominant. For instance, the
bright blue color of the second column example in Figure 12
is transformed into more common colors in all classes.

Sometimes, during the training of the model, the quality of
the transformation outputs started to degrade after several
epochs. This might be directly related to the intrinsic multi-
objective loss function. As presented in the Equation 3, the
factor λ can be used to control the relative importance of the
objectives, and it was kept fixed during the whole training.
We believe that a scheduling adjustment of this factor could
help the model training stability.

Additionally, when training without removing the background
from the images, as demonstrated in Figure 15, the perfor-
mance of the model noticeable decreases. Consequently, it
becomes clear for us that the segmentation model played a
crucial role in achieving the presented results. We understand
that the quality of the results could substantially be improved
by having better cutout masks for the rusty cars dataset. This
could be achieved by improving the labeled dataset (including
pictures purposefully taken to highlight rusty cars, manually
annotating segmentation masks, or improving the segmenta-
tion model and mask optimization used). After examining
the training history and outputs of the segmentation model
shown here, we believe that, potentially, the model could be
improved by adjusting the architecture (using more layers of
MobileNetV2 or replacing it with a more complex backbone).
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Figure 12. Example of results when input images exhibit the entire car. First row shows the input images. Second, third and
fourth rows show the generated images for each respective class of corrosion level (mild, moderate and severe).

Figure 13. Example of results when input images exhibit closer big section of the car. First row shows the input images. Second,
third and fourth rows show the generated images for each respective class of corrosion level (mild, moderate and severe).
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Figure 14. Example of results when input images just exhibit a small part of the car. First row shows the input images. Second,
third and fourth rows show the generated images for each respective class of corrosion level (mild, moderate and severe).

(a) (b)

Figure 15. Ablation results: (a) Network without segmentation
model focuses on the background. (b) The model learned to
reproduce the holes due to a badly generated mask.

6. CONCLUSION

In this work, we proposed and approach for visualizing corro-
sion of automobiles based on generative adversarial networks.
We extended the CycleGAN capabilities to multiple classes,
enabling it to transform images between multiple different
domains. In our application, we used our models to trans-
figure images of cars presenting no signs corrosion to cars
having different levels of corrosion (from none to either mild,
or moderate, or severe).

The main challenges found in this research had to do with the
dataset. Images of cars without signs corrosion were easily
obtained (Carvana dataset) and had examples of different car
models, points of view, colors, etc. The only drawback was
the low variability in light conditions (as these images were
all in relatively high white light exposure). However, high-
quality images of cars with different corrosion levels were
extremely difficult to obtain. The dataset collected here was
biases towards old car models (which are not a reflect of
the Carvana dataset), with busy backgrounds, and poor paint

color variability. These problems are on top of the subjective
classification of the level of corrosion the cars presented in
these images. Under these circumstances, we believe the
model was still able to handle the poor dataset and it was
capable of transforming the car images in different levels
of corrosion. As we already discussed, the results can be
improved; but nevertheless, they show the model capabilities
and constitute a valid proof of concept. In the future, we could
couple this approach with modeling of physics of failure to
aid with visualization of damage progression. Alternatively,
once our proposed method is perfected, we could use it in
conjunction with virtual and augmented reality for training of
personnel in visual inspection.
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