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ABSTRACT

The brushless electronic returnless fuel system (ERFS) is a
complex system, which is subject to different faults such as
motor resistance increase and pressure sensor bias.  Any of
these faults may lead to no-start and safety-related issues such
as loss of engine power. It’s challenging to develop a
diagnosis and isolation method to detect and isolate faults in
the field, with feature signals which capture different fault
signatures. In this study, we first develop a set of feature
signals which are used to monitor the behavior, track the
degradation, predict the potential failures, and diagnose the
issues of the brushless ERFS. The feature signals include the
estimated resistance, current error ratio, PWM duty cycle
error ratio, zero pump speed ratio, etc. Then we develop a
fault diagnosis and isolation algorithm to generate the
diagnostic results based on feature signals. The algorithm is
tested on a vehicle with fault injection. The results show that
different faults can be identified correctly with the developed
algorithm. This study enables development of diagnosis and
prognosis for the brushless ERFS, which can protect
customers from walk-home scenarios and safety related
issues due to the brushless ERFS failures.

1. INTRODUCTION

In an internal combustion engine (ICE) vehicle, the brushless
electronic returnless fuel system (ERFS) pushes the fuel from
the fuel tank to the fuel feed pipe, feeding the fuel to the high-
pressure fuel pump, which generates a high pressure fuel flow
going to the fuel rails and injectors. Figure 1 shows the
structure of the brushless ERFS. To control the brushless fuel
pump, the engine control module (ECM) first determines the
commanded pump speed based on the desired fuel pressure
under current vehicle operation. Then the fuel tank zone
module (FTZM) determines the 3-phase PWM based on the
commanded pump speed, which controls the inverter to drive
the brushless fuel pump.

Figure 1. Brushless ERFS.

The brushless ERFS is critical since its failures can lead to
no-start and some safety-related issues such as loss of engine
power. The brushless ERFS failure modes include motor
failures, fuel pressure sensor failures, pump leakage,
controller failures, etc. To identify potential failures in
advance, and alert customers to avoid the severe scenarios
such as walk-home, it is important to develop the diagnosis
and prognosis (DnP) system of the brushless ERFS. In the
DnP system, the fault diagnosis and isolation algorithms
identify the fault type by analyzing data which represents the
operations of the brushless ERFS.

Many studies on fault diagnosis and isolation are on the
application in bearing and rotating machinery. Tax, Ypma,
and Duin (1999) apply a support vector data description
method on vibration signals to diagnose surface cracking of
gears in pumps. Lu, Wang, Ragulskis, and Cheng (2016)
propose an image processing method to diagnose faults in
rotating machinery. Vibration signal is transformed into a bi-
spectrum contour map, and the speeded-up robust feature
(SURF) is used to extract fault features. Wen, Li, Gao, and
Zhang (2018) convert the time domain signals into 2D images
and applies a convolutional neural network to perform
diagnosis. The method is tested on bearing and pump
systems. Majority of these studies requires high sampling rate
of signals, and frequency domain or time-frequency domain
analysis.

There are also some studies focused on diagnosis of brushless
DC motor. Moseler and Isermann (2000) present a method to
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estimate parameters such as resistance and back EMF
coefficient based on an analytical model. Based on the
estimated parameters, faults of resistance increase and
friction increase are detected. Sun, Chai, Su, Zhu, and Luo
(2014) use a neural network to model the motor system. With
adaptive lifting wavelet decomposition, the error between the
actual speed and the estimated speed from the neural network
is analyzed to detect faults such as voltage leak, phase fault,
load error and shake error. Many studies discuss the diagnosis
of switch fault in the inverter. Most of them utilize analysis
in frequency domain. Tashakori and Ektesabi (2013) present
a method using spectral energy density based on discrete
Fourier transform (DFT) on voltage signal to diagnose switch
faults. Diagnosis of stator-winding inter-turn short circuits is
discussed by Awadallah, Morcos, Gopalakrishnan, and Nehl
(2005). DFT and short-time Fourier transform are performed
on voltage and torque signals to identify the number and
location of short turns, respectively. These studies are
focused on specific faults and develop features based on
them.

The fault diagnosis and isolation for brushed ERFS is
discussed in several patents. Ghoneim (2013) discusses a
method to estimate the motor speed at steady state to monitor
the state of health of the brushed ERFS. Ghoneim (2014)
introduces a method of fault isolation based on estimation of
resistance, back EMF coefficient, current ratio, etc. Ghoneim
and Howell (2016) use lookup tables to estimate current and
motor speed based on voltage and fuel pressure to detect
faults. These methods use the analytical model of brushed DC
motor to monitor the behavior of the brushed ERFS and
diagnose its faults.

Due to the challenges of low sampling rate of signals and
unique failure modes in the brushless ERFS, we propose a
new solution based on the analytical model of the brushless
DC motor. This work is focused on the faults of brushless
fuel pump and the fuel pressure sensor on the fuel feed pipe.
To capture the fault signatures, we determine a set of feature
signals including estimated resistance, current error ratio,
PWM duty cycle error ratio, zero pump speed ratio, etc.
Moreover, a diagnostic algorithm is developed to check the
behaviors of these signals to determine the fault type.

In Section 2, the details of the feature generation algorithm
are discussed. Section 3 introduces the diagnostic algorithm.
Section 4 introduces the setups of the test bench and test
vehicle. Section 5 presents the results of vehicle tests.

2. FEATURE GENERATION FOR BRUSHLESS ERFS
DIAGNOSIS AND PROGNOSIS

2.1. Analytical Model of Brushless DC Motor

In the brushless ERFS, the low-pressure fuel pump is based
on a brushless DC motor. An inverter is used to take a DC
electrical input, convert it into a 3-phase electrical output, and
send it to the motor. The inverter is in the FTZM. Figure 2

shows the structure of the brushless DC motor and the
inverter.

Figure 2. Brushless DC motor and inverter.

At the top of Figure 2, the inverter is represented by the
circuit array of six transistors and diodes. DC voltage UDC
and current IDC are input to the inverter. A shunt resistor,
Rshunt, is used to sense IDC. The six transistors (SAT, SAB, SBT,
SBB, SCT and SCB) are controlled by gate signals in the FTZM.

At the bottom of Figure 2, the circuit of three phases
represents the brushless DC motor. The phase voltages are
denoted as UA, UB and UC, and phase currents as IA, IB and IC.
Each phase is modeled as a series of a phase resistance R,
phase inductance L, and phase back EMF (KeAω, KeBω and
KeCω, respectively). ω is the motor speed. KeA, KeB and KeC
are the back EMF coefficients of the associated phases, which
are trapezoidal.

When the gates in the inverter take turns to be on or off, the
phases are activated periodically to maintain the motor
rotation. Refer to the work of Prokop and Chalupa (2005) for
more details on brushless DC motor and its control.

We ignore the voltage drop at the transistors of the inverter.
Based on the work of Moseler and Isermann (2000), the
analytical model of a brushless DC motor under a steady state
is derived as:

UDC η = 2R mean(IDC)/η + 2Ke mean(ω) (1)

where η is the PWM duty cycle, and Ke is the absolute value
of the back EMF coefficient when a phase is activated, which
is a constant for a trapezoidal back EMF coefficient.

2.2. Average Phase Current

In the FTZM of this study, the average phase current
(Moseler & Isermann, 2000) of the activated phase is
measured with the shunt resistor. The average phase current
is denoted as IAV. It satisfies:
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IAV = mean(IDC)/η (2)

We collect samples of IAV and IDC on a test bench with a pump
to validate Equation (2). On the test bench, we measure (IAV,
IDC, η) under different fuel pressure, pump speed and motor
resistance. The measurements are shown in Figure 3. It shows
that mean(IAV) and mean(IDC)/η have a linear correlation,
although they are not exactly identical due to the measure
error. This error is ignored and has no impact to the
diagnostic performance.

Figure 3. The correlation between mean(IAV) and
mean(IDC)/η. “Normal” means that no increase on the
motor resistance is introduced; “0.3 ohm” means that 0.3
ohm is added to each phase of the motor; “0.55 ohm”
means that 0.55 ohm is added to each phase of the motor.

With Eq. (2), Eq. (1) becomes:

UDC η = 2R mean(IAV) + 2Ke mean(ω) (3)

This is the analytical model with the average phase current.

2.3. Resistance Estimation

With the analytical model formulated in Eq. (3), we estimate
the equivalent DC resistance of the brushless DC motor:

R = [UDC η – 2Ke mean(ω)]/[2mean(IAV)] (4)

Figure 4 shows the results of resistance estimation under
three different conditions: normal, 0.3 ohm added to each
phase, and 0.55 ohm added to each phase. In reality, a
resistance increase of 0.3 ohm is a marginal fault with which
the engine may stall after start. A resistance increase of 0.55
ohm is a more severe fault with which the engine may fail to
start. Under each condition, we measure the parameters of
UDC, η, ω and IAV of a sample fuel pump on the test bench
with different configurations of pump speed and fuel
pressure. With these parameters, R is calculated with Eq. (4).
In Figure 4, each curve represents the correlation between R
and ω under a given fuel pressure. Figure 4 a) shows that the

estimated resistance is in the range between 0.3 ohm and 0.6
ohm under normal condition; Figure 4 b) shows that the
estimated resistance is in the range between 0.6 ohm and 0.8
ohm when there is 0.3 ohm added to each phase; Figure 4 c)
shows that the estimated resistance is in the range between
0.9 ohm and 1.2 ohm when there is 0.55 ohm added to each
phase. With the value of the estimated resistance, we can
determine the resistance increases on the three phases. Please
notice that with 0.3 ohm increase the fuel pressure cannot
reach 600 kPa, and with 0.55 ohm increase it cannot reach
400 kPa.

a)

b)

c)

Figure 4. Estimated resistance. a) under normal
condition. b) when 0.3 ohm is added to each
phase. c) when 0.55 ohm is added to each phase.

2.4. Estimation of Motor Current Under Normal
Condition

The motor current is correlated to the fuel pressure, since it is
proportional to the motor torque. Such a correlation is useful
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when detecting faults such as sensor bias. Figure 5 shows the
correlation between the motor current and the fuel pressure
of a sample fuel pump under different pump speed.

Figure 5. mean(IAV) under different fuel pressure
and pump speed in normal condition.

Each curve in Figure 5 is associated with a given fuel
pressure. Comparing to the change of mean(IAV) over the fuel
pressure, the change of mean(IAV) over the pump speed is
relatively small. Samples in Figure 5 are measured under the
normal condition. We also measure the current under the
conditions of resistance increased on each phase. The results
are similar to Figure 5. This means the current is not sensitive
to resistance change.

We create a lookup table with the samples in Figure 5. For
any given fuel pressure and pump speed, we interpolate the
lookup table and determine an estimated current Iss which
represents the steady state mean(IAV) under the normal
condition. In Subsection 2.7, we will compare Iss with the
actual mean(IAV). The difference between them indicates that
the ERFS is not in a normal condition.

2.5. Estimation of PWM Duty Cycle Under Normal
Condition

Similar to the estimation of motor current in Subsection 2.4,
we also estimate the PWM duty cycle under the normal
condition. The characterization of a normal fuel pump
collects samples of PWM duty cycle under different
configurations of the fuel pressure and pump speed. The
characterization results of a sample fuel pump are shown in
Figure 6.

Figure 6 shows the correlation of the PWM duty cycle with
the fuel pressure and pump speed in the normal condition.
The mean of PWM duty cycle increases when the pump
speed or fuel pressure increases. In other bench tests with
resistance increased on each phase of the motor, it is shown
that the PWM duty cycle is higher than that in the normal
condition under the same pump speed and fuel pressure.

With the samples shown in Figure 6, we create a lookup table
of PWM duty cycle. For any given pump speed and fuel
pressure, we interpolate the lookup table to determine the
estimated PWM duty cycle ηss in the normal condition. In

Subsection 2.7, we will compare ηss with the actual η to
determine if the ERFS is working in a normal condition.

Figure 6. mean(PWM) under different fuel pressure
and pump speed in normal condition.

2.6. Estimation of Pump Speed Under Normal Condition

For the brushless ERFS, the pump speed can indicate whether
the fuel pump is working in a normal condition. Since the
analytical model of the pump motor is formulated as a DC
model in Eq. (3), we use the same observer in the work of
Ghoneim (2013) to estimate the pump speed under the normal
condition based on motor voltage and current. The estimated
pump speed ωM will be compared with the actual speed ω in
Subsection 2.7 to determine the working condition of the
ERFS.

2.7. Summary of Feature Signals

Feature signals are the outputs of the feature generation
algorithm of the brushless ERFS DnP. Table 1 lists the
features developed in this study for the brushless ERFS DnP.
R, Iss, ηss and ωM have been discussed in Subsection 2.3, 2.4,
2.5 and 2.6, respectively.

Table 1. Features generated for the brushless ERFS DnP.

Feature Description
R Estimated resistance.
Iss Estimated average phase current of the pump

in steady state.
ηss Estimated PWM duty cycle in steady state.
ωM Estimated pump speed using observer.
βI Current error ratio
βη PWM duty cycle error ratio
βω Pump speed error ratio
εω Pump speed error
Tzω Zero pump speed ratio

We calculate βI to compare Iss and mean(IAV). It is the ratio
between these two:

βI = Iss/mean(IAV) (5)

Similarly, we calculate βη to compare ηss and η:

βη = ηss/η (6)
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To compare the pump speed ω and ωM, we calculate not only
their ratio but also the exact error, since the error is a better
indicator of faults than the ratio under some faults such as
unbalanced resistance increase. This is demonstrated by
results presented in Section 5. The ratio is calculated with:

βω = ω/ωM (7)

The error between ω and ωM is calculated with:

εω = ω-ωM (8)

Under the fault of unbalanced resistance increase on three
phases, the phase resistance in each commutation step is
inconsistent. Consequently, the pump speed in each
commutation step is inconsistent. The FTZM is not able to
synchronize with commutation, which makes the sensing of
the pump speed malfunctioning. Speed of 0 value is reported
by the FTZM. We count the number of the samples with 0
speed to detect the unbalanced resistance fault.

For every Cω samples of speed, we count the number of
samples with 0 speed. The count is denoted as Czω. Tzω is the
ratio of Czω over Cω.

Tzω=100Czω/Cω (9)

which represents the percentage of the zero speed samples
among all the samples.

2.8. Behaviors of Feature Signals under Faults

With the feature signals, we test their behaviors under
different conditions of the brushless ERFS, including normal
and fault conditions.

The faults in this study are balanced resistance increase,
unbalanced resistance increase, positive sensor bias and
negative sensor bias. The balanced resistance increase
represents the resistance with the same amount increased on
three phases of the brushless motor. The unbalanced
resistance increase represents the increase of resistance are
not identical among the three phases. These two faults come
from the cases including loose connection, corrosion, wiring
or coil issues. The positive and negative sensor bias represent
the readings of the fuel pressure are higher and lower than the
actual pressure value, respectively. These two faults are from
the cases that the fuel pressure sensor is inaccurate.

We observe the behaviors of feature signals with vehicle
tests. Details of the test results are presented in Section 5.
Table 2 summarizes the feature signal behaviors under
different faults compared to under the normal condition. The
upwards arrow presents that the feature signal is higher than
normal; the downwards arrow presents that the feature signal
is lower than normal; the blank cell presents that the feature
signal doesn’t shown any constant pattern or any difference
between faulty and normal behavior.

For the balanced and unbalanced resistance increase, the
estimated resistance R is higher than normal. This signature

doesn’t show under a sensor bias fault. For the bias sensor
faults, the current error ratio βI is a good indicator. It doesn’t
show a signature under a resistance increase fault. Also, the
current error ratio behaviors oppositely under the negative
and positive bias faults.

Table 2. Behaviors of feature signals under different faults.

R βI βη εω βω Tzω

Balanced Resistance
Increase

↑  ↓ ↓ ↓

Unbalanced Resistance
Increase

↑  ↑ ↓ ↓ ↑

Positive Sensor Bias ↑ ↑
Negative Sensor Bias ↓ ↓

Since the behaviors are different under different faults, we
determine the fault signatures based on these feature signals.
In Section 3, we develop the diagnostic and isolation
algorithm based on the feature signals.

3. DIAGNOSTIC AND ISOLATION ALGORITHM

With the behaviors of feature signals, a fault diagnostic and
isolation algorithm is developed by checking each of the
feature signals. Predetermined thresholds are used to
determine the ranges of signals, respectively. Figure 7 shows
the flow chart of the fault diagnostic and isolation algorithm.

Figure 7. The flowchart of the diagnostic
and isolation algorithm.

The algorithm starts with checking the fault of balanced
resistance increase. If R is high, and βη, βω and εω are low,
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then a balanced resistance increase is determined. Next, an
unbalanced resistance increase is determined if βη and Tzω are
high, and βω and εω are low. Please notice that the condition
of an unbalanced resistance increase doesn’t exclude the
condition that R is high. When the condition of a balanced
resistance increase is not satisfied, it means that high R, low
βη, low βω and low εω are not satisfied at the same time. Thus,
R may still be high when checking unbalanced resistance
increase, and it is implicitly true when βη and Tzω are high,
and βω and εω are low, based on Table 2. Therefore, we don’t
need to explicitly check R to determine an unbalanced
resistance increase. To determine the sensor bias faults, we
first check R and Tzω. If either R or Tzω is high, we determine
an unknow fault, since it doesn’t match the behavior of any
fault. Under the condition that neither R nor Tzω is high, if βη
and βI are high, a positive sensor bias is determined; if βη and
βI are low, a negative sensor bias is determined; if βη and βI
are in the normal range, a normal condition is determined.
With this algorithm, the diagnostic results are generated for
the brushless ERFS.

4. TEST BENCH SETUP AND TEST VEHICLE SETUP

A test bench is built to control a brushless fuel pump to
operate under different conditions, which is used to measure
and collect the data of signals discussed in Section 2.

Figure 8 shows the setup of the brushless fuel pump test
bench. A brushless fuel pump module is mounted in a fuel
tank. A fuel feed pipe is connected to the fuel nozzle on the
fuel pump module, and sends the stoddard back to the tank.
A fuel valve on the feed pipe is used to control the fuel
pressure and flow rate coming out of the pump. A fuel
pressure sensor and a fuel flow sensor are installed on the
pipe to measure the fuel pressure and flow rate F. Their
measurements are read by Micro AutoBox 1, and the data are
collected by Laptop 1.

Figure 8. Brushless fuel pump test bench.

The brushless fuel pump module is driven by the fuel tank
zone module through the 3-phase power wires. A resistor
array is installed on the power wires to adjust the resistance
on the 3 phases independently. The fuel tank zone module is
powered by a DC power supply.

An oscilloscope is used to measure and collect the data of the
DC current IDC, DC voltage UDC, two phase currents, and two
phase voltages.

Laptop 2 sends the commanded pump speed, which goes to
the FTZM through Micro AutoBox 2. In addition, the actual
pump speed ω and the average phase current IAV sensed by
the FTZM are read by Micro AutoBox 2, and their data are
collected by Laptop 2.

An ETAS ES591.1 is connected to the FTZM through the
CAN bus to read the PWM duty cycle η measured by the
FTZM. Its data is collected by Laptop 2.

In addition, a test vehicle is built with the feature generation
algorithm implemented on-board in real-time. With the test
vehicle, we fine-tune and validate the algorithm with the
actual measurements in the vehicle.

Figure 9 shows the test vehicle setup. An instrumented ECM
is installed to propagate internal signals, including the DC
voltage UDC, average phase current IAV, sensed pump speed
ω, desired pump speed, sensed fuel pressure, desired fuel
pressure, etc. An ETAS ES592.1 is used to receive the
internal signals from the ECM through an ETK cable, and
enables a laptop to collect them.

Figure 9. Test vehicle setup for brushless fuel DnP.

The ETAS ES592.1 reads the PWM duty cycle η from a
development FTZM. The communication between the ECM
and FTZM is monitored by the ETAS ES592.1 through a
CAN cable. The laptop collects data of the PWM duty cycle
through the ETAS ES592.1.

Fault Box 1 is connected between the ECM and fuel pressure
sensor. It adjusts the voltage of the sensor to introduce a
sensor bias. Fault Box 2 is connected between the FTZM and
brushless fuel pump. It adjusts the resistance of the three
phases independently.

5. RESULTS

In previous sections, we discuss the details of the features for
the brushless ERFS DnP and the diagnostic algorithm. In this
section, we discuss the results of these algorithms. We collect
data from the test vehicle with fault injection. The data are
processed with the algorithms.
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We inject four types of faults discussed in Subsection 2.8. For
resistance increase, we add additional resistance to the phases
accordingly. For the sensor bias, we introduce voltage offsets
on the fuel pressure sensor, respectively.

The test conditions are in 11 categories: normal, balanced
resistance increase of 0.214 ohm, balanced resistance
increase of 0.375 ohm, unbalanced increase of 0.214 ohm on
two phases, unbalanced increase of 0.375 ohm on two phases,
unbalanced increase of 0.214 ohm on one phase, unbalanced
increase of 0.375 ohm on one phase, positive bias of 0.5V on
the fuel pressure sensor, positive bias of 1V on the fuel
pressure sensor, negative bias of 0.5V on the fuel pressure
sensor, and negative bias of 1V on the fuel pressure sensor.
For each condition, we test under three driving conditions:
idling, driving on a flat road, and driving on hills. Therefore,
we test the algorithms in 33 conditions in total.

5.1. Balanced Resistance Increase

This subsection presents the results under the fault of
balanced resistance increase of 0.214 ohm under the flat road
driving condition. The results are showing in Figure 10. The
blue solid curve in each sub figure presents the behavior of
the corresponding feature signal over time under the normal
condition; the green dash curve presents the behavior under
the balanced resistance increase. We add 0.214 ohm on each
of the three phases to introduce a fault of the balanced
resistance increase.

Figure 10. Feature behaviors under
balanced resistance increase.

The experimental results show that some feature signals
change under the fault condition compared to under the

normal condition. The estimated resistance R is increased
under the introduced fault. The current error ratio βI is higher
than normal, because the actual phase current is smaller than
the normal value due to the resistance increase. The PWM
duty cycle error ratio βη decreases under the fault, because the
fuel pump works harder, and the actual PWM duty cycle is
higher than in the normal condition. The pump speed
increases under the fault. Therefore, the pump speed error εω
is negative, and the pump speed error ratio βω is smaller than
1. The zero pump speed ratio Tzω is zero under both the
normal and balanced resistance increase conditions, because
the pump speed is constant during commutations.

Figure 10 shows βI and βη are not 1 in the normal condition.
Based on Eq. (5) and (6), the results represent that the current
and PWM duty cycle are higher in the bench than in the
vehicle under the normal condition. This is due to the
difference between the hydraulic systems in the bench and
vehicle. Compared to the vehicle, the bench has a bigger
pressure loss from the pump to the pressure sensor. This
difference doesn’t impact the capability of DnP, since we use
the change of βI and βη under faulty and normal conditions,
instead of their exact values.

5.2. Unbalanced Resistance Increase

This subsection discusses the results under the fault of
unbalanced resistance increase of 0.375 ohm under the flat
road driving condition. Figure 11 shows the results.

Figure 11. Feature behaviors under unbalanced
resistance increase.

In Figure 11, the blue solid curve in each sub figure presents
the behavior under the normal condition; the green dash curve
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presents the behavior when two phases have resistance
increased, each with a 0.375 ohm increase; the red dotted
curve presents the behavior when one phase has a 0.375 ohm
resistance increase.

Under the unbalanced resistance increase, the estimated
resistance R is higher than normal. Since the pump speed is
inconsistent in one commutation cycle, the FTZM loses
control on the pump speed. The pump speed is lower than
normal. Thus, the pump speed error εω and error ratio βω are
lower than normal. Low speed also causes the phase current
higher than normal and the PWM duty cycle lower than
normal. This behavior of the phase current is different from
that under the balanced resistance increase. Consequently,
the current error ratio βI is lower than normal, and the PWM
duty cycle error ratio βη is higher than normal. Due to the zero
speed samples, the zero pump speed ratio Tzω is greater than
0.

5.3. Fuel Pressure Sensor Bias

This subsection discusses the results under the faults of the
fuel pressure sensor bias of 1V under the flat road driving
condition. Figure 12 shows the results. The blue solid curve
presents the behavior under the normal condition; the green
dash curve presents the behavior under the positive bias of
1V on the pressure sensor; the red dotted curve presents the
behavior under the negative bias of 1V on the pressure sensor.

Figure 12. Feature behaviors under the fuel
pressure sensor bias faults.

In Figure 12, the estimated resistance R under the bias faults
is in the range between 0.35 ohm and 0.4 ohm, which is

considered as a normal range. The estimated current is
associated with the pressure. With a positive bias, the sensed
pressure is higher than the actual pressure. Thus, the
estimated current is higher than the actual value. The current
error ratio βI is higher than normal. Similarly, the current
error ratio βI is lower than normal under the negative bias
fault.

Under the positive bias fault, the actual PWM duty cycle is
lower than normal, since the system thinks the pressure
reaches the demand, and stops increase the PWM duty cycle.
The estimated PWM duty cycle is higher than normal based
on the lookup table. Therefore, the PWM duty cycle error
ratio βη is higher than normal. Similarly, the current error
ratio βη is lower than normal under the negative bias fault.

The absolute value of the speed error εω under the senor faults
is much smaller than the absolute value of the speed error
under resistance increase faults. The speed error ratio βω is
close to 1. εω and βω are much more unstable under the
negative bias fault than the positive bias. This is because the
pump is more unstable under higher duty cycle. The zero
pump speed ratio Tzω is 0, since there isn’t any zero speed
sample.

5.4. Diagnostic Results

In addition to the results discussed above, we summarize the
final diagnostic results in all the 33 test conditions in this
subsection. The three tests under normal condition all
generate “no fault” diagnostic results.

Tests with balanced resistance increase of 0.375 ohm
generate the “high resistance fault, balanced” results under
flat road driving and hill driving. However, the “high
resistance fault, unbalanced” results are generated under
idling. This corner case is due to that 1) Tzω is not always 0
(since 0.375 ohm is relatively high so that the FTZM has
difficulty to drive the motor at a steady speed), and 2) PWM
duty cycle is lower than normal (since the pump speed is low
during idling). In this case, the motor behaviors similarly to
the condition of unbalanced resistance increase. This corner
case needs additional algorithm to handle in the future.

For all the three tests with balanced resistance increase of
0.214 ohm, the speed is consistent, and the “high resistance
fault, balanced” results are generated.

The test is incomplete under the unbalanced resistance
increase, 0.375 ohm on one phase, hill driving, because the
fault is big and stalls the engine. For all other 11 tests under
unbalanced resistance increase condition, the “high
resistance fault, unbalanced” diagnostic results are generated.

For all the 12 tests of positive and negative sensor bias faults,
the diagnostic results “positive sensor bias” and “negative
sensor bias” are generated, respectively.
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6. CONCLUSION

Based on the analytical model of the brushless DC motor, we
develop a set of feature signals which can represent the
behaviors of the brushless ERFS under different conditions.
We develop the fault diagnostic and isolation to check feature
signals and determine the exact fault condition. The
algorithms are tested in a series of vehicle tests, and show
good capability of identifying different faults. The DnP
algorithms can protect customer from severe vehicle failures.
They also provide diagnostic data during the service process
to better diagnose the root causes of issues, which can reduce
incorrect repairs. Moreover, they support the engineering to
address production issues by providing the data and
prognosis/diagnosis results of vehicles in the field.

In the future, more validation will be performed on a bigger
fleet of test vehicles. Additional algorithm will be developed
to handle corner cases, such as the balanced resistance
increase of a high amount.

NOMENCLATURE

βI current error ratio
βη PWM duty cycle error ratio
βω pump speed error ratio
εω pump speed error
η PWM duty cycle
ηss estimated PWM duty cycle under normal

condition
IA, IB, IC phase current of the brushless motor
IAV average phase current
IDC DC current at the inverter input
Iss estimated steady state phase current under

normal condition
Ke absolute value of back EMF coefficient

when a phase is activated
KeA, KeB, KeC  back EMF coefficients of each phase
R (estimated) phase resistance
Tzω zero pump speed ratio
UA, UB, UC phase voltage of the brushless motor
UDC DC voltage at the inverter input
ω motor speed
ωM estimated motor speed using observer
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