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ABSTRACT

Vibration analysis is an important component of industrial
equipment health monitoring. Aircraft engines in particu-
lar are complex rotating machines where vibrations, mainly
caused by unbalance, misalignment, or damaged bearings,
put engine parts under dynamic structural stress. Thus, mon-
itoring the vibratory behavior of engines is essential to de-
tect anomalies and trends, avoid faults and improve avail-
ability. Intrinsic properties of parts can be described by the
evolution of vibration as a function of rotation speed, called
a vibration signature. This work presents a methodology for
large-scale vibration monitoring of operating civil aircraft en-
gines, based on unsupervised learning algorithms and a flight
recorder database. Firstly, we present a pipeline for massive
extraction of vibration signatures from raw flight data, con-
sisting in time-domain medium-frequency sensor measure-
ments. Then, signatures are classified and visualized using
interpretable self-organized clustering algorithms, yielding a
visual cartography of vibration profiles. Domain experts can
then extract various insights from the resulting models. An
abnormal temporal evolution of a signature gives early warn-
ing before failure of an engine. In a post-finding situation
after an event has occurred, similar at-risk engines are de-
tectable. The approach is global, end-to-end and scalable,
which is yet uncommon in our industry, and has been tested
on real flight data.

1. INTRODUCTION

Vibration analysis is an important component of condition
monitoring of rotating industrial equipment (Randall, 2004,
2011). Condition monitoring (CM) of industrial assets is a
set of techniques that aims at increasing machine availability
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and safety, while reducing maintenance costs (and thus the
ownership cost). It is at the core of a predictive maintenance
(PM) strategy (also called condition-based maintenance). In-
deed, implementing a condition-based maintenance program
requires in-depth knowledge of the machine’s condition. Vi-
bration analysis provides this knowledge by enabling to look
inside a rotating machine. Its applications include the detec-
tion of unbalance, misalignment, or flutter, due for instance
to gears, rollings or bearings damage or even cracks or loose
parts.

Aircraft engines in particular are complex rotating machines
where vibrations put engine parts under dynamic structural
stress. In this work, we are interested in turbofan engines used
in civil aircraft. PM for aircraft engines consists in adapting
the maintenance plan to the actual state of each individual en-
gine, unlike traditional time-based preventive maintenance,
the state of each engine being the result of its actual use dur-
ing its lifetime. This allows a more efficient scheduling of
preventive and corrective actions (e.g. shop visits): time be-
tween actions can be increased if no maintenance is neces-
sary (thus reducing costs), and actions can be taken earlier
thanks to enhanced predictability of events (thus improving
safety). Concretely, CM combines historical data and physi-
cal models to raise alerts, build models that evaluate wear of
parts and their residual useful life, probability of failure, etc.
These models can be based on thresholds, statistical models
incorporating physical knowledge, or machine learning, i.e.
statistical models whose parameters are learned from histori-
cal data. In this work, we tackle monitoring and raising alerts.
Diagnosis and prognosis are then done by relevant experts.

Modern aircraft are equipped with thousands of sensors, gen-
erating huge amounts of data during each flight. At the same
time, air traffic is growing exponentially. Due to this in-
creasing volume and velocity, we clearly are in a Big Data
context, which implies the use of scalable infrastructure and

1



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020

software tools to effectively handle operational data for CM
(Forest, Lacaille, Lebbah, & Azzag, 2018). In this work, we
present a methodology for vibration monitoring of a fleet of
civil aircraft engines using historical flight data and unsuper-
vised learning algorithms. Every step, from ingestion to visu-
alization, is made scalable through distributed processing on
a cluster using the Spark framework.

We propose a method for vibration monitoring of a fleet of
civil aircraft engines using historical flight data, based on dis-
tributed processing on a cluster and unsupervised learning
algorithms. Such global and large-scale approaches are yet
uncommon in aerospace industry. Our main contribution is
two-fold:

• First, we present a pipeline to massively extract vibration
signatures from time-domain medium-frequency flight
recorder data, stored on a Big Data platform. Every step
of the process is flexible, generic and scalable, and can
be easily tuned by engineers to solve various use cases.

• Second, vibration signatures are classified and visualized
using interpretable self-organized clustering algorithms,
yielding a visual cartography of vibration profiles. The
resulting models can be used by domain experts for mon-
itoring, anomaly detection, giving early warnings and
other insights. As an example, we show it can be used to
detect anomalies, compute anomaly scores, or find simi-
lar engines (which is useful to identify at-risk engines in
a post-finding situation after an event has occurred).

Our method has already been tested on real flight data from
operating aircraft, and is intended to be part of the ground
component of an EHM system (Bastard, Lacaille, Coupard,
& Stouky, 2016).

2. RELATED WORK

In this section, we will first provide a brief review of vibra-
tion analysis techniques and how they are applied to aircraft
engines. Then, we present applications of unsupervised learn-
ing algorithms, and in particular self-organized maps for clus-
tering and visualization of high-dimensional data.

2.1. Vibration analysis on aircraft engines

A turbofan engine is composed of two main shafts, the low
pressure (LP) shaft and high pressure (HP) shaft. The LP
shaft is powered by the LP turbine and drives the fan (engine
inlet) and LP compressor. The HP shaft is powered by the
HP turbine (following the combustion chamber) and drives
the HP compressor. See Figure 1 for a simplified diagram.
Sensors are disposed to measure the rotation speed of each
shaft (also called regime) and vibration amplitude. Vibration
amplitude can be expressed in three different ways: displace-
ment (unit: mm SI or mils), velocity (unit: mm/s SI or
ips) or acceleration (unit: m/s2 SI or g). In order to mea-

Figure 1. Simplified diagram of a turbofan engine with fan,
low-pressure and high-pressure compressors and turbines at-
tached to their respective shafts.

sure it on a machine, two possibilities exist. First, directly
measuring displacement of moving parts, using eddy current
(also known as Foucault’s current) proximity sensors. This
solutions is used for testing (e.g. tip-timing), but is unprac-
tical in operating engines. Instead, the second solution is to
measure the acceleration of non-moving parts (e.g. bearing
or casing) using accelerometers (which are much easier to
install on smaller parts), and integrate to obtain speed or dis-
placement. In the following section, we will describe the ac-
quisition process and properties of the sensor data that will be
used in this work. As part of aircraft engine health monitoring
(EHM) (Bastard et al., 2016), vibration analysis tackles fol-
lowing issues: rotor unbalance (fan, compressors or turbines),
rotor/stator contact (Peng, Chu, & Tse, 2005), or defects due
to wear affecting blades (Kharyton, 2009; Hazan, Verleysen,
Cottrell, & Lacaille, 2010), bearings (Orsagh, Sheldon, &
Klenke, 2003) or gears (Wang, Ismail, & Farid Golnaraghi,
2001).

Frequency analysis Vibrations signals are usually pro-
cessed not in the time-domain, but in the frequency or time-
frequency domain. When signals are stationary, i.e. when
the engine rotation speed is constant, the Fourier transform is
traditionally used to analyze the spectrum (Randall, 2011).
When rotation speed is varying, during an acceleration or
deceleration, analysis takes place in the time-frequency do-
main and makes use of spectrograms. The works presented
in (Hazan et al., 2010; Lacaille, 2013; Abdel-Sayed, Duc-
los, Faÿ, Lacaille, & Mougeot, 2015) tackle the problem of
pattern recognition in high-frequency, high-bandwidth vibra-
tion data measured on aircraft engines on a test bench, as part
of the production process. These data contain the complete
spectral information on the engine and allow to prevent faults
in new engines coming out of the production plant. Due to
the high frequency of the measurements (51 kHz), the vi-
bration data are represented as spectrograms. Traditionally,
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experts perform a visual analysis of the spectrograms to de-
tect anomalous patterns. The goal is to automate this pro-
cess using algorithms and numerical methods. In (Lacaille,
2013), spectrogram patches are queried against a database
of reference patterns, using dimensionality reduction through
non-negative matrix factorization (NMF). (Abdel-Sayed et
al., 2015) propose an automatic anomaly detection procedure
also based on NMF. This line of work differs vastly from our
contribution, firstly because we are interested in a fleet of op-
erating engines, and not a test bench. The nature of our data
is also different, as we have medium-frequency time-domain
signals, already aggregated by the flight recorder, but mea-
sured during entire flights. Moreover, we are not interested
in early detection of faults in young engines just coming out
of the plant, but in the evolution of vibration signatures of
operating engines, flight after flight.

Time-domain analysis In this work, we are not interested
in the frequency information contained in the spectrum of the
signal, but we will directly manipulate vibration amplitude
signals already aggregated by the electronic flight recorder
into medium-frequency time-domain signals. Amplitude is
measured either by displacement, velocity or acceleration. In-
stead, we are interested in the vibratory response of specific
parts of the engine as a function of regime, called a vibration
signature (Randall, 2004). In rotor dynamics, a vibration sig-
nature can describe intrinsic properties of parts. It is generally
measured during an acceleration (monotonic increase of the
regime) or a deceleration of the engine (monotonic decrease
of the regime). Vibration signatures can then be represented
as Campbell diagrams as a function of time or equivalently as
a function of regime.

2.2. Unsupervised learning for engine data analysis

As more and more data are collected on modern aircraft, data-
driven approaches and machine learning have become useful
tools for condition monitoring. Supervised learning allows
to build predictive models when target values or labels are
available. Unsupervised learning, on the other hand, can be
used for data exploration, anomaly detection, monitoring, etc.
We have seen previously that dimensionality reduction allows
to compress and extract information from high-dimensional
data (Abdel-Sayed et al., 2015). Another major tool is clus-
tering, also known as unsupervised classification. Cluster-
ing is a family of unsupervised learning techniques that try
to discover groups of similar elements in a dataset, providing
information on the structure of the underlying data distribu-
tion. The approach used in (Hazan et al., 2010) uses clus-
tering to detect signatures of orders in spectrograms. In this
work, we focus on a family of clustering algorithms called
self-organizing maps (SOM). SOM algorithms enforce neigh-
borhood constraints on the cluster centers and have the advan-
tage of producing smooth, interpretable visualizations. High-

dimensional data are clustered and projected onto a low-
dimensional manifold (usually two-dimensional) with a grid
topology, called a map. Each unit of the map corresponds to a
prototype vector in the original high-dimensional space, and
new data points are projected on the map by finding the clos-
est prototype vector w.r.t. euclidean distance. Originally in-
troduced by Kohonen (Kohonen, 1982), there are many vari-
ants of SOM working with relational data defined by a dis-
tance matrix (Olteanu, Villa-Vialaneix, & Cottrell, 2013) or
using unsupervised neural networks for joint representation
learning (Forest, Lebbah, Azzag, & Lacaille, 2019b; Fortuin,
Hüser, Locatello, Strathmann, & Rätsch, 2019).

Self-organizing maps were already used for aircraft engine
fleet monitoring in (Cottrell et al., 2009; Côme, Cottrell, Ver-
leysen, & Lacaille, 2010, 2011; Forest et al., 2018). These
works focus on the performance health state of the engine and
not the vibration aspects. In (Faure, Olteanu, Bardet, & La-
caille, 2017), SOM are used to classify transient flight phases.

3. DATA DESCRIPTION

This section describes the acquisition, ingestion and storage
process of the sensor data used in this work. Continuous En-
gine Operational Data (CEOD) designates the data recorded
by modern civil aircraft. It consists in a set of parameters
and sensors that are recorded during entire flights, from en-
gine start to landing. Due to the large number of parameters
and their possibly high frequency (up to 66 Hz), the volume
of such data is very important. Finally, the studied vibration
signatures are presented.

3.1. Sensors and acquisition

Two types of signals are necessary to compute vibration sig-
natures: rotation speed (or regime), and vibration amplitude.
On the regime side, two variables are considered:

• N1: rotation speed of the LP shaft.
• N2: rotation speed of the HP shaft.

Rotations speeds are recorded by two phonic wheels at an
initial frequency of 51 kHz, before being down-sampled on-
board to 66 Hz. On the vibration side, vibration peak am-
plitudes (displacement, speed or acceleration) are measured
by two accelerometers. One of the sensors (ACC1) is located
near #1 bearing, placed on the static frame as close as possi-
ble to the LP shaft, whereas the second (ACC2) is located at
the turbine rear frame. Vibration is also sampled at 51 kHz
and then aggregated to a lower frequency of 4 Hz. Through
filtering, we obtain vibrations corresponding to N1 and N2
regimes, producing a total of four vibration variables:

• LP-ACC1 and LP-ACC2: vibration amplitude at N1
speed (in terms of displacement in milsda).

• HP-ACC1 and HP-ACC2: vibration amplitude at N2
speed (in terms of speed in ipspk).
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A cross-section schema of the engine with sensor positions is
displayed in Figure 2. The signals are measured during en-

Bearing #1

N2 sensor

N1 sensor

ACC1 sensor

Turbine rear frame

ACC2 sensor

Figure 2. Engine cross-section with positions of the rotation
(N1, N2) and vibration (ACC1, ACC2) sensors.

tire flights, from engine start to engine stop. Figure 3 shows
an example of N1, LP-ACC1 and LP-ACC2 signals. The
N1 rotation speed is directly controlled by the pilot pushing
on the thrust lever, and corresponds to the engine thrust. It
is expressed as a percentage of maximum thrust (this maxi-
mum depends on many factors and flight conditions). Dur-
ing a normal passenger flight, the N1 signal can be broadly
divided into different phases: first, a strong acceleration dur-
ing take-off and ascent, then a long stabilized phase during
cruise, and finally a decrease during descent, with short peaks
corresponding to maneuvers before landing. The LP-ACC1
signal follows N1 during the first part of the flight, increas-
ing during acceleration, with a small mode at around 90%
regime. However, the strongest vibrations are observed dur-
ing deceleration, with several peaks showing an important
mode at around 40% regime. The LP-ACC2 signal is inter-
esting because it exhibits a very strong mode at low regimes.
Signals N2, HP-ACC1 and HP-ACC2 for the same flight are
displayed on Figure 4. The behavior of N2 is similar to N1,
with an acceleration until it reaches a plateau just over 100%
regime, where vibration is higher, before entering the stabi-
lized cruise regime. Both signals contain a very sharp and
high peak at low regime.

3.2. Data ingestion process

First, airline operators manually download the raw data
from the aircraft flight recorder (in future, this data may be
streamed in real-time). Depending on the time since last
download, raw CEOD may contain the concatenated record-
ings of several flights, as the flight recorder writes into mem-
ory in a sequential manner. Then, raw data is decoded into
a structured file format using a proprietary software. Fi-
nally, files are cut into distinct flights, by detecting flight
start and end based on sensor values. CEOD are then in-
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Figure 3. Example of rotation speed N1 and vibration ampli-
tude signals LP-ACC1 and LP-ACC2 during a flight.

gested into a Hadoop cluster and stored on the Hadoop Dis-
tributed File System (HDFS), using the Hive data warehouse
(Apache Hive, 2010), in order to benefit from scalability and
fault-tolerance (every chunk of data is replicated several times
across the cluster nodes). The properties of the data analyzed
in this work are described in Table 1.

3.3. Vibration signatures

In order to represent the vibratory response of the engine, the
raw time series are transformed into signatures that represent
vibration as a function of regime. Thus, a signature can di-
rectly relate a given regime to a vibratory mode. The location
and intensity of these modes are crucial to understand what
happens inside the engine. Here are the four signatures stud-
ied in this work:
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Figure 4. Example of rotation speed N2 and vibration ampli-
tude signals HP-ACC1 and HP-ACC2 during a flight.

1. LP-ACC1 vs N1.
2. LP-ACC2 vs N1.
3. HP-ACC1 vs N2.
4. HP-ACC2 vs N2.

By observing these signatures, experts are able, for example,
to detect unbalance at a specific location of the engine. As
we define signatures in terms of entire flights, we are not in
the standard setting of a monotonic acceleration or decelera-
tion. Thus, a given regime is reached several times during a
flight, and may correspond to different vibration amplitudes,
producing a point cloud, as shown for signature 4 on Figure 5.
To extract the modes and general shape, we cut the x-axis into
bins of 5% regime, and aggregate values by taking the quan-
tile at 75% (not the maximum because it is sensitive to out-
liers). It is clear that manual monitoring of these signatures is
impossible, because of their variability and the huge number

Table 1. Data properties.

Property Approximate value
Number of engines 1000
Number of flights 1 million
Number of parameters 6
Frequency of parameters 4 Hz or 66 Hz
Total HDFS storage volume 1 TB

N2 (%)

HP
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CC
2 

(ip
sp

k)

Signature

Figure 5. Signature 4 (HP-ACC2 vs N2) on an example
flight. Each point is a measurement during the flight (after
re-sampling).

of flights. The next sections present how we process data and
use self-organized clustering models for efficient fleet CM.

4. GENERIC BIG DATA PROCESSING PIPELINE

For the large-scale computation of vibration signatures on
a fleet of civil aircraft engines, we use the generic big data
processing pipeline introduced in (Forest et al., 2018). This
pipeline has been designed to analyze operational flight data
on a Hadoop cluster and is based on the Apache Spark dis-
tributed computing engine (Apache Spark, 2014). It allows to
deploy custom functions containing the engineers’ business
logic without knowledge of distributed programming, and is
composed of several modules presented in the next paragraph.

4.1. Description

The first step in the pipeline is basic preprocessing and se-
lection queries against the flight database. The second step is
generic feature extraction, using predefined or user-provided
functions to compute flight features. This is where domain
knowledge is incorporated. Signature computation happens
at this step. Finally, learning algorithms are trained to obtain
models, and results are visualized on a visualization applica-
tion to extract insights. Each step is configured using a flex-
ible configuration file with JSON syntax. All the processing
is based on the Spark framework.
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Figure 6. Big data processing pipeline.

4.2. Vibration signature computation

Signatures are computed by a custom function taking the pa-
rameters of a single flight as input, and outputs the resulting
signature. The code is written in Python with standard nu-
merical and data analysis libraries. This function has five pa-
rameters: the names of both input signals (x- and y-axis), the
period and range of the x-axis (e.g. the regime range), and
the type of operation used to aggregate points in each bin of
the x-axis (e.g. average, max, quantiles, etc.). Parameters are
set in the configuration file, allowing to extract various sig-
natures using the same generic code. The feature extraction
module applies this function on flights in parallel across the
cluster, as illustrated in Figure 7.

Signature computation
function API

Transparent use of
Spark APIs

Flight #001

Flight #002

Flight #003

Flight #004

...

...

Flight #442

Flight #443

...

Figure 7. Data-parallel signature extraction on a collection of
flights.

In this work, we use a period of 5% regime bins in the [25%,
100%] range, thus each signature can be viewed as a 15-
dimensional vector, or a one-dimensional curve of length 15.

5. CLUSTERING AND VISUALIZATION WITH SELF-
ORGANIZED MODELS

5.1. Self-Organizing Maps

Self-Organizing Map (SOM) (Kohonen, 1982) are clustering
models enforcing a topological relationship between clusters.
For a background on SOM algorithms, please refer to the ap-
pendix. For now, let us consider that the algorithm takes as
input the set of vibration signatures S = {si}1≤i≤N , si ∈
RD, with D = 15, and outputs a square map composed of
K = 8×8 units. Each unit is associated to a prototype signa-
ture {mk}1≤k≤K ∈ RD. A new flight is projected onto the
map by finding its closest prototype signature w.r.t. euclidean
distance. We call the corresponding map unit best-matching

signature (BMS):

BMS := argmin
k
||si −mk||22

Before feeding into SOM, the data set is z-normalized to zero
mean and unit variance to give each point of the signature
an equal weight in euclidean distances. The resulting map
for signature 4 (HP-ACC2 vs N2) is displayed Figure 8 and
will be investigated further in the next paragraph. We use a

Figure 8. SOM map of signature 4 (HP-ACC2 vs N2). Each
cell represents a vibration signature prototype. The back-
ground colors are higher-level profiles obtained by Ward hi-
erarchical clustering (here with 8 clusters).

distributed, data-parallel implementation of batch SOM using
the map-reduce paradigm and the Apache Spark framework
(Apache Spark, 2014). This allows to leverage the production
cluster to train SOM models on very large datasets of several
million flights. The code is open-source and available on-
line at https://github.com/FlorentF9/sparkml
-som.

5.2. Analysis and Methodology

One year of historical flight data for 1000 engines, represent-
ing approximately 1 million flights and 1 TB of raw signal
data, has been processed. After training a SOM for each sig-
nature, the resulting models are saved.

Vibration signatures exhibit several modes at particular
regimes, visible on the visualizations provided in Figure 8
and appendix Figures 12, 13 and 14. The variability in lo-
cations and amplitudes of the modes translates into smooth
transitions on the map. Experts in engine dynamics are able
to identify these modes and link them, for example, to un-
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balance at a specific part of the engine. Moreover, certain
vibratory behaviors are normal, such as vibrations of the
whole aircraft structure, or temporary unbalance due to ther-
mal conditions. On the other side, certain behaviors are due
to wear and must be monitored closely.

In order to classify map cells into higher-level vibration pro-
files, we perform hierarchical clustering (HC) on the pro-
totype signatures. This classification is materialized by the
cell’s background color. These profiles may correspond to
very well-balanced engines (see the very low-amplitude sig-
natures on Figure 8 and appendix), rotor unbalance at fan,
compressor or turbine, but also issues not related to the en-
gine at all (e.g. flat signals, such as the bottom-left cell on
Figure 8, are due to a sensor switched off or some issue dur-
ing data decoding or ingestion). As a result from this analysis,
each map region has been interpreted and labeled by experts.

For EHM of operating aircraft, new flights are projected onto
their best-matching signature (BMS). The (euclidean) dis-
tance between a flight and its BMS is a proxy for an anomaly
score: a large distance means that a flight is dissimilar to pre-
viously observed behaviors, thus it needs to be investigated
carefully. Flights that are projected onto abnormal regions
of the map raise alerts and can be immediately investigated
by engineers. The sequence of projections of a single en-
gine, flight after flight, is called a trajectory. Because a sig-
nature describes intrinsic properties of an engine, it should
not change drastically from one flight to another. Thus, a
trajectory should stay within the same region or higher-level
profile. A sudden jump, or a progressive trend towards a dif-
ferent region, can be a warning for abnormal wear. However,
changes in vibration profiles may also be due to maintenance
operations or a folding of the SOM map (Kiviluoto, 1996).
An engine trajectory is represented on Figure 9. The BMS
of a flight is marked by a black circle, where the radius is
proportional to the number of flights where the engine stayed
on the same cell. The lower part of Figure 9 represents the
sequence of higher-level profiles found by HC. Clearly, the
vast majority of flights have similar vibration profiles. Out
of 684 flights, only 16 fall outside the orange area, and most
transitions occur within the higher-level profiles. For sake
of readability, only transitions between non-neighboring cells
were represented by arrows on the map. The fact that a sig-
nature is an individual property of engines is supported by a
heatmap visualization of BMS counts, i.e. by representing
the number of flights projected on each cell for different en-
gines (Figure 10). Finally, in a post-finding situation, after
an event has occurred, we can find similar engines that share
the same vibration patterns or have similar temporal evolu-
tions (e.g. with an edit distance on trajectories (Côme et al.,
2011)). However, a map is only a snapshot of past flights.
Periodically, models must be re-trained with up-to-date flight
data, to account for new trends and the aging of the fleet. The
complete methodology, summarized visually on Figure 11,

12 40

2 4

8 50 50 28

4 52 60 54

24 68 52

20 70

32 54

3 683657651615521Flight 187 455

184 2 266 2 64 2 92 2 34 2 4 2 24

Figure 9. Trajectory of a single engine on the SOM of signa-
ture 4, for a total of 684 flights. Circles correspond to flight
projections. The first and last flights are marked by red and
blue stars. The radius of a circle is proportional to the num-
ber of flights the engine stayed on the same vibration profile
(this number is also printed within each cell). Sudden jumps
between non-neighboring cells (marked by arrows) indicate
abrupt changes in vibration profiles, which may correspond
to operational events or a SOM folding. This engine mostly
stays within the orange region, as shown by the sequence of
transitions between higher-level profiles (bottom diagram).

can be analyzed under the OSA-CBM framework for EHM
(described in (Bastard et al., 2016)): (1) signature compu-
tation corresponds to Data Acquisition & Manipulation; (2)
State Detection assigns flights to vibration profiles as well
as distances to the map; (3) Health Assessment consists in
the classification of the profiles and anomaly detection; (4)
analysis, prediction and search of similar engine trajectories
is part of Prognostics Assessment and finally (5) Advisory
Generation encompasses visualization and alerts generation.

6. CONCLUSION

This work presents a methodology for large-scale vibration
monitoring on thousands of operating civil aircraft engines,
based on unsupervised learning algorithms and a database
of flight recorder data. These signatures are classified and
visualized using interpretable clustering models called self-
organized maps, yielding a cartography of vibration profiles.
As part of a CM strategy, these profiles are useful for experts
who can quickly gain insights about the vibratory state of a
fleet, and detect unbalance or other abnormal behaviors. In-
terpretable clustering and visualization for decision-making
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Figure 10. Heatmaps of projection counts on SOM map of signature 4, for three different engines. Each individual engine has
its vibration signatures concentrated in a single region, because a signature is an intrinsic property of engines.
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Figure 11. Vibration monitoring methodology. Colors repre-
sent the steps of the OSA-CBM standard: Data Acquisition &
Manipulation (DA), State Detection (SD), Health Assessment
(HA), Prognostics Assessment (PA), and Advisory Genera-
tion (AG).

is crucial in aerospace industry but also in other fields such
as healthcare. In healthcare, probabilistic models have been
used to make temporal predictions on the state of a patient us-
ing disease trajectories with Gaussian processes (Schulam &
Arora, 2016), sometimes in combination with recurrent neu-
ral networks (Lim & van der Schaar, 2018). (Fortuin et al.,
2019) apply their SOM-VAE model to time series from the
intensive care unit. These ideas are considered for our use
case in future work, in order to model and predict the future
trajectory of an engine. In particular, the remaining number
of flights before reaching a risky state (for example a state
where an event has occurred in the past) could be estimated,

a kind of remaining useful life (RUL). Other perspectives
include analyzing vibration signatures from the radial drive
shaft (RDS), not tackled in this work but whose behavior is of
great interest. The RDS is linked to the HP shaft and provides
power to the accessory gearbox. Instead of computing a one-
dimensional curve from the point cloud shown in Figure 5,
we could extract multidimensional vectors from the distribu-
tion (in particular, the standard deviation or envelope). This
might require to use deeper SOM architectures (Forest et al.,
2019b; Forest, Lebbah, Azzag, & Lacaille, 2019a) for dimen-
sionality reduction. Finally, a single family of engines was
considered here, but we plan to extend it to other families.
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NOMENCLATURE

CEOD Continuous Engine Operational Data
CM Condition Monitoring
EHM Engine Health Monitoring
HC Hierarchical Clustering
HDFS Hadoop Distributed FileSystem
HP/LP High Pressure/Low Pressure
HP-ACC1/2 HP vibration (accelerometer 1/2) [ipspk]
LP-ACC1/2 LP vibration (accelerometer 1/2) [milsda]
N1 Rotation speed of LP shaft [%]
N2 Rotation speed of HP shaft [%]
OSA-CBM Open Systems Architecture for Condition-based

Maintenance
SOM Self-Organizing Map
mil milli-inch, length equal to 0.0254mm SI
milsda milli-inches double amplitude
ipspk inches per second peak, speed unit equal to

25.4mm/s SI
g standard gravity, acceleration unit equal to

9.81m/s2 SI

8



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020

REFERENCES

Abdel-Sayed, M., Duclos, D., Faÿ, G., Lacaille, J., &
Mougeot, M. (2015). NMF-based decomposition for
anomaly detection applied to vibration analysis. In
International conference on condition monitoring and
machinery failure prevention technologies (pp. 73–81).
doi: 10.1784/204764216819708104

Apache Hive. (2010). Hive Project. Retrieved 2020-04-01,
from http://hive.apache.org/

Apache Spark. (2014). Spark Project. Retrieved 2020-04-01,
from https://spark.apache.org/

Bastard, G., Lacaille, J., Coupard, J., & Stouky, Y. (2016).
Engine Health Management in Safran Aircraft Engines.
In Phm society.

Côme, E., Cottrell, M., Verleysen, M., & Lacaille, J.
(2010). Aircraft engine health monitoring using Self-
Organizing Maps. In Industrial conference on data
mining.

Côme, E., Cottrell, M., Verleysen, M., & Lacaille, J. (2011).
Aircraft engine fleet monitoring using Self-Organizing
Maps and Edit Distance. WSOM, 298–307.

Cottrell, M., Gaubert, P., Eloy, C., François, D., Hallaux, G.,
Lacaille, J., & Verleysen, M. (2009). Fault predic-
tion in aircraft engines using Self-Organizing Maps. In
Wsom.

Faure, C., Olteanu, M., Bardet, J.-M., & Lacaille, J. (2017).
Using self-organizing maps for clustering and labelling
aircraft engine data phases. In Wsom. doi: 10.1109/
WSOM.2017.8020013

Forest, F., Lacaille, J., Lebbah, M., & Azzag, H. (2018).
A Generic and Scalable Pipeline for Large-Scale An-
alytics of Continuous Aircraft Engine Data. In Ieee
international conference on big data (pp. 1–7). doi:
10.1109/BigData.2018.8622297

Forest, F., Lebbah, M., Azzag, H., & Lacaille, J. (2019a).
Deep Architectures for Joint Clustering and Visualiza-
tion with Self-Organizing Maps. In Workshop on learn-
ing data representations for clustering (ldrc), pakdd
(pp. 1–12).

Forest, F., Lebbah, M., Azzag, H., & Lacaille, J. (2019b).
Deep Embedded SOM: Joint Representation Learning
and Self-Organization. In European symposium on
artificial neural networks, computational intelligence
and machine learning (esann) (pp. 1–6).

Fortuin, V., Hüser, M., Locatello, F., Strathmann, H., &
Rätsch, G. (2019). SOM-VAE: Interpretable Discrete
Representation Learning on Time Series. In Iclr (pp.
1–18).

Hazan, A., Verleysen, M., Cottrell, M., & Lacaille, J. (2010).
Trajectory Clustering for Vibration Detection in Air-
craft Engines. In Industrial conference on data mining.

Kharyton, V. (2009). Faults Detection In Blades Of An Avi-
ation Engine In Operation (Unpublished doctoral dis-

sertation). École Centrale Lyon.
Kiviluoto, K. (1996). Topology preservation in self-

organizing maps. IEEE International Conference on
Neural Networks - Conference Proceedings, 1, 294–
299. doi: 10.1016/b978-044450270-4/50022-x

Kohonen, T. (1982). Self-organized formation of topolog-
ically correct feature maps. Biological Cybernetics,
43(1), 59–69. doi: 10.1007/BF00337288

Lacaille, J. (2013). Searching similar vibration patterns on
turbofan engines. In International conference on condi-
tion monitoring and machinery failure prevention tech-
nologies (pp. 338–349).

Lim, B., & van der Schaar, M. (2018). Disease-Atlas:
Navigating Disease Trajectories with Deep Learning.
Retrieved from http://arxiv.org/abs/1803
.10254 doi: arXiv:1803.10254v3

Olteanu, M., Villa-Vialaneix, N., & Cottrell, M. (2013). On-
line relational SOM for dissimilarity data. Advances in
Intelligent Systems and Computing, 198, 13–22. doi:
10.1007/978-3-642-35230-0_2

Orsagh, R. F., Sheldon, J., & Klenke, C. J. (2003). Prognos-
tics/diagnostics for Gas Turbine Engine Bearings. In
Asme turbo expo (pp. 1–9).

Peng, Z. K., Chu, F. L., & Tse, P. W. (2005). Detection
of the rubbing-caused impacts for rotor-stator fault di-
agnosis using reassigned scalogram. Mechanical Sys-
tems and Signal Processing, 19(2), 391–409. doi:
10.1016/j.ymssp.2003.09.007

Randall, R. B. (2004). State of the art in monitoring rotating
machinery - Part 1. Sound and Vibration(March), 14–
20.

Randall, R. B. (2011). Vibration-based condition monitoring.
Wiley.

Schulam, P., & Arora, R. (2016). Disease Trajectory Maps. In
Nips. Retrieved from http://arxiv.org/abs/
1606.09184

Wang, W. Q., Ismail, F., & Farid Golnaraghi, M. (2001).
Assessment of gear damage monitoring techniques us-
ing vibration measurements. Mechanical Systems and
Signal Processing, 15(5), 905–922. doi: 10.1006/
mssp.2001.1392

BIOGRAPHIES

Florent Forest is currently a PhD student
in computer science at Université Sorbonne
Paris Nord (Paris, France), in the machine
learning team of the LIPN lab. Through an
industry research contract, he also works on
industrial applications at Safran Aircraft En-
gines since 2018, in the Datalab team. In
2017, he graduated from ISAE Supaero en-

gineering school (aerospace institute in Toulouse, France),
with a specialization in data science and aerospace engineer-
ing. His main research interests are unsupervised machine
learning, clustering, big data analysis and applications in
aerospace industry.

9

http://hive.apache.org/
https://spark.apache.org/
http://arxiv.org/abs/1803.10254
http://arxiv.org/abs/1803.10254
http://arxiv.org/abs/1606.09184
http://arxiv.org/abs/1606.09184


ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020

Quentin Cochard, Cecile Noyer and Adrien Cabut are en-
gineers in vibration dynamics at Safran Aircraft Engines.

Marc Joncour is a data scientist in the Datalab team at Safran
Aircraft Engines.

Jérôme Lacaille is an emeritus expert in al-
gorithms for the Safran international aero-
nautics group. He joined the Safran Aircraft
Engines company in 2007 with responsibil-
ity for developing a health monitoring solu-
tion for jet engines. Jérôme has a PhD from
the Ecole Normale Supérieure (France) in
Mathematics. He has held several positions

including scientific consultant and professor. He has also co-
founded the Miriad Technologies Company, entered the semi-
conductor business taking in charge the direction of the Inno-
vation Department for Si Automation (Montpellier, France)
and PDF Solutions (San Jose, CA). He developed specific
mathematic algorithms that were integrated in industrial pro-
cesses. Over the course of his work, Jérôme has published
several papers on integrating data analysis into industry in-
frastructure, including neural methodologies and stochastic
modeling as well as some industrial patented applications.

Mustapha Lebbah is currently associate professor at Uni-
versité Sorbonne Paris Nord and member of machine learn-
ing team A3, LIPN. His main researches are centered on ma-
chine learning (unsupervised learning, mixture models, clus-
ter analysis, scalable machine learning big data and data sci-
ence). Graduated from USTO University where he received
his engineer diploma in 1998. Thereafter, he gained an MSC
(DEA) in Artificial Intelligence from the Université Sorbonne
Paris Nord in 1999. In 2003, after three years at Renault
R&D, he received his PhD degree in Computer Science from
the University of Versailles. He received the "Habilitation
Diriger des Recherches" in Computer Science from USPN in
2012.

Hanane Azzag is currently associate professor at Université
Sorbonne Paris Nord and a member of machine learning team
A3 at LIPN computer science lab. Her main research topics
are biomimetic algorithms, machine learning and visual data
mining. Graduated from USTHB University where she re-
ceived her engineering degree in 2001. Thereafter, in 2002
she gained an MSC (DEA) in Artificial Intelligence from
Tours University. In 2005, after three years at a lab in Tours,
she received her PhD degree in Computer Science from the
University of Tours.

APPENDIX

Background on SOM
The Self-Organizing Map (SOM) (Kohonen, 1982) is a clus-
tering model that introduces a topological relationship be-
tween clusters. It consists in a network of two layers: an
input layer, and an output layer of interconnected nodes, of-
ten called neurons or units. Typically, the topology of this
layer is chosen as a two-dimensional grid, because it can be
easily visualized. This visualization capability characterizes
SOM as an interpretable clustering method.

The set of input data samples is denoted X =
{xi}1≤i≤N ,xi ∈ RD. A self-organizing map is com-
posed of K units, associated to the set of prototype vectors
{mk}1≤k≤K ∈ RD. A data point is projected on the map

by finding its closest prototype vector according to euclidean
distance. The corresponding map unit is called the best-
matching unit (BMU). We introduce the notation bi for the
BMU of xi:

bi = argmin
k
||xi −mk||22 (1)

The grid topology allows to define an inter-node distance
δ(k, l), which is the topographic distance between units k and
l on the map, here the Manhattan distance (the length of the
shortest path on the map between the two units). We then
define the neighborhood function of the SOM and a tempera-
ture parameter T , controlling the radius of the neighborhood
around a unit. In this work, we will use a Gaussian neighbor-
hood function, expressed as follows:

KT (d) = e−d2/T 2

The temperature T is decreased at each training iteration, as
in simulated annealing. A common choice is exponential de-
cay, starting from an initial temperature Tmax towards a final
temperature Tmin, i.e. at iteration i:

T (i) = Tmax

(
Tmin

Tmax

)i/iterations

The original SOM learning algorithm, also called stochastic
algorithm or Kohonen algorithm, takes each training sample
xi and updates every prototype vector by moving them closer
to the point xi. The updates are weighted by the neighbor-
hood around the best-matching unit, so that neighboring units
receive a large update and very distant units are not updated
at all. This expresses as the following update rule:

mk ←mk + αKT (δ(bi, k)) (xi −mk) (2)

where α is a learning rate that is decreased during training.
The stochastic algorithm is detailed in algorithm 1.

Input: training set X; SOM map size; temperatures Tmax,
Tmin; iterations

Output: SOM code vectors {mk}
Initialize SOM parameters {mk} ;
for n = 1, . . . , iterations do

T ← Tmax

(
Tmin

Tmax

)n/iterations
;

Load next training sample xi ;
Compute BMU bi ;
for k = 1, . . . ,K do

Update prototype mk (by equation 2) ;
end

end
Algorithm 1: Stochastic SOM algorithm.

A disadvantage of this algorithm is that it converges slowly,
is sequential and cannot be parallelized. Therefore, another
algorithm was introduced: the batch SOM algorithm. It con-
sists in minimizing following cost function, called distortion:
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LSOM({mk},X, b, T ) =
1

N

N∑
i=1

K∑
k=1

KT (δ(bi, k)) ||xi−mk||22

Distortion is not directly differentiable because of the BMU
assignments b. However, it can be empirically minimized by
alternating between two steps:

1. Assignment of best-matching units using equation (1)
2. Minimization of distortion by fixing assignments, using

following update rule:

mk ←
∑K

l=1KT (δ(k, l))
∑N

i=1 1[bi=l]xi∑K
l=1KT (δ(k, l))

∑N
i=1 1[bi=l]

(3)

The batch algorithm pseudo-code is detailed in algorithm 2.

Input: training set X; SOM map size; temperatures Tmax,
Tmin; iterations

Output: SOM code vectors {mk}
Initialize SOM parameters {mk} ;
for n = 1, . . . , iterations do

T ← Tmax

(
Tmin

Tmax

)n/iterations
;

Compute all BMUs {bi}i=1...N ;
for k = 1, . . . ,K do

Update prototype mk (by equation (3)) ;
end

end
Algorithm 2: Batch SOM algorithm.

Map visualizations

Figure 13. SOM map of signature 2 (LP-ACC2 vs N1). Each
cell represents a vibration signature prototype. The back-
ground colors are higher-level profiles obtained by Ward hi-
erarchical clustering (here with 5 clusters).

Figure 12. SOM map of signature 1 (LP-ACC1 vs N1). Each
cell represents a vibration signature prototype. The back-
ground colors are higher-level profiles obtained by Ward hi-
erarchical clustering (here with 5 clusters).

Figure 14. SOM map of signature 3 (HP-ACC1 vs N2). Each
cell represents a vibration signature prototype. The back-
ground colors are higher-level profiles obtained by Ward hi-
erarchical clustering (here with 6 clusters).
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