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ABSTRACT 

Given its demonstrated ability in analyzing and revealing 

patterns underlying data, Deep Learning (DL) has been 

increasingly investigated to complement physics-based 

models in various aspects of smart manufacturing, such as 

machine condition monitoring and fault diagnosis, complex 

manufacturing process modeling, and quality inspection. 

However, successful implementation of DL techniques relies 

significantly on the amount, variety, and veracity of data for 

robust network training. Also, the distributions of data used 

for network training and application should be identical to 

avoid the internal covariance shift problem that reduces the 

network performance applicability. As a promising solution 

to address these challenges, Transfer Learning (TL) enables 

DL networks trained on a source domain and task to be 

applied to a separate target domain and task. This paper 

presents a domain adversarial TL approach, based upon the 

concepts of generative adversarial networks. In this method, 

the optimizer seeks to minimize the loss (i.e., regression or 

classification accuracy) across the labeled training examples 

from the source domain while maximizing the loss of the 

domain classifier across the source and target data sets (i.e., 

maximizing the similarity of source and target features). The 

developed domain adversarial TL method has been 

implemented on a 1D CNN backbone network and evaluated 

for prediction of tool wear propagation, using NASA's 

milling dataset. The experimental results indicate that domain 

adversarial TL can successfully allow DL models trained on 

certain scenarios to be applied to other scenarios. 

1. INTRODUCTION 

In manufacturing processes, certain quantities and 

measurements can reveal critical information about the health 

condition of manufacturing machine tools, process 

efficiency, or product quality. The relevant data collection 

and analysis, known as condition monitoring, contribute 

telemetry needed to transform traditional manufacturing into 

smart, data-driven manufacturing. Deep Learning (DL) 

provides the necessary tools for handling the big 

manufacturing data and translating the raw data into 

information and knowledge that can facilitate process-level 

and system-level decision makings, such as machine tool 

predictive maintenance and process optimization (Lee, Jin, 

Bagheri, & Chao, 2016). For example, one DL variant, the 

convolutional neural network (CNN), has been investigated 

to identify machine operating condition, fault detection and 

diagnosis, tool wear and remaining useful life (RUL) 

prediction, and product assessment (Wang, Ma, Zhang, Gao, 

& Wu, 2018; Li, Ota, & Dong, 2018). However, the 

performance of DL models primarily relies on the amount 

and variety of training data; DL models are not inherently 

generalizable. In manufacturing applications, the robustness 

of DL models is not guaranteed due to process-to-process 

variation and changes in operating conditions. With enough 

training examples under certain operating conditions, DL 

networks can achieve satisfactory performance but will suffer 

significant adverse effects when utilized outside the strict 

confines of the original conditions. As a promising solution 

to overcome this limitation, Transfer Learning (TL) allows 

DL models trained on a source task or domain to be 

transferred to a second, related task or input domain (Pan & 

Yang, 2010). 

Within the scope of TL, domain adaptation addresses 

performing a single task (e.g., RUL prediction) across input 

domains with differences caused by changing operating 

conditions or different types of manufacturing machine tools. 

The change in input data distribution is known as the 

covariate shift problem, which limits the applicability of DL 

models (Shimodaira, 2000). To fundamentally address the 

problem, DL models must adapt to compensate for the 

differences across the domains through learning common 
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latent features shared by the domains. Several methods have 

been proposed for feature generalization of DL models across 

the source domain and the target domain. Some methods 

achieve feature generalization by adding an explicit loss term 

to the DL network loss function, to penalize the network for 

generating different feature distributions from source and 

target inputs. To measure the feature distribution distance, 

metrics including Correlation Alignment (CORAL), 

Kullback-Leibler Divergence (KLD), and Maximum Mean 

Discrepancy (MMD), have been defined or leveraged (Sun & 

Saenko, 2016; Pan, Kwok, & Yang, 2008; Tzeng, Hoffman, 

Zhang, Saenko, & Darrell, 2014). Alternative methods for 

coalescing feature distributions opt for an adversarial 

approach, in which a domain classifier attempts to identify 

which input domain, source or target, an input feature came 

from, while the feature extraction layers compete with it to 

develop a feature mapping that prevents distinguishability. 

Several variants of this method include the ReverseGrad 

approach from Ganin & Lempitsky (2015) and Ganin et al. 

(2016), Adversarial Discriminative Domain Adaptation 

(ADDA) introduced by Tzeng et al. (2017), and conditional 

adversarial domain adaptation discussed by Long et al. 

(2018) and related work by Hoffman et al. (2017). Domain 

adversarial transfer learning will be investigated in this paper 

because of its ability to generalize features without the need 

for a separately-defined measurement metric. 

Recent work in smart manufacturing has explored TL via 

domain adaptation in connection to condition monitoring. 

Sun et al. (2018) investigated KLD to promote feature 

similarity for RUL prediction through an autoencoder DL 

architecture. Similarly, Wen et al. (2019) examined the 

benefits of MMD as a feature discrepancy metric for TL in 

bearing fault classification scenarios. Adversarial approaches 

have also received attention and demonstrated promising 

results. Liu et al. (2019) investigated the advantages of 

applying a GAN loss-based approach in keeping with ADDA 

from Tzeng et al. (2017) to transfer knowledge from a 

pretrained source LSTM network to a target domain with a 

different cutting tool. Guo et al. (2019) combined MMD-

based feature discrepancy loss with domain adversarial 

GAN-style loss to classify machine health conditions, via 

features extracted from vibration data by 1D CNNs. Zhang et 

al. (2019) applied the ADDA approach to generalized feature 

generation for a 2D CNN-based characterization of vibration 

frequency spectra. More recently, da Cost et al. (2020) 

successfully applied the ReverseGrad approach that is 

initially developed by Ganin et al. (2016) to predict RUL of 

aircraft turbofan engines operating under different altitudes 

and throttle levels. 

This study develops a Domain Adversarial Transfer Learning 

(DATL) method through ReverseGrad for domain adaptation 

of tool wear regression and prediction during a milling 

process. Vibration signals are processed by a 1D CNN, and 

the extracted features are then correlated to tool wear through 

fully-connected layers. A domain classifier attempts to 

distinguish between features generated from the source 

domain and target domain data, which were collected under 

different operating conditions. The entire network can be 

divided into three parts according to their functions: feature 

extraction, domain classification, and wear prediction, which 

are optimized simultaneously with a gradient reversal layer 

between the feature extractor and the domain classifier. 

Through the gradient reversal layer, the 1D CNN is forced to 

extract features that confuse the concurrently optimized 

domain classifier. For performance evaluation, the 

performance improvement of the developed DATL versus 

the availability of target domain data is demonstrated.  

The remainder of this paper is organized as follows: Section 

2 provides the theoretical background required by the 

approach, Section 3 outlines the experimental dataset and 

architecture, Section 4 presents results and analysis, and 

Section 5 concludes with a discussion of future work. 

2. DOMAIN ADVERSARIAL TRANSFER LEARNING (DATL) 

2.1. Deep Learning and Convolutional Neural Networks 

DL represents a hierarchical learning structure, as a 

combination of multilayer artificial neural networks and 

specialized network architectures. Analogous to progressive 

stages of abstraction, early layers in the networks learn 

intermediate representations of the input data (i.e., low-level 

features), while later layers fuse these low-level features to 

high-level features that better reveal the properties of the 

objects to be analyzed. Due to the large numbers of free 

parameters inherent to DL models, several specialized 

architectures have been developed to leverage known 

underlying structures in the input data. One highly successful 

architecture is CNN. Instead of a fully-connected layer that 

simultaneously learns weights for each input neuron, CNNs 

take advantage of underlying spatial connections in each 

input example. For example, images often consist of building 

blocks such as edges and shapes that constitute high-level 

motifs. Thus, instead of attempting to directly apply a dense, 

fully-connected network to processing image pixels, CNNs 

search for smaller pattern blocks within the larger input by 

convolving kernels with the input. Each separate kernel 

produces a new channel of the input image, representing an 

extracted pattern. The convolutional output can then be 

compressed by pooling values in adjacent regions, 

summarizing these regions to suppress local variations in the 

pixels while at the same time reducing the number of network 

parameters to be tuned and improving the computational 

efficiency. Hierarchical stacks of convolutional and pooling 

layers are employed as feature extraction layers in DL 

models, which end with a full-connected network for 

classification or regression on the learned features.  

CNNs operating on 2-dimensional input have demonstrated 

excellent performance in image recognition problems, and 

1D CNNs have proved successful on sequential inputs such 
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as vibration signals (Krizhevsky, Sutskever, & Hinton, 2012; 

Abdeljaber, Avci, Kiranyaz, Gabbouj, & Inman, 2017). For 

1D inputs and kernels, the convolution operation can be 

expressed as 

 

 

 

𝑦𝑐(𝑛) = ∑𝑤

𝐿−1

𝑘=0

(𝑘)𝑥(𝑛𝑆𝑐 + 𝑘), (1) 

where 𝑤  is the convolutional kernel of length 𝐿 , 𝑥  is the 

input signal of length 𝑁, and 𝑆𝑐 is the stride or the number of 

data points that the kernel moves per step across the input. 

The bounds of 𝑛 can be set to stay within the original signal 

length (or including zero-padded regions on sides of the 

input). The convolutional output 𝑦𝑐(𝑛) can then be passed 

through an activation function such as the rectified linear unit 

(ReLU) to introduce nonlinearity: 

 

 
𝑦𝑎(𝑛) = max(0, 𝑦𝑐(𝑛)). (2) 

Next, this activation result 𝑦𝑎(𝑛) is pooled. Max pooling is 

often used and selects the maximum value in an 𝑀-length 

sliding window across the input: 

 

 
𝑦(𝑛) = max

0≤𝑘≤𝑀−1
(𝑦𝑎(𝑛𝑆𝑝 + 𝑘)). (3) 

Here, 𝑆𝑝 is the stride of the pooling window step across the 

obtained features from the convolutional operations. One or 

more convolution and pooling layers may be stacked in 

sequence to construct the feature extraction network. The 

outputs are then fed into a fully-connected, multilayer 

network for classification or regression. CNNs can be trained 

using traditional backpropagation techniques, including 

stochastic gradient descent (SGD) and RMSProp-based 

Adam algorithm. 

2.2. Transfer Learning 

With potentially millions of parameters, DL models are 

capable of fitting to very complex problems when equally 

large amounts of training data are available for the desired 

task. However, due to complexities or physical limitations in 

some application scenarios, collecting data with proper 

annotations may not be physically or economically feasible, 

which creates a challenge for robust model training. With 

these considerations in mind, Transfer Learning (TL) seeks 

to discover ways of transferring knowledge learned on a well-

posed problem source domain with sufficient training data to 

a related target domain task. Pan & Yang (2010) outlined 

several TL variants, which are developed to address different 

application scenarios, including 1) transferring knowledge 

obtained from one task to a new task in the same data domain 

(e.g., transferring vibration analysis from tool wear 

monitoring to chattering control); 2) transferring from one 

data domain to another data domain for the same task (e.g., 

machine tool RUL prediction w.r.t. different types of 

machine tools under different operating conditions); and 3) a 

mix of the first two scenarios. The second application is also 

known as domain adaptation and is of particular interest to 

machine condition monitoring and health management, since 

common prognosis tasks may encounter challenges from data 

differences due to process-to-process variation or varying 

operating conditions. Thus, it is desirable to train a model on 

a source domain, but maintain its performance on the other 

domains under the existence of data variances. 

With notation from Pan & Yang (2010), the related tasks 

share a common input set 𝒳  and output domain 𝒴 . The 

source domain 𝒟𝑠  and the target domain 𝒟𝑡  can be written 

with their respective marginal probabilities: 

 

 

𝒟𝑠 = {𝒳; 𝑃(𝒳)}

𝒟𝑡 = {𝒳;𝑄(𝒳)}
 (4) 

Although the domain inputs are drawn from the same set 𝒳, 

they do not follow the same distribution due to the variance 

in operating conditions and other factors, i.e., 𝑃(𝒳) ≠
𝑄(𝒳), and the distribution of the covariate of the desired 

output has shifted between the two scenarios. Since the DL 

model learns the conditional probability of the output on the 

input distribution, this creates an inherent difficulty termed 

the covariance shift problem (Shimodaira, 2000). Domain 

adaptation seeks to eliminate the difference in marginal 

probabilities by developing a feature mapping that generates 

a consistent feature distribution across both domains. That is, 

domain adaptation searches for nonlinear feature mapping 

𝜙(⋅) such that 

 

 
𝑃(𝜙(𝒳)) = 𝑄(𝜙(𝒳)). (5) 

Pan et al. (2008) proposed using Maximum Mean 

Discrepancy (MMD), a reproducing kernel Hilbert space to 

find a representation in which the marginal probabilities are 

similar or identical, and Pan et al. (2011) further extended 

this work to introduce Transfer Component Analysis (TCA) 

to improve computational efficiency. Deep Domain 

Confusion (DDC) incorporates a discrepancy metric into the 

network loss function (to be minimized) to encourage the 

feature extraction layers to find a single distribution of 

features (i.e., common latent features) across both the source 

and target inputs (Tzeng, Hoffman, Zhang, Saenko, & 

Darrell, 2014). A few metrics have been proposed, including 

Kullback-Liebler Divergence (KLD), MMD, and Correlation 

Alignment (CORAL) for deep networks introduced by Sun & 

Saenko (2016). These features measure the distance or 

discrepancy between feature distributions statistically or 

probabilistically. During the network training phase, this 

distance penalizes feature mappings which separate the 

source and target features. However, these metrics must be 

designed and tuned to adequately capture the similarity 
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between the two feature distributions, and characteristics of 

the input data may affect how well each metric performs. 

2.3. Principles of DATL 

Eliminating dependency on these metrics, Ganin & 

Lempitsky (2015) introduced, and Ganin et al. (2016) further 

developed, a different approach for encouraging similar 

source and target feature distributions based on adversarial 

networks known as DATL. Instead of a discrepancy metric in 

the network loss function, a new domain classifier network is 

added in parallel to the original fully connected layers for 

regression (see Fig. 1). The goal of this domain classifier is 

to determine which input distribution a given feature came 

from. Optimizing this classifier improves its ability to 

differentiate these source and target features.  

 

 

Figure 1. A 1D CNN ReverseGrad domain adversarial approach 

for tool wear regression with transfer learning 

 

It should be mentioned that once gradients have been 

backpropagated through the classifier, they are reversed 

before continuing back through the feature extraction layers 

(i.e., 1D CNN in Fig. 1). This forces the domain classifier to 

seek the best parameters to distinguish the source and target 

domain features, while simultaneously have the feature 

extraction in 1D CNN to move towards mappings that cause 

the features of two domains to be indistinguishable. In this 

adversarial manner, the network is encouraged to converge to 

feature extraction layer parameters, which map the features 

of both the source and target domain to the same distribution. 

The overall loss function can be summarized as 

 

 
𝐽 = 𝐽𝑦 + 𝜆𝐽𝑑 , (6) 

where 𝐽 is the total loss, 𝐽𝑦 is the loss of the output classifier 

or regressor, and 𝐽𝑑 is the loss of the domain classifier, with 

a regularization parameter 𝜆. During feedforward prediction, 

the gradient reversal layer between the 1D CNN and the 

domain classifier acts as the identity function, but during 

backpropagation, the gradient from the domain classifier is 

reversed as: 

 

 
𝛿𝐹𝐸
−1 = −𝛼𝛿𝐷𝐶

0 , (7) 

where 𝛿𝐷𝐶
0  is the gradient at the input of the domain classifier, 

𝛿𝐹𝐸
−1 is the gradient at the last layer of the feature extractor, 

and 𝛼  is a hyperparameter that controls the impact of the 

domain classifier on the optimization of the feature extraction 

layers. 

Additional variants of the adversarial approach have been 

proposed, most notably Adversarial Discriminative Domain 

Adaptation (ADDA) which modifies the ReverseGrad 

approach to remove the gradient reversal layer and use two 

separate and competing optimization processes to pit the 

domain classifier against the feature extraction layers, more 

similar to a traditional generative adversarial network 

(Tzeng, Hoffman, Saenko, & Darrell, 2017; Goodfellow, et 

al., 2014). Both ADDA and ReverseGrad have been 

investigated in manufacturing, and this study presents a novel 

application of ReverseGrad to realize DATL upon a 1D CNN 

for vibration signal analysis and tool wear regression under 

two operating conditions (Zhang, Li, Wen, Gao, & Gao, 

2019; da Costa, Akçay, Zhang, & Kaymak, 2020). 

3. EXPERIMENTAL EVALUATION 

3.1. Milling Data Set and Data Preparation 

The Milling Data Set published by NASA Ames Research 

Center is analyzed in this study (Agogino and Goebel, 2007). 

The data set was collected across 16 milling process test cases 

with varying materials, feed rates, and cut depths. As these 

cuts are performed, the rotating tool head experiences 

progressive flank wear, which was recorded throughout the 

runs. Each configuration of material, depth of cut, and feed 

rate was tested twice. Vibration data were collected from two 

locations, the spindle and the table. Table vibration data was 

used for this study.  

For transfer learning, the source data domain was chosen to 

be the cast iron material with a 0.25 mm/s feed rate, and the 

target domain was cast iron with a 0.5 mm/s feed rate, across 

all cutting depths. Excluding eight of the 16 data set cases 

which used steel, this choice resulted in using four of the 

remaining eight cases as source data (i.e., all cast iron runs at 

0.25 mm/s) and the final four cases as target data (i.e., all cast 

iron runs at 0.5 mm/s).  

Each case had individual runs consisting of approximately 

9000 data points with a 250-Hz sampling rate of the vibration 

sensor (i.e., a total of 36 seconds). The beginning and ending 

portions of the run differ significantly from the rest of the 

signal as the milling process starts and ends, respectively. 

Hence, the first and last 10 seconds of the signal were 

removed. To augment the dataset, these cropped 16-second 

blocks were further split into 2-second (500-sample) sections 

and given the same flank wear label as the run from which 

they were taken. 

The source and target data sets contained the 2-second 

windows from the four source and four target cases, 
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respectively. Within each source and target data set, the 

collection of 2-second windows was split into 70% train, 15% 

validation, and 15% test sets. 

3.2. DATL Network Architecture 

The developed 1D CNN-based DATL network architecture 

is shown in Fig. 2. A 1D CNN performs feature extraction 

using three pairs of 1D convolutional and max-pooling layers 

with ReLU activation functions. This set of feature extraction 

layers is shared between the source and target domains to 

generate consistent, similar features from both input 

distributions. 

The flank wear regression output is generated by three fully-

connected layers terminating in a sigmoid output neuron. 

Dropout is used throughout the feature extraction and output 

layers to combat the overfitting problem. Regression loss is 

calculated via mean squared error. Domain classification is 

performed using three fully-connected layers closely 

resembling the regression layers. However, the number of 

hidden layer neurons is reduced, and the output is two 

softmax neurons representing a one-hot vector encoding of 

the input domain, either source or target. A cross-entropy loss 

function is used. In addition, a gradient reversal layer is 

included to invert the backpropagated error as it exits the 

domain classifier. Thus, while backpropagation makes the 

domain classifier itself to minimize its loss, the gradient 

reversal layer will cause the feature extraction layers to seek 

to maximize the domain classifier’s loss, thereby increasing 

the likelihood that source and target features will not be 

differentiable.  

 

Figure 2. 1D CNN with DA ReverseGrad architecture. ReLU is 

used as the activation function throughout. 

3.3. Training 

In each test case, the network was trained for 5000 epochs 

with early stopping on the source or target validation set 

performance metric (the coefficient of determination, 

denoted R2). The optimizer was Adam with a learning rate of 

0.0001. The minibatch size was 20. Experiments were run on 

an NVIDIA P100 GPU and required between 8 and 15 

minutes each to complete.  

During transfer learning, the 𝛼  parameter controls the 

infusion of domain classifier loss into the optimization of the 

feature extraction layers. As recommended by the literature, 

this parameter was defined as 

 

 
𝛼 =

2

1 + exp(−10𝑝)
− 1 (8) 

where 𝑝 ∈ [0,1)  is the training progress (Guo, Lei, Xing, 

Yan, & Li, 2019). With the 𝛼  parameter initially close to 

zero, the optimization process focuses on developing initial 

features via the labeled source examples. As the parameter 

increases, the domain classifier loss is gradually incorporated 

to prevent the features from becoming overly specific to the 

source domain. 

4. RESULTS AND DISCUSSION 

Several training cases were performed to evaluate the 

performance of the developed DATL on the flank wear 

prediction problem. First, a performance comparison is made 

between with and without DATL by evaluating the accuracy 

(quantified by R2) of the 1D CNN (trained solely on source 

domain data) on the target domain data. Furthermore, the 

comparison is expanded to more scenarios where different 

availability of target domain data can be used for network 

training, as illustrated in Fig. 3. Without transfer learning, an 

R2 of 0.97 was achieved on the source task. It is seen from 

Fig. 3 that DATL greatly improves the performance of 1D 

CNN trained on target domain data, when there is no 

available target domain data to jointly (with source domain 

data) train the network. Along with the availability of target 

domain data, the performance without transfer learning 

gradually catches up with the performance with transfer 

learning.  

 

Figure 3. Target domain test set R2 performance 
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The validation R2 plots for trials without transfer learning 

demonstrate that as training continues, the target R2 peaks 

and begins to decrease (see Fig. 4 left), indicating that the 

network has begun learning features specific to the source 

domain instead of those general to the flank wear problem 

across both operating scenarios. This R2 divergence in later 

epochs vanishes when the domain adversarial transfer 

approach is applied (see Fig. 4b). Without any labeled target 

domain data, the DATL algorithm immediately increases the 

target R2 from 0.43 to 0.69 and achieves a performance of 

0.88 when 10% of the labeled target training data is included. 

To illustrate how DATL helps with extracting common 

features from different domains, distributions of features 

extracted by the 1D CNN on the target domain data (features 

of the last 1D CNN layer) are shown in Fig. 5 using t-SNE. 

The distributions are plotted against the severity of the flank 

wear (mild wear: 0-0.3 mm and severe wear: 0.3-0.8 mm).  

As shown in Fig. 5, DATL reduces the overlap between 

feature distributions, makes the boundary between points of 

two wear severities clearer. Although there are still some 

mixes among wear points due to either the imperfect 

differentiation by the model or the artificially introduced 

errors in differentiating the wear severities, the results 

confirm the effectiveness of DATL in generalizing DL 

models regardless the application domains.   

5. CONCLUSION 

This study demonstrates the application of domain 

adversarial transfer learning (DATL) to predict tool flank 

wear in a milling process. The ReverseGrad model was 

successfully trained on a source task feed rate and transferred 

to a second set of process parameters with a different feed 

rate. DATL enables the network to be simultaneously trained 

on the source and target tasks, encouraging the feature 

extraction of the network to generate common features to 

both input domains. The approach significantly improved the 

network performance on the target task and demonstrated the 

ability of DATL to compensate for limited labeled target 

examples. Future work includes investigating different ways 

for generating and fusing gradients of domain classification 

and regression, to further improve the performance.  

 

 
 

Figure 4. Regression performance (R2) of 1D CNN on validation data: left) without transfer learning and right) with transfer learning 

 
Figure 5. 1D CNN feature distributions vs. wear severity for left) without and b) with transfer learning 
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