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ABSTRACT

Vehicle springs and stabilizer bars are critical suspension
components impacting vehicle ride and handling experience.
Diagnostics and prognostics of springs and stabilizer bars can
improve perceived quality, reduce repair cost and increase
up-time for fleet vehicles. It’s even more important for
autonomous vehicles, since there is no human driver to sense
the fault symptoms. Currently, there is no production solution
to automatically diagnose and prognose spring and stabilizer
bar failures, and the existing research work lacks robustness
to various noise factors. In this work, a novel solution based
on static ramp test is proposed to detect and localize spring
and stabilizer bar faults. With limited number of longitudinal
and lateral acceleration measurements, the solution can
quickly and effectively detect major failure modes, such as
broken springs, disconnected stabilizer bars, loose bushing
and loose end link. The validation results from a 2017
Chevrolet Bolt EV demonstrate the effectiveness and
robustness of the proposed solution.

1. INTRODUCTION

Vehicle suspension generally consists of springs, dampers
and stabilizer bars, which allows relative motion between
vehicle body and its wheels. The suspension system directly
impacts the tire force and suppresses the noise and vibration
from the ground. Therefore, it’s critical to the vehicle ride and
handling experience.

Vehicle suspension system may be damaged or degraded
over time. In this work, we focus on the diagnostics and
prognostics for springs and stabilizer bars. The damper
diagnostics and prognostics will be presented in our

following work. Among all vehicle spring faults, broken
spring is a common failure. The broken spring may be caused
by corrosion, steel fatigue or structure deformation due to
overloading for a long time. The elasticity or length may be
changed for a faulty spring, which will result in an
unbalanced chassis at each corner, negatively affecting the
driving comfort, or even causing damage to chassis linkages.

The most severe failure mode of stabilizer bar is
disconnection. When an accident or material fatigue occurs,
the stabilizer bar may break, or the end link may disconnect
from the joint.  In this situation, the stabilizer bar cannot
provide necessary torsion force to balance the momentum,
which causes more roll angle, and may even lead to a vehicle
rollover. Stabilizer bar loose fault, such as loose end link or
worn bushing, is more common in the field. The loose end
link is shown in the Figure 1. The end link is not firmly
attached to the joint, and may slide up and down, when
vehicle is turning. It generally makes knocking noise, reduces
the handling and increases the roll angle. The worn bushing
is shown in Figure 2. If the bushing wears, the stabilizer bar
cannot be held firmly in place, and it will slide back and forth.
The sliding motion reduces the stabilizer bar’s ability and
increases the vehicle roll angle.

The spring and stabilizer bar faults are generally caught by
drivers during driving. The relative symptoms include
excessive chassis bouncing, vehicle sag, especially with full
loads, or excessive body roll. During maintenance, spring and
stabilizer bar faults can also be noticed by technicians’ visual
inspections. However, such inspections do take a longer time
to complete, and potentially increase the maintenance cost.
Therefore, an automatic and accurate diagnostic and
prognostic algorithm is needed.

In suspension diagnostics and prognostics, frequency
analysis is a common approach. A frequency-based
diagnostic solution is proposed using a clustering method
(Yin & Huang, 2015). The vibration frequency, peak
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Figure 1 Loose end link of stabilizer bar on the vehicle

Figure 2 Worn bushing of stabilizer bar.
amplitude, and relative displacements of a healthy suspension
system at four corners are obtained under known external
excitation as the baseline. Based on the fuzzy positivistic C-
means algorithm and Fisher discriminant analysis, several
clusters are found from the data, representing healthy springs.
Similarly, the clusters can be obtained from the faulty spring
data. Due to the stiffness change, the clusters are different
from the baseline clusters. The fault can be detected
accordingly. Among the frequency-based diagnostic
methods, supervised learning approaches are also proposed
(Pravin & Sivakumar, 2019). The vehicle vertical vibration
signals are collected from the accelerometer, which is
mounted on the top and bottom of each suspension strut. The
time-domain data are converted to the frequency domain
using Fast Fourier Transform. The spectrum amplitudes are
fed into some supervised learning algorithms, e.g. SVM,
Random Forest, Naïve Bayes, to train a model for fault
detection. Frequency analysis of spring resorting force is also
employed to detect spring fault (Muhammad & Douglas,
2005). The frequency analysis of vehicle acceleration data is
used to characterize suspension response with perturbation.
It’s discovered that the spring fault causes the changes of
frequency characteristics of restoring force, which is used for
spring fault detection.

In addition to the frequency-based analysis, physics-based
fault diagnostics approach is another route. One proposed
diagnostics approach is based on vehicle stability analysis
(Zhao & Wang, 2004). It’s proved that the vehicle motion is
stable for a healthy spring. When the broken spring fault

occurs, the system response becomes chaotic, and the fault
can be detected accordingly. Another approach is proposed
with dynamics modeling and spring stiffness estimation
(Nozaki & Inagaki, 1998). The kinetic vehicle vibration
model with two degrees of freedom is developed including
the suspension and tires. Based on the equation, the spring
stiffness is estimated using the displacement measurement
and the tire force estimation. Spring faults are identified by
monitoring the spring stiffness change. The machine learning
model is employed for spring fault detection along with a
physics-based model (Börner, Straky, Weispfenning, &
Isermann, 2000). The physics-based model is employed to
estimate the spring stiffness. A multi-layer feedforward
network is trained to detect the spring fault. The singular
perturbation method is also employed to detect suspension
faults with multiple operational modes (Luo, Pattipati, Qiao,
& Chigusa, 2008). The system excitation under different
random load conditions, and their corresponding behaviors
(e.g. displacements) are measured. The residual of
suspension system response is calculated between the
baseline healthy data and the test data. The residual above a
certain threshold indicates the abnormal behavior in the
suspension system.

To the best of our knowledge, there is no paper on stabilizer
bar fault detection. None of the approaches described above
can isolate these faults. The data used in these approaches are
required to be collected during vehicle driving. In practice,
the sensor error and environment noises may deteriorate
performance. To solve these issues, a robust static ramp test
solution is proposed here. The solution is not only able to
detect spring and stabilizer bar faults, but also isolate faults
to each corner. For the rest of this paper, the proposed
solution is described in Section 2, the experiment validation
is shown in Section 3, and Section 4 concludes the paper.

2. STATIC RAMP TEST SOLUTION

In this section, a novel diagnostic method using the static
ramp test is described. This section includes the theoretical
analysis, test setup, data collection, data analysis, and the
overall isolation algorithm.

As discussed in Section 1, the degraded or broken springs
have significant impact to the chassis and driving safety. If a
spring is broken, the chassis height for that corner will be
reduced. As shown in Figure 3, it introduces a pitch angle and
roll angle for the vehicle.

According to Newton’s second law, the acceleration of a
vehicle in one direction is proportional to the total external
force in that direction, which is shown as: ܨ = where M ,ܽܯ
is the mass of the vehicle, a is the acceleration. If the vehicle
is in the static condition, i.e. the vehicle motion acceleration
is 0, the external force is the gravity, and the acceleration is
gravity acceleration g. In this condition, the inertia
measurement unit (IMU)’s measurements of longitudinal
acceleration ௫ܣ  and lateral acceleration ௬ܣ  are the
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corresponding component of gravitational acceleration due to
its working principle. This will directly lead to following
equations. In other words, here we’re using IMU to measure
the pitch and roll angles.

(݌)݊݅ݏ݃ܯ = ௫ܣܯ (1)
(ݎ)݊݅ݏ݃ܯ = ௬ܣܯ (2)

where, is the pitch angle (rotation about ݌ y axis), and r is the
roll angle (rotation about x axis). x axis is the vehicle
longitudinal direction and y axis is the vehicle lateral
direction. The above equations can be simplified as below:

௫ܣ = (݌)݊݅ݏ݃ (3)
௬ܣ = (ݎ)݊݅ݏ݃ (4)

Through IMU, the longitudinal acceleration ௫ܣ  and the
lateral acceleration ௬ can be measured to indicate the pitchܣ
or roll of vehicle. For example, on a flat surface, if the front
spring is broken, the front corner height will be less than the
rear corner height. Therefore, the pitch angle p and the
longitudinal acceleration ௫ܣ  will be negative. If the rear
spring is broken, the rear corner height will be less than the
front corner height, the pitch angle p and the longitudinal
acceleration ௫ will be positive. Similarly, the sign of the rollܣ
angle and the lateral acceleration ݎ ௬ are also correlated. Inܣ
summary, the longitudinal acceleration ௫ܣ  and the lateral
acceleration ௬ܣ  are good indicators for broken springs.
Please note the pitch and roll angle are also good indicators,
but they can’t be directly measured from IMU. The average
values of ௫ for a healthy spring and a broken spring from aܣ
2017 Chevrolet Bolt EV are shown in Figure 4.

In Figure 4, due to instability of the vehicle rear suspension
structure, the broken spring is not installed to the rear corners.
Instead, three clamps are used to represent the broken spring.
Two coils are clamped together by three clamps evenly
located at the coil circumference to decrease the coil height.
For simplicity, the clamped spring is also noted as the broken
spring afterwards. FL and RL stand for the front left and the
rear left corners, respectively. The height of bins in the figure

Figure 3. The vehicle with a broken spring on a ramp with
grade ߙ  (side view). ݌  is the vehicle pitch angle, ݎ  is the
vehicle roll angle, and x, y, x’ and y’ are the original and
rotated body-fixed axes, respectively, which are defined by
Euler angle (Curtis, 2018).

indicates the number of results at certain ௫ value, and theܣ
fitting curves indicates the distribution of data. It’s clearly
observed that the front or rear spring faults can be isolated
with ௫. Similarly, as shown in Figure 5, the distribution ofܣ
௬ data indicates the left spring fault can be isolated withܣ ௬ܣ
from the healthy spring.

Although the average value of ௫ andܣ ௬ from the test on theܣ
level pad can separate the healthy and broken spring, the
difference is relatively small and may be affected by
measurement errors and noise factors. If the difference of ௫ܣ
or ௬ܣ  between a healthy and a broken spring can be
amplified, the algorithm robustness will be enhanced. In
future, this may also provide the ability to perform early
degradation detection. Therefore, our recommended solution
is to conduct the tests on a ramp with a known slope angle.

Figure 6 shows a vehicle parked on a ramp with road angle α.
The vehicle pitch angle is The overall vehicle incline angle .݌

Figure 4. Longitudinal acceleration ௫ܣ  average value
distribution of a healthy or a broken spring on the level pad.

Figure 5. Lateral acceleration ௬ average value distributionܣ
of a healthy or a broken spring on the level pad.
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is the sum of the ramp angle and the pitch angle, which is ߠ
ߠ = ݌ + From the spring perspective, the spring should .ߙ
generate a force to balance the longitudinal component of
gravity. The equation can be expressed as follow:

݌)݊݅ݏ݃݉ + (ߙ = ௣ܭ ∙ ݌ (5)
where ௣is the vehicle pitch stiffness. Since the pitch angleܭ
݌  is much smaller than the road ramp angle, the above
equation can be simplified as follow:

(ߙ)݊݅ݏ݃݉ ≈ ௣ܭ ∙ ݌  (6)
݌ ≈ ௠௚௦௜௡(ఈ)

௄೛
(7)

The pitch angle difference between the healthy and the
broken spring can be calculated as:

݌∆ = ௛௘௔௟௧௛௬݌ − ௙௔௨௟௧௬݌

= )(ߙ)݊݅ݏ݃݉ ଵ
௄೛,೓೐ೌ೗೟೓೤

− ଵ
௄೛,೑ೌೠ೗೟೤

) (8)

If the ramp angle α increases, the pitch angle difference ∆p
also increases, which is good for fault separation. And the
longitudinal acceleration ௫ is also related to the pitch angleܣ
:which is shown as below ,݌

௫ܣ = ݌)݊݅ݏ݃ + (ߙ

= (ߙ) ݊݅ݏ(݌)ݏ݋ܿ݃ + (݌)݊݅ݏ݃ (ߙ)ݏ݋ܿ (9)

Since the pitch angle is very small and close to 0, then ݌
(݌)݊݅ݏ  ≈ ݌ , and (݌)ݏ݋ܿ ≈ 1 .We can simply the equation
above as follows:

௫ܣ ≈ (ߙ)݊݅ݏ݃ + (ߙ)ݏ݋ܿ݃ ∙ ݌ (10)

Then the longitudinal acceleration difference between the
healthy and the faulty spring can be expressed as following
equations:

௫ܣ∆ ≈ (ߙ)݊݅ݏ݃ + (ߙ)ݏ݋ܿ݃ ∙ (11) ݌∆

= (ߙ)݊݅ݏ݃ + ݉݃ଶܿ(ߙ)݊݅ݏ(ߙ)ݏ݋(
1

௣,௛௘௔௟௧௛௬ܭ
−

1
௣,௙௔௨௟௧௬ܭ

)

= (ߙ)݊݅ݏ݃ +
1
2 ݉݃ଶ(ߙ2)݊݅ݏ(

1
௣,௛௘௔௟௧௛௬ܭ

−
1

௣,௙௔௨௟௧௬ܭ
)

Hence, a bigger ramp angle will result in a bigger longitudinal
acceleration difference ௫ܣ∆ , as long as the ramp angle is
smaller than 45 degree. In another word, longitudinal
acceleration .௫ is a good indicator to isolate spring faultsܣ

To validate the ramp effect, several ramp tests are conducted
on the level pad (0% grade), 20% grade test hill (11.31 degree
in angle) and 30% grade test hill (16.7 degree in angle). Each
test data is processed using a 0.2-second moving average

(more details will be discussed in following paragraphs). The
distribution of .௫ average value is shown in Figure 6ܣ

As shown in Figures 4 and 6, the ௫ difference between theܣ
healthy and the front rear broken spring becomes larger on
20% and 30% test hills, compared with the data collected on
the level pad. It indicates that the ramp can effectively
amplify the difference. Similarly, to isolate the healthy and
faulty stabilizer bar or isolate the left or right spring fault, the
vehicle can be parked across the ramp with left or right side
up. When the stabilizer bar fault exists, the roll angle
increases, and the measured lateral acceleration ௬ܣ  can be
used to distinguish the healthy and faulty stabilizer bar.

As shown in Figure 7, the data are more separated on the 16%
test hill (Figure 7b) than on the level pad (Figure 7a). In
another word, the ramp can also effectively amplify the ௬ܣ
difference between healthy and faulty stabilizer bar
condition, because the vehicle has a larger roll angle, when

(a)

(b)

Figure 6. ௫ܣ  average value distribution of a healthy (in
black), a front left broken spring (in red), and a RL clamped
spring (in blue) on the 20% test hill (a) and 30% test hill (b)
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(a)

(b)

Figure 7. ௬ܣ  average value distribution for healthy (black
color) and disconnected stabilizer bar (red color), (a) on level
pad, (b) on 16% test hill.

the stabilizer bar is disconnected. Please note that our test
ramps for 20% and 30% only have one lane and our test can’t
be parked left or right side up on these two ramps.
Accordingly, the 16% test hill (9.09 degree in angle) is used
instead to perform this test. In order to avoid system and
measurement error, the measured ௫ܣ  and ௬ܣ  data are
processed using a moving average filter with the window size
of 20, i.e. 0.2 seconds data. Please note that the vehicle is
standstill, and therefore, ௫ andܣ ௬ data are almost constantܣ
with small variations. The 0.2-second moving average is
capable of removing such a variation. The average values of
௫ andܣ .௬ are used for fault isolationܣ

With the ௫ܣ  values for vehicle parking upwards and
downwards on 30% test hill, we can detect the front or rear
spring fault. Similar approaches can be applied to isolate the
spring faults on the left or right side, if we replace the pitch
angle by the roll angle, and the longitudinal acceleration by

the lateral acceleration. When the vehicle is parked across the
ramp, one side of the vehicle is higher. The broken spring on
the left or right side impacts the roll angle and the lateral
acceleration .௬ܣ

When the vehicle is parked across on the 16% test hill, the
left broken spring causes smaller ௬ values, compared withܣ
the ௬ܣ  values in the healthy condition. The right broken
spring leads to larger ௬ܣ  values, because the right corner
height is lower, and vehicle has a larger roll angle. If the ௬ܣ
values are larger than the baseline, i.e. healthy spring data, it
indicates the right spring fault. If the ௬ values are smallerܣ
than the baseline, it indicates the left spring faults.

Similarly, when the vehicle is parked across on the 16% test
hill with right side up, left side broken spring leads to smaller
௬ܣ  values, compared with ௬ܣ  values of healthy condition.
The right broken spring leads to larger ௬ values, because theܣ
right corner height is lower. It’s easier to isolate left broken
springs from healthy springs than to isolate the right broken
springs from healthy springs, when the vehicle is right side
up. The right broken springs can be easier isolated from
healthy springs, when the vehicle is left side up.

In conclusion, after all measurements on these four vehicle
orientations, the spring faults can be determined, and the
faults locations can be identified by comparing the ௫ andܣ ௬ܣ
with the corresponding baseline values.

Similarly, the static ramp test can also be used for the
diagnostics of stabilizer bar faults. When the vehicle is
parked across the ramp, there is a specific roll angle. If the
stabilizer bar is loose or disconnected, the vehicle roll angle
becomes larger than the angle in the healthy condition.
Therefore, the measured ௬ܣ  will be larger as well. With
comparison of measured ௬ values, the algorithm can detectܣ
the stabilizer bar faults.

As shown in Figure 8, the healthy, loose end link and

Figure 8. ௬ average value distribution of different stabilizerܣ
bar conditions (vehicle right side up).
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disconnected stabilizer bars can be isolated with the test on
16% hill. The loose end link fault is discussed in the Section
1, and the part is shown in Figure 1. It can also be observed
that ௬ values for disconnected stabilizer bars deviate moreܣ
from the baseline than the loose end link fault. The
disconnected stabilizer bar can’t provide any roll stiffness to
the vehicle. Therefore, the deviation is the largest. The loose
end link stabilizer bar can provide certain roll stiffness, but
not as good as the health stabilizer bar. Therefore, the
deviation is less.

To quickly detect and isolate the spring and stabilizer bar
fault, a new road test procedure is introduced. The main
procedure is shown in Figure 9. There are four places used
for static measurements:

Place 1: Vehicle left side up, measure the lateral acceleration
௬ܣ

Place 2: Vehicle right side up, measure the lateral
acceleration ௬ܣ

Place 3: Vehicle front side up, measure the longitudinal
acceleration ௫ܣ

Place 4: Vehicle rear side up, measure the longitudinal
acceleration ௫ܣ

The procedure of static ramp test is described as follows,

Step 1: Perform the vehicle check, including tire pressure and
vehicle weight, before starting the static ramp test.

Step 2: Slowly drive the vehicle through the places 1 to 4
described as above. The vehicle is parked at each place for at
least 10 seconds to collect data, i.e.  longitudinal acceleration
௫ and lateral accelerationܣ .௬ܣ

Step 3: After the test, the fault isolation algorithm (more
details are shown in following paragraphs) generates
diagnostics and prognostics results.

To generate the diagnostics results, the following static ramp
test algorithm is employed, whose flowchart is shown in
Figure 10. When the test starts, the buffer is reset, and the
parameters are loaded to the algorithm. The vehicle initial
condition is checked, including four tires pressures and the
vehicle weight. If the tire pressure is more than threshold, e.g.
30 psi, and the vehicle weights are smaller than the threshold,
e.g. 1680 kg, the vehicle is ready for test. If the initial
condition doesn’t meet the requirement, the tire pressure or
the vehicle weight needs to be adjusted.

After the vehicle initial conditions are checked, the vehicle
slowly passes through the ramp and the vehicle is stopped at
each stop place to complete the static ramp test. When all data
are collected, 4 average values of ,௫,ଵܣ) ௫ܣ ,௫,ଶܣ ,௫,ଷܣ (௫,ସܣ
and 4 average values of ௬ܣ  ( ,௬,ଵܣ ,௬,ଶܣ ,௬,ଷܣ ௬,ସܣ ) are
generated. ௫,ଵ andܣ ௬,ଵ are calculated, when the vehicle leftܣ

Figure 9. Static ramp test procedure

side is higher. ௫,ଶ andܣ ௬,ଶ are calculated when the vehicleܣ
right side is higher. ௫,ଷܣ  and ௬,ଷܣ  are calculated, when the
vehicle is parked upwards on the ramp and the front side is
higher. ௫,ସܣ  and ௬,ସܣ  are calculated when the vehicle is
parked downwards on the ramp, and the rear side is higher.
All average values are then sent to diagnostics and
prognostics blocks. If the minimum tire pressure value is
larger than T7, e.g. 30 psi, ௬,ଵܣ  and ௬,ଶܣ  values are firstly
loaded to determine the spring condition on the left and right
side. If the minimum tire pressure value is smaller than T7, it
indicates that the tire pressure is comparatively low and may
affect accuracy of the algorithm. If at least one value of ௬,ଵܣ
and ௬,ଶ is within the threshold, it indicates that the stabilizerܣ
bar is healthy, because the faulty stabilizer bar will lead to the
increase of the roll angle, and both ௬,ଵܣ  and ௬,ଶܣ  will be
affected as well. The value of threshold T7 will be discussed
more in Section 3.

To determine the spring condition, ௬,ଵ andܣ ௬,ଶ values areܣ
compared with the thresholds T1 and T2, respectively. The
value of T1 and T2 are calibrated from the healthy and faulty
data. They should be calibrated for each vehicle program with
different types of suspension or vehicle structure. It’s the
same for the following thresholds T3 – T6. If ௬,ଵ is smallerܣ
than T1 and ௬,ଶ is larger than T2, it indicates that the springsܣ
on the left and right side are healthy. Then the next step Is to
determine the front and rear spring. If ௬,ଵ andܣ ௬,ଶ fails toܣ
meet the requirements, it indicates the broken left or right
spring, and the further step is needed to isolate the fault
location. If ௬,ଵ  is larger than T1, andܣ ,௬,ଶ is larger than T2ܣ
it indicates the broken spring is on the right side. If ௬,ଵ isܣ
smaller than T1, and ௬,ଶ is smaller thanT2, it indicates theܣ
broken spring is on the left side.

The broken spring is on the front or rear side will be
diagnosed next. The ௬,ଷ andܣ ௬,ସ values are compared withܣ
T3 and T4, respectively, to determine the fault spring
location. If ௬,ଷ is larger than T3, it indicates that the brokenܣ
spring is located on the front side. If ,௬,ସ is smaller than T4ܣ
then the broken spring is located on the rear side. At the end,
the diagnosis results are generated, and the location of the
broken spring are listed, such as front left side. In some corner
cases, the average values do not meet the above requirements.
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The algorithm cannot generate the diagnostic results and will
report “unknown diagnostics result”.

There are two types of stabilizer bar faults, the loose end
link/bushing and disconnected stabilizer bar. Both faults
cause the vehicle roll angle increased. To further distinguish
these two faults, ௬,ଵܣ  and ௬,ଶܣ  are loaded to compare with
T1, T2, T5 and T6. If ௬,ଵܣ  is larger than T5, and ௬,ଶܣ  is
smaller than T6, it indicates that the vehicle has even more
roll angles on both sides, and the algorithm will report
“disconnected stabilizer bar” diagnostics result. If ௬,ଵܣ  is
between T1 and T5, and ௬,ଶܣ  is between T2 and T6, the
algorithm will report “loose end link of stabilizer bar”
diagnostics result.

All diagnostics results and related signal values described
above will be saved in the buffer, and eventually reported to
the customers.

3. VALIDATION OF THE PROPOSED SOLUTION

To verify the proposed method, some road test data are
collected from our test vehicle, 2017 Chevrolet Bolt EV for
the different spring and stabilizer bar conditions.

82 road tests are conducted to validate the algorithm,
resulting in 80 diagnostics and prognostic decisions. Two
tests fail to meet the necessary criteria for fault isolation, and
the “unknown” decision is generated. The test results are
summarized in Table 1. The performance of algorithm is
shown in the confusion matrix, i.e. Figure 11.

As shown in Figure 11, the “ground truth” is the actual test
vehicle condition, and the “prediction” is the result from the
algorithm. The overall accuracy of this algorithm is
calculated as the total number of correct results (same as the
ground truth) divided by the total number of vehicle tests. The
accuracy of the static ramp test algorithm is 97.6%. The false
positive rate reflects the percentage of actual healthy cases
that are incorrectly identified as faulty cases. The false
positive rate of this algorithm is 0. The false negative rate
indicates the percentage of actual faulty cases that are
incorrectly diagnosed as healthy cases. There are 2 tests of
loose stabilizer bars failed to meet the necessary criteria for
faults isolation. Accordingly, the false negative rate of this
algorithm is 2.4%.

The measurement data ௬ܣ  for the loose end link and the
loose/worn bushing are shown in Figure 12. The ௬ܣ
measurements of loose/worn bushing condition are different
from the healthy condition, and very close to the loose end
link of stabilizer bars. Therefore, the algorithm can isolate
loose faults from healthy stabilizer bars. Further
enhancement of the algorithm and more experiments may be
needed if the isolation between the loose bushing faults and
the loose end link faults is required. Vehicle tire pressure and
vehicle weight are two main noise factors, which may affect
the algorithm accuracy. Several tests are conducted using

different tire pressures and vehicle weights. The normal tire
pressure for Bolt EV is 35 psi. To verify the effect of tire
pressure, the tests are conducted with lower tire pressures,
ranging from 21 psi to 33 psi. As shown in Figure 13,
different tire pressures affect the vehicle corner height, so that
the measurements of lateral acceleration ௬ܣ  are different.
Lower tire pressures impact ௬ values similar to the brokenܣ
spring. For example, the low tire pressure at the left side
results in a smaller ௬ܣ . The summary of road tests with
different tire pressures and algorithm results are listed in the
Table 2.

As shown in Table 2, true positive results refer to the tests
where the algorithm generates the same results as the ground
truth. When the tire pressure is lower than 30 psi, some false
positive alerts are generated, which incorrectly indicate the
broken spring condition. For the tests where tire pressures are
25 psi, 28 psi and 30 psi, the algorithm indicates the “rear left
faulty spring”. For the tests where the tire pressure of front
left tire is 21 psi, the algorithm generates the results
indicating the “front left faulty spring”. In another word, the
low tire pressure will affect the measurements and accuracy
of algorithm. To avoid false positive alerts, the tire pressure
should be equal or larger than 30 psi, before conducting the
test (shown in the fault isolation algorithm on Figure 10).
Another robustness test is to increase the vehicle weight and
validate if the algorithm will generate false positive alerts.
The normal vehicle weight for previous static ramp test is
1600 kg, including one driver and one passenger on the
vehicle. In this robustness test, 320 lbs. (145 kg) sandbags are
loaded to the rear seats of the vehicle, to simulate the situation
of two more passengers on the vehicle. The total vehicle
weight is now 1745 kg.

As shown in Figure 14, when the vehicle is parked upwards
on the ramp, the larger ௫ܣ  values are found in the
measurements of vehicle with added weight. The algorithm
results for these two conditions are listed in Table 3. When
the vehicle weight is added to 1745 kg, false positive alerts
are generated from the algorithm, which incorrectly report the
fault spring condition. To avoid false positive alerts, vehicle
weight should be checked before conducting the test. Please
note that in the autonomous vehicle setting, where the
conditions could be controlled, a single value could be loaded

Table 1. Road test summary
Vehicle condition Num of tests Algorithm

results
Healthy 28 28

Front left broken spring 8 8
Front right broken spring 8 8
Rear left clamped spring 8 8

Loose stabilizer bars 20 18
Disconnected stabilizer bars 10 10

Total 82 80
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Figure 10. Overall flowchart of spring and stabilizer bar faults isolation algorithm

Table 2. Road test summary with different tire pressure
 Tire pressure Num of tests Num of true positive results Num of false positive results Ground truth

Rear Left, 35 psi 8 8 0 Healthy
Rear Left, 33 psi 10 10 0 Healthy
Rear Left, 30 psi 10 10 0 Healthy
Rear Left, 28 psi 10 0 10 Healthy
Rear Left, 25 psi 10 0 10 Healthy
Rear Left, 21 psi 10 0 10 Healthy
Front Left, 21 psi 10 0 10 Healthy

Figure 11. Confusion matrix for the static ramp test algorithm

and not required before each test as long as no passenger is
inside the vehicle.

4. CONCLUSION

A novel solution is developed in this work to quickly and
accurately detect and isolate spring and stabilizer bar fault.
The spring fault can be diagnosed accurately by measuring
the longitudinal acceleration and the lateral acceleration of
the vehicle on a level pad and ramp, respectively. The
stabilizer bar fault can be detected accurately by measuring
the lateral acceleration of the vehicle on the ramp. With the
proposed solution, the faults of broken spring, disconnected
stabilizer bars, loose end link and loose bushing can be
detected and localized to each vehicle corner. Based on the
82 road tests with a 2017 Chevrolet Bolt EV, the overall
accuracy of the proposed solution is 97.6%. The false positive
rate is 0% and the false negative rate is 2.4%. The
performance of the solution is impacted by the vehicle weight
and the tire pressure. So, the static ramp test should be
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conducted under predefined conditions, as presented in this
report. Such a controlled environment is deemed practical for
autonomous vehicle fleet applications. Our future work focus
includes the variation analysis between vehicle to vehicle or
program to program and modeling for the impact of noise
factors.

(a)

(b)

Figure 12. ௬ average value distribution when vehicle is (a)ܣ
right side up and (b) left side up

Table 3. Road test summary with increased vehicle weight
Vehicle
weight

Num
of

tests

Num of
true

positive
results

Num of
false

positive
results

Ground
truth

1600 kg 8 8 0 Healthy
1745 kg 8 0 8 Healthy

Figure 13. ௬ܣ  average value distribution of different tire
pressures

Figure 14. Average ௫ distribution for vehicle weightsܣ
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