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ABSTRACT 

Accurate estimation of tool wear in machining processes is 

essential to ensure product quality and optimize maintenance 

strategies. This work presents a Machine Learning 

methodology for the PHM-AP 2025 Data Challenge. The 

objective of the challenge is the cutter flank wear prediction 

in a CNC mill-turn machine using accelerometer, acoustic 

emission, and controller data. The training data consists of six 

datasets with a limited number of labeled samples, resulting 

in a few-shot learning scenario. To address these constraints, 

a manual feature extraction method is proposed. Features are 

computed by aggregating data from the controller and sensors 

in the time and frequency domains across five-cut intervals. 

In this way, the wear behavior is captured, and the sensitivity 

to missing data is reduced. Then, an optimization process is 

performed to select the most relevant features based on 

correlation values. These 14 identified features are used to fit 

a Multilayer Perceptron through a leave-one-dataset-out 

cross-validation process. Results reveal variability between 

training sets, with pronounced errors in the 17-21 cutting 

interval in four datasets. However, in the evaluation stage, the 

model achieved a competitive performance: RMSE of 

11.486, MAPE of 8.518, and R2 of 0.875, placing fourth in 

the challenge. 

1. INTRODUCTION 

Wear prediction represents a fundamental challenge in 

modern manufacturing. Accurately determining the wear 

level of a production tool or component in production time is 

essential not only to maximize its useful lifetime but also to 

ensure the quality of manufactured products (Zhou, Liu, Yu, 

Liu, & Quan, 2022). In Computer Numerical Control (CNC) 

mill-turn machines, a number of cycles or processed parts 

were traditionally set to replace the cutting tool.  However, 

the actual wear of a cutting tool is not uniform over its useful 

lifetime (Colantonio, Equeter, Dehombreux, & Ducobu, 

2021), presenting variability caused by external factors such 

as environmental dust, operating conditions, or even 

structural or quality differences in the tool. Hence, 

systematically increasing this fixed value to maximize 

component lifetime without any criteria entails a risk of 

catastrophic failures with higher operational costs than those 

associated with early replacement (Zhou & Xue, 2018). As a 

consequence, the effective prediction of wear level in future 

production cycles is crucial for making optimal decisions 

about the best time to replace the tool, enabling the 

development of predictive maintenance strategies rather than 

scheduled ones (Traini, Bruno, & Lombardi, 2021). 

Wear prediction has traditionally been addressed through 

empirical approaches, fixed rules, and physics-based models 

that incorporate variables such as pressure, temperature, 

cutting forces, or machining dynamics (Usui, Shirakashi, & 

Kitagawa, 1984) (Koren, Ko, Ulsoy, & Danai, 1991). With 

the rise of sensor technology, devices such as accelerometers, 

dynamometers, load cells, and acoustic emission sensors 

began to be used to capture data from CNC machines and to 

develop Machine Learning (ML) models, where techniques 

such as Support Vector Machines, Random Forest, and 

Artificial Neural Networks enhanced predictive capability 

(Jones & Cao, 2025) (Wu, Jennings, Terpenny, Gao, & 

Kumara, 2017). Recently, the advent of Deep Learning (DL) 

has enabled models to learn from data without manual feature 

extraction, using Convolutional Neural Networks, Long-

Short Term Memory models, or Transformers to achieve 

more accurate results (Xu, Wang, Zhong, Ming, & Chen, 

2021) (Hirsch & Friedrich, 2024). Nevertheless, their 

effectiveness is often limited when large datasets are not 

available. Finally, hybrid models have also been used, 
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combining physical models with ML/DL architectures to 

improve generalization and increase robustness under 

varying conditions (Yang, Pattipati, Awasthi, & Bollas, 

2022) (Y. Zhang & Zhu, 2022).  

In this paper, we propose a methodology specifically 

developed for the PHM-AP 2025 Data Challenge. Unlike 

approaches based on deep architectures, whose effectiveness 

is hindered by the availability of only six complete 

trajectories and a very limited number of labels per tool, our 

method relies on feature extraction from acceleration signals, 

acoustic emission data, and CNC controller variables, 

combining descriptors from the temporal, frequency, and 

statistical domains. These features are aggregated over five-

cut intervals to capture the wear evolution and mitigate the 

impact of missing data, transforming the high-frequency 

series into a compact tabular representation. A systematic 

feature selection process is then applied, followed by training 

an MLP model using leave-one-dataset-out cross-validation. 

This approach achieves a balance between predictive 

accuracy and overfitting control, ranking fourth in the 

competition and demonstrating that, in data-scarce scenarios, 

feature-engineering-based strategies coupled with simple 

models can outperform more complex alternatives. 

The remainder of the paper is organized as follows. Section 

2 introduces the PHM-AP 2025 Data Challenge and its 

evaluation setting. Section 3 provides a detailed description 

of the datasets, including controller signals, sensor 

measurements, and wear labels. Section 4 presents the 

proposed methodology, covering feature extraction, feature 

selection, and model optimization. Section 5 details the 

experimental results achieved on the training and evaluation 

data. Finally, Section 6 presents the main conclusions and 

outlines future directions for this work. 

2. DATA CHALLENGE DESCRIPTION  

The PHM-AP 2025 Data Challenge addresses the problem of 

predicting cutter flank wear in machining operations. The 

dataset was collected during cutting tests conducted on a 

DMG Mori NTX2500, where each insert performed 26 

consecutive cuts on stainless steel workpieces. For every cut, 

signals from a triaxial accelerometer and an acoustic 

emission sensor are recorded at 25.6 kHz. Furthermore, data 

from the CNC controller, including loads, speeds, and CNC 

states, is also captured. In those experiments, wear is 

physically measured after specific cuts (1, 6, 11, 16, 21, and 

26), providing temporally spaced labels. The objective of the 

challenge is to develop models to predict the complete wear 

trajectory from these measurements, together with a single 

initial wear label (cut 1). 

For the training stage, six datasets are available, providing 

sensor and controller data across all 26 cuts, along with their 

wear labels. On the other hand, the evaluation stage is 

performed on three datasets containing only data from the 

first cut, with the remaining information hidden. The 

evaluation procedure was performed in an environment with 

limited computational resources. Each team was allowed to 

make two submissions per day by providing a Docker image 

that was executed on a CPU-only system with limited 

memory, with a maximum time limit for completing the 

inference process. Submissions were required to load the 

controller and sensor data and generate predictions for cuts 2-

26 in each evaluation set. The performance was evaluated 

using RMSE, MAPE, and R2. These constraints encourage 

the development of efficient and robust methods for tool wear 

prognosis in real industrial environments.  

3. DATA DESCRIPTION  

This section presents an analysis of the data provided in the 

challenge, including controller and sensor data, as well as the 

target variable. As mentioned earlier, each experiment 

consist of 26 cuts. Each cut is composed of a sequence of 

steps, during which several measurements are taken. Each 

type of data is captured at a different granularity; an overview 

is shown in Figure 1.  

 

 

Figure 1. Data granularity 

 

3.1. Controller Data 

Controller data is recorded at every step of each cut. It 

consists of machine controller records from the machining 

process, including information on program status, operating 

modes, and spindle speeds and loads. It also contains 

timestamps recording the start and end of each cut and each 

step, allowing the sensor signals to be linked to the actual 

machining conditions at each moment. 

Among the variables it contains, there are many that are 

constant, such as those related to status, program name, or 

operating mode, and were therefore discarded. The variables 

retained include the feed rate, the main spindle speed, and 

loads on the X, Y, Z, and B axes. In terms of data 

completeness, the step records are not always consistent 

across cuts. Specifically, information for a single step is 

missing in 19 cuts, while information for two steps is missing 

in another 6 cuts.  
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3.2. Sensor Data 

As mentioned before, sensor data is recorded at a sampling 

rate of 25,600 Hz across four channels: a tri-axial 

accelerometer (X, Y, and Z) and an acoustic emission sensor. 

The X axis represents the neutral axis, Y is the feed axis, and 

Z corresponds to the cutting axis. A timestamp is also 

recorded for each measurement. Missing values appear in two 

different forms. On the one hand, there are single missing 

records within step intervals. These occur in all datasets and 

represent 16.82% of the total records; however, as they 

appear as isolated points, they do not affect the 

characterization of the overall signal behavior. On the other 

hand, dataset 6 lacks information for cuts 1, 2, 7, 12, 17, and 

22; specifically, between 74% and 80% of the data are 

missing in each case. This issue must be carefully addressed 

in the proposed methodology, as similar situations may occur 

in the evaluation data. 

3.3. Target 

The target variable is the flank wear of the cutting tool. As 

mentioned above, measurements are captured after cuts 1, 6, 

11, 16, 21, and 26. Figure 2 shows the trend in the cumulative 

values across the six training datasets. No clearly separable 

degradation modes are observed across the six trajectories, as 

their wear curves follow comparable monotonic patterns. 

 

Figure 2. Flank wear for training data 

4. PROPOSED METHOD AND EXPERIMENTAL PROCEDURE  

Recent work on tool wear prediction in machining has 

explored a wide range of approaches, from signal processing 

combined with classical ML to DL architectures. (C. Zhang, 

Yao, Zhang, & Jin, 2016) process triaxial accelerometer 

signals using wavelet analysis to extract discriminative 

features, which are then fed into a Neuro-Fuzzy Network to 

estimate wear and remaining useful life (RUL). Other studies, 

often built upon the PHM 2010 Data Challenge dataset (Li, 

2021), combine dynamometer, accelerometer, and acoustic 

emission signals to train DL models for RUL prediction. (Si, 

Mu, & Si, 2024) transform sensor signals into power spectral 

density (PSD) maps and then apply hybrid deep architectures, 

such as CNN and ViT combination, to simultaneously 

capture local and global features, while (Martínez-Arellano, 

Terrazas, & Ratchev, 2019) convert 1D signals into image 

representation using Gramian Angular Summation Fields for 

subsequent CNN classification. 

However, these methodologies cannot be directly applied to 

the problem presented in PHM-AP 2025 due to its few-shot 

nature, as only six complete datasets are available for training 

and a very limited number of labels per tool. This 

significantly limits the suitability of deep models and 

increases the risk of overfitting, particularly when learning 

from high-frequency time-series data. To address these 

constraints, our approach relies on manual feature extraction 

from sensor data in both time and frequency domains, along 

with the controller data. Once these features are computed, a 

selection process of the most relevant ones is performed, and 

an MLP model is trained1 to predict wear for cuts 6, 11, 16, 

21, and 26. Partial wear per cut was used as the target instead 

of cumulative wear, as this is the variable required for the 

final evaluation. Each stage of the process is described in 

detail below. 

4.1. Feature Extraction 

Since the wear value at each labeled point includes the 

cumulative degradation of the five immediately preceding 

cuts, feature extraction was performed by aggregating data 

across these five-cut intervals. Specifically, features 

summarizing intervals corresponding to the sequences of cuts 

2–6, 7–11, 12–16, 17–21, and 22–26 were constructed. This 

approach offers two main advantages. First, it allows the data 

to be transformed into a tabular format, thereby avoiding the 

need for sequential or time-series-based models. Second, it 

reduces the impact of missing values because, even in the 

presence of cuts with high percentages of missing records (as 

in training set six), aggregation into wide intervals captures 

the overall trend in signal behavior. As a consequence, no 

explicit imputation or removal of intervals was performed; 

features were computed using only the available 

measurements within each five-cut interval. 

Features were extracted from three sources: temporal-domain 

sensor data, frequency-domain sensor data, and controller 

data. For each of the four sensor channels (acceleration in X, 

Y, and Z, and acoustic emission), 20 temporal-domain 

features were generated from descriptive statistics, shape 

measures, energy, entropy, and metrics related to signal 

dynamics. In the frequency domain, the signals were first 

transformed using the Fast Fourier Transform (FFT). Then, 

15 features were computed, including basic spectral 

magnitudes and advanced descriptors such as spectral 

centroid, dispersion, or spectral flatness. Additionally, for 

each CNC controller variable, 23 statistical and dynamic 

characteristics were extracted, including measures of 

variability, temporal gradients, and nonlinear metrics.                               

 

 

1. All experiments were performed on an Intel Xeon Silver 4310 (2.10 

GHz) with 32 GB of RAM, and an NVIDIA A40 (48 GB) was used to 

accelerate training. The software environment was based on Python 3.9-

slim, with PyTorch 2.5.1 and Scikit-Learn 1.6.1 as the main frameworks. 
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Each five-cut interval is therefore represented by a tabular 

feature vector of 301 elements, providing a compact but 

informative characterization of tool behavior. For brevity, not 

all extracted features are described. However, the variables 

selected for model training are detailed in the following 

subsection. 

4.2. Feature Selection 

Due to the high dimensionality of the extracted features and 

the limited number of labeled samples, a feature selection 

process was applied. First, the correlation between each 

feature and the target variable was computed. Then, an 

iterative procedure was performed, starting with the two 

features showing the highest correlation, the next most 

correlated feature was added at each step. To determine the 

optimal number of features, cross-validation was conducted 

using a simple Multilayer Perceptron (MLP) topology under 

a leave-one-dataset-out scheme, in which one of the six 

datasets was reserved for evaluation at each iteration. The 

challenge metrics (RMSE, MAPE, and R2) were calculated at 

each iteration. Table 1 presents the top five results obtained 

during the feature selection process, according to the 

challenge ranking criteria. The model using 14 features 

achieves the best overall performance. These features, 

described in Table 2, capture phenomena including force 

irregularity (DCOUNT, XP2P), increased cutting effort 

(XMAX), consistent changes over time (DMEAN), shifts in 

vibration energy (SMED), or the appearance of impulsive or 

unstable events (XCREST, XCLEAR, XKURT, XRMS, 

XSTD). 

Table 1. Feature selection results. 

Feature count Mean RMSE Mean MAPE Mean R2 

14 5.984 28.831 0.600 

15 6.300 30.661 0.571 

16 6.661 30.509 0.516 

4 7.019 28.516 0.464 

19 6.817 32.205 0.496 

 

4.3. Model Optimization 

The last step was to train a model using these 14 selected 

features. An MLP was optimized with Optuna, using cross-

validation to evaluate and select the best hyperparameter 

configuration. The optimized parameters included the 

number of layers, hidden layer size, activation function, 

learning rate, weight decay, and batch size. An early-stopping 

mechanism based on the validation loss was used to prevent 

overfitting during training. During this process, features 

corresponding to training set 4 in the 17–21 interval 

consistently degraded model performance; subsequent 

inspection of these feature values confirmed this anomalous 

behavior. For this reason, this interval was treated as an 

outlier and excluded from model training.  Final results are 

shown in Table 3. 

In addition, other classic ML models were evaluated, such as 

Support Vector Machine (SVM), eXtreme Gradient Boosting  

(XGBoost), Light Gradient Boosting Machine (LightGBM), 

Categorical Boosting (CatBoost), and Random Forest (RF). 

In all cases, the performance was lower than that obtained 

with the MLP as reported in Table 4. 

Table 4. ML models results. 

Model Mean RMSE Mean MAPE Mean R2 

MLP 6.027 28.063 0.612 

SVM 7.486 35.838 0.422 

XGBoost 8.440 41.554 0.293 

LightGBM 9.074 43.134 0.183 

CatBoost 9.189 45.341 0.170 

RF 9.439 47.347 0.093 

 

Therefore, the MLP architecture and its optimal 

hyperparameter configuration were used to train a final 

model that leverages data from six datasets. For this purpose, 

25% of the data was reserved for validation and resampled at 

each epoch. This procedure enables the use of an early-

stopping mechanism to prevent overfitting while ensuring the 

model extracts information from all available data. 

5. RESULTS ANALYSIS 

This section analyzes the results obtained with the final MLP 

model trained in the previous section. Figure 3 shows the 

predictions obtained for the training datasets compared to the 

actual degradation values, while Table 5 and Table 6 

summarize the corresponding quantitative performance 

metrics, aggregated by training set and by cut interval, 

respectively. 

Table 5. Results by training set. 

Training set Mean RMSE Mean MAPE Mean R2 

1 10.607 43.728 0.452 

2 3.921 11.180 0.798 

3 3.634 10.089 0.877 

4 13.794 108.635 -0.327 

5 10.018 62.097 0.206 

6 5.908 35.748 0.511 

 

Table 6. Results by cut interval. 

Cut interval Mean RMSE Mean MAPE Mean R2 

2-6 2.822 10.756 0.882 

7-11 4.477 12.980 0.691 

12-16 6.827 37.275 0.408 

17-21 17.093 123.693 -0.054 

22-26 4.698 41.526 0.639 
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Table 2. Selected features. 

Feature Source Sensor/Variable Formula 

DCOUNT Controller Z load ∑ (|𝑥𝑖+1 − 𝑥𝑖| > 0.1(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛))
𝑖

 

SMED Frequency-domain Acceleration Y 
median (

|FFT(𝑥)|2

𝑁
) 

XMAX Controller X load max(𝑥) 

XP2P Controller Z load 𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛 

DMEAN Controller Z load 1

𝑁 − 1
∑ (𝑥𝑖+1 − 𝑥𝑖)

𝑁−1

𝑖=1
 

XCLEAR Controller X load 𝑥𝑚𝑎𝑥

1
𝑁
∑ √|𝑥𝑖|
𝑁
𝑖=1

 

XCREST Temporal-domain Acceleration X 𝑥𝑚𝑎𝑥

√1
𝑁
∑𝑥𝑖

2

 

XKURT Controller Z load 1

𝑁
∑ (

𝑥𝑖 − 𝑥̅

σ
)
4𝑁

𝑖=1
− 3 

XCREST Controller X load 𝑥𝑚𝑎𝑥

√1
𝑁
∑𝑥𝑖

2

 

XKURT Temporal-domain Acoustic emission 1

𝑁
∑ (

𝑥𝑖 − 𝑥̅

σ
)
4𝑁

𝑖=1
− 3 

DMEAN Controller Main Spindle Speed 1

𝑁 − 1
∑ (𝑥𝑖+1 − 𝑥𝑖)

𝑁−1

𝑖=1
 

XRMS Temporal-domain Acceleration Y 

√
1

𝑁
∑ 𝑥𝑖

2
𝑁

𝑖=1
 

XSTD Temporal-domain Acceleration Y 

√
1

𝑁 − 1
∑(𝑥𝑖 − 𝑥̅)2 

SMED Frequency-domain Acceleration X 
median (

|FFT(𝑥)|2

𝑁
) 

 

 

Table 3. MLP optimization. 

No. 

Layers 

Hidden Layers 

Size 

Activation 

Function 

Learning Rate Weight 

Decay 

Batch 

Size 

Mean 

RMSE 

Mean 

MAPE 

Mean R² 

3 (205, 108, 228) ReLU 8.357 × 10⁻³ 1 × 10⁻⁶ 8 6.027 28.063 0.612 

3 (225, 23, 201) ReLU 9.879 × 10⁻³ 1 × 10⁻⁶ 8 6.068 28.096 0.608 

3 (209, 137, 238) ReLU 6.586 × 10⁻³ 1 × 10⁻⁶ 8 5.964 28.934 0.597 

3 (218, 108, 224) ReLU 8.810 × 10⁻³ 2 × 10⁻⁶ 8 6.065 29.058 0.606 

3 (230, 107, 242) ReLU 8.755 × 10⁻³ 2 × 10⁻⁶ 8 6.119 28.692 0.597 
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Figure 3. Training set results.

 

As shown in these results, the model exhibits substantial 

variations across datasets. In datasets 2 and 3, the predictions 

closely follow the trend of the actual values. However, this 

behavior is not consistent across the remaining datasets, 

where the model shows reduced stability. In datasets 1, 4, 5, 

and 6, a pronounced error is observed in the fourth prediction 

(corresponding to the 17–21 cut interval). This deviation is 

especially pronounced in dataset 4, whose feature vector was 

previously identified as an outlier, which explains the 

magnitude of the error. Overall, these results highlight 

heterogeneity across datasets and suggest that the inherent 

variability of the machining process may limit the 

consistency of the model. 

The results obtained with this model during the evaluation 

process were an RMSE of 11.486, a MAPE of 8.518, and an 

R2 of 0.875, placing it fourth in the competition. These results 

show a clearly better MAPE and R2 compared with the 

training stage, but a worse RMSE. This difference can be 

explained by the fact that RMSE is highly sensitive to large 

absolute errors, whereas MAPE captures relative error and R2 

measures explained variance. Therefore, if the model 

produces a small number of large-magnitude errors in the 

evaluation set, the RMSE will be strongly penalized while the 

other metrics may remain stable, particularly if the remaining 

predictions are accurate.  

6. CONCLUSIONS 

This work presents a methodology designed for the PHM-AP 

2025 Data Challenge. It is focused on predicting tool wear in 

a CNC mill-turn machine using high-frequency data with a 

reduced number of labeled samples. The manual feature 

extraction in both the temporal and frequency domains from 

sensor signals and controller variables, together with the 

feature selection process and the training of an MLP 

architecture, has demonstrated a competitive performance, 

achieving fourth place in the challenge. However, results also 

reveal a substantial variability across datasets and errors 

located in specific intervals, suggesting the need for more 

robust adaptive domain mechanisms. If the evaluation set is 

released, future work will involve evaluating other classic 

ML models. Furthermore, it will explore hybrid approaches, 

such as Deep State Space models, to improve generalization 

capability. 
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