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ABSTRACT

Accurate estimation of tool wear in machining processes is
essential to ensure product quality and optimize maintenance
strategies. This work presents a Machine Learning
methodology for the PHM-AP 2025 Data Challenge. The
objective of the challenge is the cutter flank wear prediction
in a CNC mill-turn machine using accelerometer, acoustic
emission, and controller data. The training data consists of six
datasets with a limited number of labeled samples, resulting
in a few-shot learning scenario. To address these constraints,
a manual feature extraction method is proposed. Features are
computed by aggregating data from the controller and sensors
in the time and frequency domains across five-cut intervals.
In this way, the wear behavior is captured, and the sensitivity
to missing data is reduced. Then, an optimization process is
performed to select the most relevant features based on
correlation values. These 14 identified features are used to fit
a Multilayer Perceptron through a leave-one-dataset-out
cross-validation process. Results reveal variability between
training sets, with pronounced errors in the 17-21 cutting
interval in four datasets. However, in the evaluation stage, the
model achieved a competitive performance: RMSE of
11.486, MAPE of 8.518, and R? of 0.875, placing fourth in
the challenge.

1. INTRODUCTION

Wear prediction represents a fundamental challenge in
modern manufacturing. Accurately determining the wear
level of a production tool or component in production time is
essential not only to maximize its useful lifetime but also to
ensure the quality of manufactured products (Zhou, Liu, Yu,
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Liu, & Quan, 2022). In Computer Numerical Control (CNC)
mill-turn machines, a number of cycles or processed parts
were traditionally set to replace the cutting tool. However,
the actual wear of a cutting tool is not uniform over its useful
lifetime (Colantonio, Equeter, Dehombreux, & Ducobu,
2021), presenting variability caused by external factors such
as environmental dust, operating conditions, or even
structural or quality differences in the tool. Hence,
systematically increasing this fixed value to maximize
component lifetime without any criteria entails a risk of
catastrophic failures with higher operational costs than those
associated with early replacement (Zhou & Xue, 2018). As a
consequence, the effective prediction of wear level in future
production cycles is crucial for making optimal decisions
about the best time to replace the tool, enabling the
development of predictive maintenance strategies rather than
scheduled ones (Traini, Bruno, & Lombardi, 2021).

Wear prediction has traditionally been addressed through
empirical approaches, fixed rules, and physics-based models
that incorporate variables such as pressure, temperature,
cutting forces, or machining dynamics (Usui, Shirakashi, &
Kitagawa, 1984) (Koren, Ko, Ulsoy, & Danai, 1991). With
the rise of sensor technology, devices such as accelerometers,
dynamometers, load cells, and acoustic emission sensors
began to be used to capture data from CNC machines and to
develop Machine Learning (ML) models, where techniques
such as Support Vector Machines, Random Forest, and
Artificial Neural Networks enhanced predictive capability
(Jones & Cao, 2025) (Wu, Jennings, Terpenny, Gao, &
Kumara, 2017). Recently, the advent of Deep Learning (DL)
has enabled models to learn from data without manual feature
extraction, using Convolutional Neural Networks, Long-
Short Term Memory models, or Transformers to achieve
more accurate results (Xu, Wang, Zhong, Ming, & Chen,
2021) (Hirsch & Friedrich, 2024). Nevertheless, their
effectiveness is often limited when large datasets are not
available. Finally, hybrid models have also been used,



ASIA PACIFIC CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2025

combining physical models with ML/DL architectures to
improve generalization and increase robustness under
varying conditions (Yang, Pattipati, Awasthi, & Bollas,
2022) (Y. Zhang & Zhu, 2022).

In this paper, we propose a methodology specifically
developed for the PHM-AP 2025 Data Challenge. Unlike
approaches based on deep architectures, whose effectiveness
is hindered by the availability of only six complete
trajectories and a very limited number of labels per tool, our
method relies on feature extraction from acceleration signals,
acoustic emission data, and CNC controller variables,
combining descriptors from the temporal, frequency, and
statistical domains. These features are aggregated over five-
cut intervals to capture the wear evolution and mitigate the
impact of missing data, transforming the high-frequency
series into a compact tabular representation. A systematic
feature selection process is then applied, followed by training
an MLP model using leave-one-dataset-out cross-validation.
This approach achieves a balance between predictive
accuracy and overfitting control, ranking fourth in the
competition and demonstrating that, in data-scarce scenarios,
feature-engineering-based strategies coupled with simple
models can outperform more complex alternatives.

The remainder of the paper is organized as follows. Section
2 introduces the PHM-AP 2025 Data Challenge and its
evaluation setting. Section 3 provides a detailed description
of the datasets, including controller signals, sensor
measurements, and wear labels. Section 4 presents the
proposed methodology, covering feature extraction, feature
selection, and model optimization. Section 5 details the
experimental results achieved on the training and evaluation
data. Finally, Section 6 presents the main conclusions and
outlines future directions for this work.

2. DATA CHALLENGE DESCRIPTION

The PHM-AP 2025 Data Challenge addresses the problem of
predicting cutter flank wear in machining operations. The
dataset was collected during cutting tests conducted on a
DMG Mori NTX2500, where each insert performed 26
consecutive cuts on stainless steel workpieces. For every cut,
signals from a triaxial accelerometer and an acoustic
emission sensor are recorded at 25.6 kHz. Furthermore, data
from the CNC controller, including loads, speeds, and CNC
states, is also captured. In those experiments, wear is
physically measured after specific cuts (1, 6, 11, 16, 21, and
26), providing temporally spaced labels. The objective of the
challenge is to develop models to predict the complete wear
trajectory from these measurements, together with a single
initial wear label (cut 1).

For the training stage, six datasets are available, providing
sensor and controller data across all 26 cuts, along with their
wear labels. On the other hand, the evaluation stage is
performed on three datasets containing only data from the
first cut, with the remaining information hidden. The

evaluation procedure was performed in an environment with
limited computational resources. Each team was allowed to
make two submissions per day by providing a Docker image
that was executed on a CPU-only system with limited
memory, with a maximum time limit for completing the
inference process. Submissions were required to load the
controller and sensor data and generate predictions for cuts 2-
26 in each evaluation set. The performance was evaluated
using RMSE, MAPE, and R?. These constraints encourage
the development of efficient and robust methods for tool wear
prognosis in real industrial environments.

3. DATA DESCRIPTION

This section presents an analysis of the data provided in the
challenge, including controller and sensor data, as well as the
target variable. As mentioned earlier, each experiment
consist of 26 cuts. Each cut is composed of a sequence of
steps, during which several measurements are taken. Each
type of data is captured at a different granularity; an overview
is shown in Figure 1.

Dataset

Cut
(target variable)

Sample
(sensor data)

Figure 1. Data granularity

3.1. Controller Data

Controller data is recorded at every step of each cut. It
consists of machine controller records from the machining
process, including information on program status, operating
modes, and spindle speeds and loads. It also contains
timestamps recording the start and end of each cut and each
step, allowing the sensor signals to be linked to the actual
machining conditions at each moment.

Among the variables it contains, there are many that are
constant, such as those related to status, program name, or
operating mode, and were therefore discarded. The variables
retained include the feed rate, the main spindle speed, and
loads on the X, Y, Z, and B axes. In terms of data
completeness, the step records are not always consistent
across cuts. Specifically, information for a single step is
missing in 19 cuts, while information for two steps is missing
in another 6 cuts.



ASIA PACIFIC CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2025

3.2. Sensor Data

As mentioned before, sensor data is recorded at a sampling
rate of 25,600 Hz across four channels: a tri-axial
accelerometer (X, Y, and Z) and an acoustic emission sensor.
The X axis represents the neutral axis, Y is the feed axis, and
Z corresponds to the cutting axis. A timestamp is also
recorded for each measurement. Missing values appear in two
different forms. On the one hand, there are single missing
records within step intervals. These occur in all datasets and
represent 16.82% of the total records; however, as they
appear as isolated points, they do not affect the
characterization of the overall signal behavior. On the other
hand, dataset 6 lacks information for cuts 1, 2, 7, 12, 17, and
22; specifically, between 74% and 80% of the data are
missing in each case. This issue must be carefully addressed
in the proposed methodology, as similar situations may occur
in the evaluation data.

3.3. Target

The target variable is the flank wear of the cutting tool. As
mentioned above, measurements are captured after cuts 1, 6,
11,16, 21, and 26. Figure 2 shows the trend in the cumulative
values across the six training datasets. No clearly separable
degradation modes are observed across the six trajectories, as
their wear curves follow comparable monotonic patterns.

Figure 2. Flank wear for training data

4. PROPOSED METHOD AND EXPERIMENTAL PROCEDURE

Recent work on tool wear prediction in machining has
explored a wide range of approaches, from signal processing
combined with classical ML to DL architectures. (C. Zhang,
Yao, Zhang, & Jin, 2016) process triaxial accelerometer
signals using wavelet analysis to extract discriminative
features, which are then fed into a Neuro-Fuzzy Network to
estimate wear and remaining useful life (RUL). Other studies,
often built upon the PHM 2010 Data Challenge dataset (Li,
2021), combine dynamometer, accelerometer, and acoustic
emission signals to train DL models for RUL prediction. (Si,
Mu, & Si, 2024) transform sensor signals into power spectral
density (PSD) maps and then apply hybrid deep architectures,
such as CNN and ViT combination, to simultaneously
capture local and global features, while (Martinez-Arellano,

Terrazas, & Ratchev, 2019) convert 1D signals into image
representation using Gramian Angular Summation Fields for
subsequent CNN classification.

However, these methodologies cannot be directly applied to
the problem presented in PHM-AP 2025 due to its few-shot
nature, as only six complete datasets are available for training
and a very limited number of labels per tool. This
significantly limits the suitability of deep models and
increases the risk of overfitting, particularly when learning
from high-frequency time-series data. To address these
constraints, our approach relies on manual feature extraction
from sensor data in both time and frequency domains, along
with the controller data. Once these features are computed, a
selection process of the most relevant ones is performed, and
an MLP model is trained' to predict wear for cuts 6, 11, 16,
21, and 26. Partial wear per cut was used as the target instead
of cumulative wear, as this is the variable required for the
final evaluation. Each stage of the process is described in
detail below.

4.1. Feature Extraction

Since the wear value at each labeled point includes the
cumulative degradation of the five immediately preceding
cuts, feature extraction was performed by aggregating data
across these five-cut intervals. Specifically, features
summarizing intervals corresponding to the sequences of cuts
2-6, 7-11, 12-16, 17-21, and 22-26 were constructed. This
approach offers two main advantages. First, it allows the data
to be transformed into a tabular format, thereby avoiding the
need for sequential or time-series-based models. Second, it
reduces the impact of missing values because, even in the
presence of cuts with high percentages of missing records (as
in training set six), aggregation into wide intervals captures
the overall trend in signal behavior. As a consequence, no
explicit imputation or removal of intervals was performed;
features were computed using only the available
measurements within each five-cut interval.

Features were extracted from three sources: temporal-domain
sensor data, frequency-domain sensor data, and controller
data. For each of the four sensor channels (acceleration in X,
Y, and Z, and acoustic emission), 20 temporal-domain
features were generated from descriptive statistics, shape
measures, energy, entropy, and metrics related to signal
dynamics. In the frequency domain, the signals were first
transformed using the Fast Fourier Transform (FFT). Then,
15 features were computed, including basic spectral
magnitudes and advanced descriptors such as spectral
centroid, dispersion, or spectral flatness. Additionally, for
each CNC controller variable, 23 statistical and dynamic
characteristics were extracted, including measures of
variability, temporal gradients, and nonlinear metrics.

1. All experiments were performed on an Intel Xeon Silver 4310 (2.10
GHz) with 32 GB of RAM, and an NVIDIA A40 (48 GB) was used to
accelerate training. The software environment was based on Python 3.9-
slim, with PyTorch 2.5.1 and Scikit-Learn 1.6.1 as the main frameworks.
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Each five-cut interval is therefore represented by a tabular
feature vector of 301 elements, providing a compact but
informative characterization of tool behavior. For brevity, not
all extracted features are described. However, the variables
selected for model training are detailed in the following
subsection.

4.2. Feature Selection

Due to the high dimensionality of the extracted features and
the limited number of labeled samples, a feature selection
process was applied. First, the correlation between each
feature and the target variable was computed. Then, an
iterative procedure was performed, starting with the two
features showing the highest correlation, the next most
correlated feature was added at each step. To determine the
optimal number of features, cross-validation was conducted
using a simple Multilayer Perceptron (MLP) topology under
a leave-one-dataset-out scheme, in which one of the six
datasets was reserved for evaluation at each iteration. The
challenge metrics (RMSE, MAPE, and R?) were calculated at
each iteration. Table 1 presents the top five results obtained
during the feature selection process, according to the
challenge ranking criteria. The model using 14 features
achieves the best overall performance. These features,
described in Table 2, capture phenomena including force
irregularity (DCOUNT, XP2P), increased cutting effort
(XMAX), consistent changes over time (DMEAN), shifts in
vibration energy (SMED), or the appearance of impulsive or
unstable events (XCREST, XCLEAR, XKURT, XRMS,
XSTD).

Table 1. Feature selection results.

Feature count | Mean RMSE | Mean MAPE | Mean R2
14 5.984 28.831 0.600
15 6.300 30.661 0.571
16 6.661 30.509 0.516
4 7.019 28.516 0.464
19 6.817 32.205 0.496

4.3. Model Optimization

The last step was to train a model using these 14 selected
features. An MLP was optimized with Optuna, using cross-
validation to evaluate and select the best hyperparameter
configuration. The optimized parameters included the
number of layers, hidden layer size, activation function,
learning rate, weight decay, and batch size. An early-stopping
mechanism based on the validation loss was used to prevent
overfitting during training. During this process, features
corresponding to training set 4 in the 17-21 interval
consistently degraded model performance; subsequent
inspection of these feature values confirmed this anomalous
behavior. For this reason, this interval was treated as an

outlier and excluded from model training. Final results are
shown in Table 3.

In addition, other classic ML models were evaluated, such as
Support Vector Machine (SVM), eXtreme Gradient Boosting
(XGBoost), Light Gradient Boosting Machine (LightGBM),
Categorical Boosting (CatBoost), and Random Forest (RF).
In all cases, the performance was lower than that obtained
with the MLP as reported in Table 4.

Table 4. ML models results.

Model Mean RMSE [ Mean MAPE | Mean R?
MLP 6.027 28.063 0.612
SVM 7.486 35.838 0.422
XGBoost 8.440 41.554 0.293
LightGBM | 9.074 43.134 0.183
CatBoost 9.189 45.341 0.170
RF 9.439 47.347 0.093
Therefore, the MLP architecture and its optimal

hyperparameter configuration were used to train a final
model that leverages data from six datasets. For this purpose,
25% of the data was reserved for validation and resampled at
each epoch. This procedure enables the use of an carly-
stopping mechanism to prevent overfitting while ensuring the
model extracts information from all available data.

5. RESULTS ANALYSIS

This section analyzes the results obtained with the final MLP
model trained in the previous section. Figure 3 shows the
predictions obtained for the training datasets compared to the
actual degradation values, while Table 5 and Table 6
summarize the corresponding quantitative performance
metrics, aggregated by training set and by cut interval,
respectively.

Table 5. Results by training set.

Training set | Mean RMSE Mean MAPE | Mean R2
1 10.607 43.728 0.452

2 3.921 11.180 0.798

3 3.634 10.089 0.877

4 13.794 108.635 -0.327
5 10.018 62.097 0.206

6 5.908 35.748 0.511

Table 6. Results by cut interval.

Cut interval Mean RMSE | Mean MAPE | Mean R?
2-6 2.822 10.756 0.882
7-11 4.477 12.980 0.691
12-16 6.827 37.275 0.408
17-21 17.093 123.693 -0.054
22-26 4.698 41.526 0.639
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Feature Source Sensor/Variable Formula
DCOUNT Controller Z load Z‘(lel — 2] > 0.1 (tmax — Xmin))
L
SMED Frequency-domain Acceleration Y ) (IFFT(x)lZ)
median | —————
N
XMAX Controller X load max(x)
XP2P Controller Z load Xmax — Xmin
DMEAN Controller Z load 1 N-1
mz (xi41 — X;)
i=1
XCLEAR Controller X load Xmax
1
S NI
XCREST Temporal-domain Acceleration X Xmax
1
N
XKURT Controller Z load 1 ZN <xl~ - f)‘* 3
N i=1 (0
XCREST Controller X load Xmax
1
N
XKURT Temporal-domain Acoustic emission 1 ZN (xl- - f)" 3
N i=1 (¢
DMEAN Controller Main Spindle Speed 1 N-1
mz (xi41 = X;)
i=1
XRMS Temporal-domain Acceleration Y 1 N
— 2
N Zi=1x’
XSTD Temporal-domain Acceleration Y 1
AR
SMED Frequency-domain Acceleration X ] <|FFT(x)|2>
median | —————
N
Table 3. MLP optimization.
No. Hidden Layers Activation | Learning Rate Weight Batch Mean Mean Mean R?
Layers Function Decay Size RMSE MAPE
3 (205,108, 228) | ReLU 8.357 x 1073 1 x10° 8 6.027 28.063 0.612
3 (225, 23,201) ReLU 9.879 x 1073 1 x10° 8 6.068 28.096 0.608
3 (209, 137,238) | ReLU 6.586 x 1073 1 x10° 8 5.964 28.934 0.597
3 (218,108,224) | ReLU 8.810 x 1073 2x10° 8 6.065 29.058 0.606
3 (230,107,242) | ReLU 8.755 x 1073 2x10° 8 6.119 28.692 0.597
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Figure 3. Training set results.
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As shown in these results, the model exhibits substantial
variations across datasets. In datasets 2 and 3, the predictions
closely follow the trend of the actual values. However, this
behavior is not consistent across the remaining datasets,
where the model shows reduced stability. In datasets 1, 4, 5,
and 6, a pronounced error is observed in the fourth prediction
(corresponding to the 17-21 cut interval). This deviation is
especially pronounced in dataset 4, whose feature vector was
previously identified as an outlier, which explains the
magnitude of the error. Overall, these results highlight
heterogeneity across datasets and suggest that the inherent
variability of the machining process may limit the
consistency of the model.

The results obtained with this model during the evaluation
process were an RMSE of 11.486, a MAPE of 8.518, and an
R? 0f 0.875, placing it fourth in the competition. These results
show a clearly better MAPE and R? compared with the
training stage, but a worse RMSE. This difference can be
explained by the fact that RMSE is highly sensitive to large
absolute errors, whereas MAPE captures relative error and R?
measures explained variance. Therefore, if the model
produces a small number of large-magnitude errors in the
evaluation set, the RMSE will be strongly penalized while the
other metrics may remain stable, particularly if the remaining
predictions are accurate.

6. CONCLUSIONS

This work presents a methodology designed for the PHM-AP
2025 Data Challenge. It is focused on predicting tool wear in
a CNC mill-turn machine using high-frequency data with a

20 25 30

reduced number of labeled samples. The manual feature
extraction in both the temporal and frequency domains from
sensor signals and controller variables, together with the
feature selection process and the training of an MLP
architecture, has demonstrated a competitive performance,
achieving fourth place in the challenge. However, results also
reveal a substantial variability across datasets and errors
located in specific intervals, suggesting the need for more
robust adaptive domain mechanisms. If the evaluation set is
released, future work will involve evaluating other classic
ML models. Furthermore, it will explore hybrid approaches,
such as Deep State Space models, to improve generalization
capability.
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