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ABSTRACT

The Industrial Internet-of-Things (IIoT) has disrupted the
way of collecting physical data for predictive maintenance
purposes. At present, networks of intelligent wireless sen-
sors are pervasive, finding success in many environments and
industries, including the railways. However, when it comes
to data-intensive applications like vibration monitoring that
require the delivery of large amounts of records, the limita-
tions of these devices arise. The shortfalls are mainly driven
by the low-bandwidth transmission capacity of their radio in-
terfaces, and the low-power features of their battery-operated
(and/or energy-harvested) electronics. In sight of these lim-
ited resources, this article explores a vibration data compres-
sion strategy for diagnosis purposes. To maximise the amount
of transferred information with the least amount of bytes this
method works in three stages: first, it extracts the most useful
features for vibration-based analytics. Then, it compresses
the raw signal waveform using an Autoencoder neural net-
work with an undercomplete representation, assessing its op-
timum regularisation approach: the denoising, sparse, and
contractive configurations. Finally, it reduces the resolution
of the compressed data by quantising all the resulting real
values into single-byte unsigned integers. The proposed strat-
egy is evaluated with a dataset of railway axle bearings with
different levels of degradation. The results of the analysis
show that with compression rates up to 10 the vibration sig-
nals are practically unaffected by this procedure, and once the
signals are reconstructed with a minimum quality standard,
many diagnosis goals like anomaly detection, fault location,
and severity appraisal can be performed. This approach yields
a wide range of business opportunities for on-board predictive
maintenance with IIoT technology.

Alexandre Trilla et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

1. INTRODUCTION

The Industrial Internet-of-Things (IIoT) has emerged as one
of the leading technologies to deploy the remote condition
monitoring of machines (Boyes, H., Hallaq, B., Cunningham,
J., and Watson, T., 2018), especially when such machines
are transportation assets that move around the territory. This
work is particularly concerned with the application of Prog-
nostics and Health Management (PHM) to the maintenance
of mechanical rolling-stock components (Atamuradov, V.,
Medjaher, K., Dersin, P., Lamoureux, B., and Zerhouni, N.,
2017), specifically those able to be inspected with vibration-
monitoring technology. In this regard, Alstom has developed
The Motes (Trilla, A., and Gratacòs, P., 2016, 2013), which
is a network of intelligent wireless sensors that capture the
vibration signature of such mechanical elements and provide
feedback about their actual degradation stage, see Figure 1.
These sensors have been designed to acquire vibration in dif-
ferent operational regimes, both on the workshop floor (low-
speed environment) and in commercial service (up to high-
speed rail). Ultimately, the fleet management team can take
advantage of their added-value and make better informed de-
cisions on how to schedule the various maintenance actions
with the available resources. In this setting, one of their main
objective components are the axle bearings, also known as
axleboxes.

The axlebox is a heavy-duty safety-critical railway ele-
ment (Tsui, K. L., Chen, N., Zhou, Q., Hai, Y., and Wang,
W., 2015). It bears the weight of the train, minimises the
friction with the rotating axle, and its failure in service might
cause derailment. Therefore, its maintenance is of utmost im-
portance to guarantee the availability of the fleet. To this end,
in a predictive maintenance scenario, the collected vibration
signature must be reliable and truly representative of the ac-
tual degradation of the asset. However, this often comes at
the cost of transmitting a greater amount of data, i.e., its raw
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Figure 1. The Motes in use with an axlebox at the Morden
depot in London for the Northern Line underground. The
small window at the bottom-left corner also shows a tablet,
which is used to manage the network of sensors.

signal waveform. Relaying big loads of data works against
the business-case for the IIoT, especially for remote battery-
powered devices, which are designed with wide-range but
low-bandwidth and low-energy radio interfaces, and are ex-
pected to operate intermittently to last a long time unattended.
In addition, the activity of the sensors must not delay the lim-
ited time of the maintenance staff during their inspection ac-
tions. Overall, this exposes the need to maximise the through-
put of information with the smallest volume of vibration data,
and to do so, this article explores the use of signal com-
pression as a key enabler to achieve a cost-effective, robust,
and easy-to-implement PHM solution (Tsui, K. L., Chen, N.,
Zhou, Q., Hai, Y., and Wang, W., 2015).

In the context of wireless sensor networks for diagnosing ma-
chinery, vibration signal compression has already been at-
tained using different signal processing methods like the Dis-
crete Cosine Transform (Alsalaet J. K., Najem, S. I., and Ali,
A. A., 2012), the Empirical Mode Decomposition (Chan, J.
C., and Tse, P. W., 2009), and Wavelets (Hao, W., and Jinji,
G., 2012). However, the electronics used for some IIoT de-
vices populate low-power processors that aim at the min-
imisation of energy consumption at the expense of featuring
somewhat modest processing capabilities. Thus, implement-
ing such costly complicated time-frequency transforms is of-
tentimes out of reach. In this regard, this article proposes the
use of neural networks as a general-purpose function approx-
imator because of their overall good effectiveness, and also
because their industrialisation reduces to making use of linear
algebra operations like matrix multiplication and vector addi-
tion, which are already widely supported by many embedded
platforms. Specifically, the proposed approach focuses on us-
ing the Autoencoder neural network.

The Autoencoder is a particular layered neural architecture

that inherently learns to replicate data through a compressed
representation. Its previous use in PHM highlights its ca-
pacity to detect anomalies (Goldthorpe, P., and Desmet, A.,
2018) and to construct health indices (Trilla, A., Janjua, F.,
and Bermejo, S., 2019), among others. This article uses the
compressed layer of the Autoencoder to obtain a condensed
description of the raw signal waveform, which is the most
critical factor in terms of transmitted data volume. Addition-
ally, a set of vibration health features are also extracted and
appended to the compressed signal to refine its eventual ex-
panded reconstruction. The computational cost of this stage
is not relevant in this context, but the amount of computed
indicators must be kept to a minimum to reduce the amount
of transmitted data. Finally, this array of information is quan-
tised into a low-resolution single-byte representation to build
a compact frame for the IIoT infrastructure, thus attaining
the goal of transmitting a high-quality vibration signal with
a fraction of the originally acquired data sample.

The article is organised as follows: Section 2 describes the
distributed compression/expansion analysis procedure, in-
cluding the Autoencoder technique, and the description of the
railway axlebox data. Section 3 shows the results of the signal
reconstruction evaluation. Section 4 discusses the overall ap-
proach, and Section 5 concludes the manuscript, reflects on
its impact to the current maintenance actions, and provides
avenues of future improvement.

2. METHOD

This section describes the process that has been followed to
obtain a reliable vibration compression procedure.

2.1. Distributed Vibration Companding

In order to reduce the amount of transmitted data while retain-
ing the fundamental characteristics of the vibration signal, the
whole process needs to be split into the following functions:

• Compression of the time-varying signal waveform and
its features on the edge (i.e., the sensing device).

• Expansion of the compressed signal and its feature-
corrected reconstruction on the user side (i.e., the cloud,
or a mobile platform like a tablet).

Figure 2 shows the complete companding procedure (note
that “companding” is the portmanteau of “compressing” and
“expanding”). The specific operations performed by the edge
device for the compression stage are described as follows:

1. Data Acquisition The sensing device equips an ac-
celerometer that is used to obtain an instance of the vi-
bration signature for the degrading asset (e.g., the axle-
box). The dynamic range of the sensor and the sampling
frequency of use are adjusted to the test conditions (i.e.,
at the depot or in commercial service). A sequence of

2



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020

Raw2Signal2
Waveform

Feature
Extraction

Standard. 8-bit2Q.

Feature
Restoration

Norm.32-bit2Q.

Raw2Signal2
Waveform

Limited2BW
Wireless2Channel

Compressing (edge) Expanding (cloud, tablet)

Encoder Decoder

Figure 2. Diagram of distributed vibration compression and expansion processes for transmitting information over a limited
bandwidth (BW) wireless channel. The role of the encoder and the decoder (both implemented with the Autoencoder) operating
on the raw signal waveform (most critical data volume) is highlighted in boldface.

real-valued samples are collected; thus, a signed 32-bit
floating-point arithmetic is used.

2. Feature Extraction An array of statistical health in-
dicators for vibration data are extracted, e.g., peak
magnitude, variance, skewness, kurtosis, crest factor,
etc. (Trilla, A., Janjua, F., and Bermejo, S., 2019; Tsui,
K. L., Chen, N., Zhou, Q., Hai, Y., and Wang, W., 2015).
These features describe particular aspects of the asset’s
degradation (e.g, driven by the failure modes).

3. Encoding The stream of raw vibration waveform data is
segmented into short-time windows, and each of these
frames is then compressed with the Autoencoder, yield-
ing a fraction of the initial acquisition size. The next
section provides further details about this operation.

4. Standardisation Each of the variables obtained so far
(the features and the compressed vibration map) is sta-
tistically standardised so that their resulting distribution
has zero mean and unit standard deviation (a Gaussian
shape is also assumed), i.e.,N (0, 1). This process is also
known as Z-score normalisation.

5. 8-bit Quantisation The resulting real values are finally
rescaled so that the ultimate normal distribution is cen-
tred on the 0-255 value range. Therefore, each variable
now has a N (128, 642) distribution, which is discretised
and may be represented with an unsigned 8-bit integer
arithmetic after a rounding operation, thus obtaining a
low-resolution representation. It is to note that this final
step requires the truncation of the standardised distribu-
tion to fit into the limited range of the single byte repre-
sentation. The truncated range is arbitrarily set to cover
95% of the real values (i.e., 2 standard deviations).

Similarly, the specific operations performed by the end user
device for the expansion stage (i.e., the cloud or a mobile
platform like a tablet) reverse the process described above:
first, the low-resolution samples are quantised into a real-
valued 32-bit floating-point arithmetic. Then, the original
variable distributions are normalised, which recovers the vi-

bration features directly. And finally, the encoded waveform
values are decoded into the initial vibration signals with the
Autoencoder. It is to note that this is a lossy compression pro-
cedure, so one last post-processing step is applied to ensure
that the reconstruction preserves the original health features.
In this work, the peak magnitude of the vibration is main-
tained because it is mostly indicative of the severity of the
incipient failure.

2.2. Autoencoder Neural Network

The Autoencoder (AE) is a connectionist machine learning
technique that replicates “essential information”. It is data-
specific, so it only works with instances that are of same
nature as the examples it has learnt from. To this end, it
uses a self-supervised learning technique that exploits auto-
association (Kramer, M. A., 1992; Stone, V. M., 2008), which
is a specific mode of supervised learning where the targets are
generated from the inputs. As a result, this neural network
learns a distributed representation of the data that captures its
meaningful attributes as its main factors of variation (Bengio,
Y., 2009).

For the end-to-end vibration compression purposes that this
work pursues (implemented on the edge device, and on the
cloud/tablet), the design of the proposed neural network ar-
chitecture is feed-forward and shallow, i.e., memoryless with
one single hidden layer. This reduces both the memory foot-
print and the computational burden, and the resulting weights
that define the behaviour of the model may be directly indus-
trialised through a set of matrix multiplications (Goldthorpe,
P., and Desmet, A., 2018). In addition, the framework of
the presented Autoencoder shows a converging layout from
its input dimensionality D into H at half of its depth (i.e.,
the encoding, compression stage), and then a diverging struc-
ture back to D toward its output (i.e., the decoding, expan-
sion stage), see Figure 3. This undercomplete configuration
forces the Autoencoder to learn the most salient features of
the training data, and thus it develops a compressed repre-

3



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020

x[n]

x[n− 1]

x[n− 2]

...

x[n−D]

i0

i1

i2

...

iD

h0

...

hH

o1

o0

o2

...

oD

x̂[n]

x̂[n− 1]

x̂[n− 2]

...

x̂[n−D]

Figure 3. Companding Autoencoder architecture. D is the
input data dimensionality, and H is the size of the hid-
den/encoding layer, which defines the learning capacity of the
neural network. The undercomplete representation is ensured
as long as H < D. The encoder part is shown with thick
arrows (along with thick states for the compressed vector),
whereas the decoder is shown with thin arrows.

sentation. The amount of hidden units H in the “bottleneck”
layer, which must be smaller than D in this case, defines the
expressiveness of this neural network and therefore modu-
lates its learning capacity. Additionally, if these hidden neu-
rons apply a nonlinear activation function like a Rectified Lin-
ear Unit, the network gains the ability to capture multi-modal
aspects of the input distribution (Japkowicz, N., Hanson, S. J.,
and Gluck, M. A., 2000), although in this case the compres-
sion transformation is essentially linear (from input to hidden
layer). Obviously this Autoencoder-based approach is lossy,
in the sense that the replica only retains the principal char-
acteristics of the data, but not the details (or the noise). A
greater reconstruction quality may be obtained with the iden-
tity, the principal component, or the overcomplete representa-
tions (making H equal to or greater than D), but these would
clearly work against the compression objective.

The proposed Autoencoder is trained with an advanced
stochastic gradient descent procedure with backpropagation
following the Adam algorithm (Kingma, D. P., and Ba, J. L.,
2015), which implements the weight updates through the in-
dividual estimation of the first and second statistical moments
of the gradients (i.e., a momentum on the gradient and its
squared value). The specific hyperparameters of use are: a
learning rate α of 0.001, a first momentum β1 of 0.9, and
a second momentum β2 of 0.999. The average root mean
square (RMS) error between the reconstruction and the orig-
inal vibration signal is used as the objective cost function,
i.e., (x̂[n] − x[n])2. This conventional optimisation protocol
still has room for some improvements through regularisation
penalties, yielding different Autoencoder solutions. These re-
finements are described hereunder.

2.2.1. Ordinary AE

This Autoencoder is directly trained to compress the input
into some lower-dimensional representation so that the exact
same input may thereafter be reconstructed, without any fur-
ther constraint. This is analogous to a maximum-likelihood
estimation of the optimum weights, and therefore it is subject
to overfitting. Obviously, some kind of regularisation strategy
would be desirable here, but the Ordinary AE does not con-
template it explicitly; this model only relies on the limited
representational capacity of the undercomplete architecture.
However, this work also exploits the advantage of limiting
the number of epochs during training, because gradient de-
scent with early stopping is similar to a squared Euclidean
norm regularisation of the weight parameters (Zinkevich, M.,
2003). This strategy generalises the performance of the re-
sulting Autoencoder.

2.2.2. Denoising AE

Another strategy for regularising the Autoencoder is by
stochastically corrupting the vibration signal input with noise,
while the original uncorrupted signal is still used as target
for the reconstruction. This method is known as the Denois-
ing AE (Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y.,
and Manzagol, P.-A., 2010). This approach learns to preserve
the statistical regularities of the input vibration signal, and to
undo the random corruption, which can take different forms:

• Additive White Gaussian Noise (AWGN) The addition
of wideband noise is inspired by many natural processes,
and its Gaussian amplitude distribution is driven by the
central limit theorem of probability theory when many
random processes interact. This is a basic noise model
used in information theory, and this work regards its use-
ful convenience for the corruption of the input.

• Masking The random setting of some inputs to zero is
also a successful regularisation method. This occlusion
strategy forces the Autoencoder to deal with data that
contains missing values. This is an interesting prop-
erty because it regards the Autoencoder as a generative
model.

2.2.3. Sparse AE

Another strategy for regularising the Autoencoder is via the
sparsity in the encoding space. The Sparse AE (Makhzani,
A., and Frey, B., 2014) offers an alternative method for con-
straining the amount of information that may traverse the net-
work and thus require a learned compression of the input data,
without reducing the number of hidden units. This Autoen-
coder adds a sparsity penalty on the activation of the hidden
layer so that only a few units may operate at a given time (the
correction is increased with the amount of contribution). In
this approach, the network gets selective and sensitive to in-
dividual hidden units toward specific attributes of the input
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vibration data. This sparsity cost is attained by computing
the average activations in the hidden layer, and then scoring
the Kullback-Leibler divergence between a Bernoulli random
variable with this mean value, and another one with a desired
small sparse average value.

2.2.4. Contractive AE

There is yet another strategy for regularising the Autoen-
coder considered in this work that is known as the Contractive
AE (Rifai, S., Vincent, P., Muller, X., Glorot, X., and Bengio,
Y., 2011). In this approach the Autoencoder is trained so that
the derivatives of the hidden layer activations are small with
respect to the input. This prevents that small changes in the
input may lead to large changes in the encoding space, so in
a sense it adds robustness to small perturbations around the
data. This effect is attained by introducing a penalty term in
the cost function that corresponds to the Frobenius norm of
the Jacobian matrix of the encoder activations with respect to
the input. It is shown that this results in a localised space con-
traction, which in turn yields robust features on the activation
layer.

2.3. Vibration Data and Stream Processing

In the present PHM environment, real-time data exchange is
not necessary because the gradual degradation of mechanical
assets like axleboxes does not occur in a short time. Thus,
The Motes operate with asynchronous connectivity (Boyes,
H., Hallaq, B., Cunningham, J., and Watson, T., 2018). How-
ever, the compression feature of the Autoencoder is limited
to its input dimensionality D. In order to transmit a whole
“long” vibration signal as a stream, the original sequence
needs to be buffered and segmented into windows of length
D, then compressed into vectors of length H , and finally be
transmitted sequentially in the payload of the wireless proto-
col frames for the available interfaces, e.g., Wi-Fi, ZigBee,
Bluetooth LE, or LoRa.

To evaluate the effectiveness of the companding method with
the Autoencoder, this work uses a dataset of axlebox vibra-
tion data acquired for a metro stock, rolling at 5mph, on a
straight level test track, in the depot. Each acquisition com-
prises a waveform of 4 seconds sampled at 3200Hz. The com-
plete dataset includes over 28000 instances of vibration seg-
ments (with 500 samples each) divided into different degra-
dation levels (Trilla, A., Janjua, F., and Bermejo, S., 2019),
i.e., good, regular, and bad condition.

3. RESULTS

This section compares the different Autoencoder strategies to
determine which of them yields the best companding effec-
tiveness for the IIoT, i.e., the maximum compression with the
minimum loss. Their performance is estimated with a round
of stratified random subsampling with 5% of the instances
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Figure 4. Autoencoder reconstruction error with respect to
the size of the hidden/encoding layer (H). The points corre-
spond to the mean value of the RMS error distribution (as-
suming Gaussian normality), and the whiskers correspond to
one standard deviation. Note that the AE strategy of use may
be distinguished by the shape of the points and the size of the
error caps.

(i.e., around 1400) for testing. Figure 4 shows how the size
of the hidden/encoding layer impacts the reconstruction error
of the test signals for each AE approach.

In general, it can be seen that regardless of the regularisation
strategy of use, all approaches display a flat constant error
response down to 200 hidden units (with a greater or lesser
offset), and a linear increasing slope beyond that inflection
point (also increasing the variability). The interpretation that
follows for this effect is that down to 200 hidden units the
Autoencoder generalises well, but further compression limits
its representational capacity to a point that the neural network
underfits the data and so exhibits a steady increase of the re-
construction error. Additionally, it is the Ordinary Autoen-
coder, which only relies on the undercomplete representation
for regularising its performance, the one that attains the low-
est reconstruction error. When an additional regularisation
strategy is applied, the resulting “over-regularised” Autoen-
coder diminishes its ability to adapt and converge to a better
solution. Taking the inflection point at H=200 hidden units
as the reference (with input D=500), the difference between
the least performing strategy (i.e., the Contractive AE, with
N (0.2479, 0.11562)) and the best (i.e., the Ordinary AE, with
N (0.1815, 0.09912)) is statistically significant with a confi-
dence interval of 95% using an Independent Samples t-test.

It is to note that this reconstruction performance is averaged
over all test instances, which belong to different condition
categories. In order to shed some light into this particular
aspect, Figure 5 shows the distribution of error values regard-
ing the degradation of the test assets for the best-performing
companding strategy, i.e., the Ordinary Autoencoder with 200
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Figure 5. Ordinary AE (with input D=500, and compressed
output H=200) reconstruction error with respect to degraded
test asset conditions (good, regular, and bad).

hidden units. This graph makes it clear that as the axleboxes
degrade, the reconstruction accuracy of the Autoencoder de-
creases, and that happens precisely for the most critical situ-
ations, when warnings and alarms possibly need to be raised
(i.e., for the bad condition). That’s why it is of utmost im-
portance to take into account the health features to refine the
reconstruction of the waveforms. This loss of reconstruction
performance with the progress of the degradation is probably
caused by the increased dynamic range and non-stationarity
of the signals. In addition, the shape of this distribution ques-
tions the previous normality assumption, so the former results
must only be taken as indications.

Finally, the transformation of a window of 500 vibration sam-
ples into a condensed vector of 200 points yields a compres-
sion rate of 2.5, and the 8-bit quantisation that follows applies
another rate of 4. Therefore, the final compression rate is of
10, and the resulting system displays a good (almost lossless)
companding performance. Figure 6 and Figure 7 show how
the Ordinary Autoencoder reconstructs a vibration signal in
the worst-case scenario: foreshadowing a failure (the original
signal belongs to the “bad” axlebox condition). It can be seen
that the time waveform preserves the amplitude that signals
the severity of the degradation, and the frequency spectrum
retains the location of the source of the failure, so the signal
compression process does not modify the result of the anal-
ysis that would be obtained with the original raw data. In
the healthy case, where the discrepancy between the original
waveform and its reconstruction is even smaller, a complete
overlap is visually observed, with a signal amplitude an order
of magnitude smaller. Consequently, the Ordinary Autoen-
coder approach enables a fine-grained diagnosis through IIoT
monitoring technology.
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Figure 6. High-peaked non-stationary time waveform of
an autoencoded vibration signature showing a bad condition
(Ordinary AE with D=500 and H=200).
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Figure 7. Frequency spectrum of the autoencoded vibration
signature shown in Figure 6.

4. DISCUSSION

By trying to approximate the identity function with an under-
complete representation, the Autoencoder attains a flexible
compression strategy that significantly reduces the amount of
data to be transmitted. However, the Autoencoder is not usu-
ally considered to be a good compressor in the conventional
broad sense, because it lacks the versatility to be applied to
data of arbitrary nature. It doesn’t operate by exploiting the
redundancy in the data to build efficient codewords, so per-
haps its performance is limited by this aspect. Nevertheless,
it is to note that the compressed layer of the Autoencoders
studied in this work corresponds to the linear components of
the vibration signals (Duda, R. O., Hart, P. E., and Stork, D.
G., 2001), and on that space a clustering technique followed
by vector quantisation could still be applied to obtain such
an encoded codebook of principal centroids (despite possi-
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bly preventing the detection of anomalies in this latent repre-
sentation). Additionally, the low-resolution quantisation step
presented in this work is linear, and a more effective proce-
dure might be obtained with a nonlinear quantiser enhancing
the main concentration of data in the feature distribution.

In order to better understand the internal behaviour of the
Autoencoder beyond the mapping, other strategies have
also been considered, like the use of convolutions and fil-
ters. Inspired by the suggestion that the architecture of the
neural network is more important than the values of the
weights (Gaier, A., and Ha, D., 2019), the use of pairwise
correlations has been studied to exploit sparse time dilations
like WaveNet (Oord, A., Dieleman, S., Zen, H., Simonyan,
K., Vinyals, O., Graves, A., Kalchbrenner, N., Senior, A.,
and Kavukcuoglu, K., 2016) and Time-Delay Neural Net-
works (Peddinti, V., Povey, D., and Khudanpur, S., 2015).
In the case that the vibration waveform gets averaged as if by
the use of a low-pass filter, the fundamental signal behaviour
is retained, but the Autoencoder increases the reconstruction
error with an offset. Similarly, the same result is obtained if
the input waveform is down-sampled to enhance the details
contained in the high-frequency components. In both cases,
though, the performance inflection point at 200 hidden units
is equally obtained. Therefore, it seems that the densely lay-
ered Autoencoder eventually learns the most effective signal
transformation, but as the compression rate is incremented,
the reconstruction is increasingly smoothed (Trilla, A., Jan-
jua, F., and Bermejo, S., 2019).

Finally, it is to note that the current compression is obtained
with a linear combination of the input vibration samples,
which is similar to the data-driven measurement matrix that
may be developed in compressed sensing (Wu, S., Dimakis,
A. G., Sanghavi, S., Yu, F. X., Holtmann-Rice, D., Storcheus,
D., Rostamizadeh, A., and Kumar, S., 2019). The recent
state of the art applied to vibration signals (which also in-
volves frequency considerations) obtains compression rates
up to 5 (Premanand, B., and Sheeba, V. S., 2020), whereas
the approach described in this contribution reaches rates of
10 with the same error. However, the inclusion of an addi-
tional hidden layer before (and after) the current encoding
would lead to an intricate nonlinear representation, poten-
tially smaller than 200 units, and therefore increase the cur-
rent compression rate. The universal approximation theorem
suggests that this is possible (Cybenko, G., 1989), but it has
not been explored in this work to minimise the processing
especially on the edge device. In a similar vein, the space
complexity is also to be considered in an embedded Machine
Learning environment given the limited memory of some mi-
crocontrollers (Warden, P., and Situnayake, D., 2020). The
largeness of the encoding matrix, thus, may be a limiting fac-
tor of the industrial deployment of this solution. Nonethe-
less, this size may be conveniently reduced by shortening the
length of the input buffer while keeping the same compres-

sion rate at the expense of increasing the running time, e.g.,
compressing 250 vibration samples into 100 (instead of 500
into 200) maintains the same representational capacity with
a quarter of the original matrix size (in number of weights),
and it takes twice as much to complete the processing.

5. CONCLUSIONS

The use of the activation in the hidden/encoding layer of
an Ordinary Autoencoder with an undercomplete represen-
tation along with a low-resolution quantisation step, signif-
icantly reduces the amount of vibration data to be transmit-
ted through an IIoT monitoring network. With compression
rates up to 10, the high quality of the reconstructed signal
waveforms permits implementing a fine-grained diagnosis.
The proposed approach reduces the needed bandwidth for the
transmission, and/or shortens the download time for each ac-
quisition. Also, its impact speeds up the maintenance cycle
on the workshop floor, and/or increases the inspection fre-
quency on remote locations.

The future work that is currently envisaged opens up two
main fronts. On the one hand, exploring the use of complex
numbers to obtain a richer representational capacity of the
underlying neural network (Trabelsi, C., Bilaniuk, O., Zhang,
Y., Serdyuk, D., Subramanian, S., Santos, J. F., Mehri, S.,
Rostamzadeh, N., Bengio, Y., and Pal, C. J., 2018). And on
the other hand, developing a deep network pruning strategy to
facilitate its implementation on embedded systems with lim-
ited hardware resources (Han, S., Mao, H., and Dally, W. J.,
2016).
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