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ABSTRACT

With the rapid expansion of unmanned aerial vehicle (UAV)
applications, ensuring reliable and safe operation has become
a pressing challenge. In this paper, we present a modular
quadrotor-based data acquisition platform designed to cap-
ture rich, high-fidelity data under motion capture guidance.
Our system integrates conventional flight telemetry with de-
tailed vibration and temperature measurements, user input
logs, and precise 6D motion tracking. This offers an com-
prehensive view into the UAV’s physical and control state.
We describe our systematic process for data cleaning, orga-
nization, and exploratory analysis, laying the groundwork for
robust prognostics and health management (PHM) research.
To illustrate the platform’s potential, we implement super-
vised and semi-supervised models for anomaly detection and
fault identification. We release the dataset, synchronized
flight videos, and analysis code to accelerate UAV health-
monitoring research and collaboration.

1. INTRODUCTION

Unmanned aerial vehicles (UAVs) are increasingly employed
in diverse indoor applications, spanning from warehouse
logistics to inspection tasks, where reliable operation is
paramount to mission success. Nevertheless, the dynamic
nature of quadrotor flight, coupled with intricate mechani-
cal and electrical subsystems, presents substantial challenges
to their long-term reliability and safety. Prognostics and
Health Management (PHM) presents a promising pathway
to address these challenges through condition-based moni-
toring, anomaly detection, and remaining useful life estima-
tion. However, the development and validation of PHM meth-
ods critically depend on high-quality, representative datasets,
which remain scarce in the context of UAVs, particularly for
indoor scenarios where precise ground truth is available.

To address this need, we introduce a novel indoor UAV data
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Figure 1. Quadrotor arm: an IR sensor targeting the motor
bell and a contact sensor on the ESC provide complementary
surface and component temperature measurements for PHM.

acquisition platform centered around a motion capture system
that enables sub-millimeter precision in trajectory tracking.
Our platform captures rich, synchronized, multi-modal sen-
sor data—including gyroscope and accelerometer readings,
motor RPM, ESC and motor temperatures (via both contact-
based and infrared sensors), vibration signals, battery volt-
age and current, and RC transmitter inputs. Additionally,
we collect 6D motion capture data comprising 3D position
and 3D velocity. A key feature of our design is the rigidly
mounted flight controller board, which allows direct acquisi-
tion of vibration data from the airframe itself, providing un-
filtered insights into mechanical integrity. By combining pre-
cise motion ground truth with diverse onboard telemetry, our
system provides a rare, high-resolution view into the health
of UAV subsystems during real-world operation. We detail
the data collection and cleaning procedures, and present ini-
tial exploratory analyses to ensure dataset quality. Further-
more, we implement baseline supervised and self-supervised
Al models for anomaly detection and health estimation. To
foster open research, we release the complete dataset along
with synchronized flight videos and sample data processing
scripts in Python.
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2. RELATED WORKS

Data-driven PHM has a long history spanning aerospace and
industrial systems, with broad surveys consolidating clas-
sical paradigms such as distance-based, density-based, and
model-based approaches, along with their time-series vari-
ants (Chandola et al., 2009). Widely used algorithms in-
clude One-Class SVM for novelty detection (Scholkopf et al.,
2001), Local Outlier Factor for density-based outliers (Bre-
unig et al.,, 2000), and Isolation Forest for scalable, sub-
sampled anomaly scoring (Liu et al., 2008). In prognos-
tics, the NASA C-MAPSS turbofan benchmark popularized
run-to-failure sensing for health estimation and RUL model-
ing and remains a de facto yardstick for method comparisons
(Saxena and Goebel, 2008).

Within spacecraft operations, Yairi ef al. proposed a prob-
abilistic clustering and dimensionality-reduction framework
for satellite housekeeping telemetry, demonstrating effec-
tive health monitoring without explicit fault labels—an ap-
proach that has influenced subsequent unsupervised PHM
pipelines (Yairi et al., 2017). For UAVs, much of the pub-
lic data targets state estimation and perception rather than
health monitoring; e.g., the EuRoC MAYV dataset has become
a standard for visual-inertial odometry (Burri et al., 2016),
with VINS-Mono a commonly used baseline (Qin et al.,
2018). In contrast, open datasets that couple rigid-mount
vibration, dual-mode temperature sensing (contact and IR)
of propulsion components, and motion-capture ground truth
are scarce—modalities directly aligned with PHM objectives.
Our work contributes an indoor UAV dataset tailored for
PHM, alongside baseline supervised and self-supervised de-
tectors, evaluated under a flight-grouped protocol that strictly
separates flights between training and testing to ensure fair
and realistic benchmarking.

3. OUR PLATFORM

We developed a custom quadrotor platform to support com-
prehensive PHM studies. The system logs system-level
telemetry (RC inputs, raw IMU, barometer, magnetometer),
battery/power metrics (voltage, current, power state), mo-
tor/ESC status, CPU load and system usage, and state esti-
mates (attitude, position, velocity), as well as structural and
thermal health signals directly relevant to fault diagnosis.

3.1. Vibration Sensors

To capture true airframe dynamics, one sensor board is rigidly
mounted to the frame (no soft-mount). This configuration
records three-axis vibrations that reflect structural loads and
resonance, enabling early detection of rotor imbalance or
frame damage.

3.2. Temperature Sensors

We instrument the propulsion system with both contact and
infrared sensing. Four DS18B20 contact sensors are at-
tached to the ESCs (plus a central ambient reference), and
five MLX90614 infrared sensors monitor motor surface tem-
peratures (four motors + one central reference), supporting
timely detection of thermal overloads that could compromise
reliability and safety.

4. DATA COLLECTION

We fuse three sources of flight data: (i) PX4 flight-controller
logs, (ii) an auxiliary controller that records structural-health
signals (vibration and temperature), and (iii) an external
motion-capture (MoCap) system providing high-precision 6-
DoF ground truth for indoor flights.

PX4 stream. Beyond control inputs and raw sensors, PX4
supplies battery/power telemetry (voltage, current, power
state), propulsion metrics (motor/ESC rotational speed, volt-
age, temperatures), CPU load/system usage, processed state
estimates (attitude, position, velocity), and flight-mode and
system-status transitions (manual, autonomous, failsafe).
These fields enable post-flight analyses that link pilot intent
and vehicle response to health and performance outcomes.

Auxiliary stream. The frame-mounted board contributes
three-axis vibration and detailed thermal measurements of
ESCs and motors, capturing structural loads and propulsion
heating directly at the source.

MoCap stream. Motion-capture trajectories provide a high-
fidelity reference for dynamic analysis and validation of on-
board estimates.

Synchronization. Each logger runs on an independent clock,
so constant offsets and slow drifts can occur. We apply a
lightweight, data-driven alignment: for each modality pair we
identify the time shift that minimizes the sum of squared dif-
ferences—equivalently, maximizes correlation—over over-
lapping signals, after resampling to uniform grids and filling
short gaps via interpolation. This method adjusts only the ini-
tial offset, rather than performing step-wise re-alignment as in
DTW. Although this raises the issue of potential slow drifts,
such effects are negligible in our ten-minute experiments;
in longer settings they could be mitigated by periodic re-
synchronization, resampling to a reference clock, or adaptive
correction. The resulting common time base enables cross-
modal analyses—relating RC commands to responses, link-
ing vibration/temperature to propulsion loading, and bench-
marking state estimates against MoCap—while maintaining
the timing accuracy necessary for PHM.
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Figure 2. 3D motion-capture trajectories for six flights covering the same indoor workspace. Top row (a—c): Normal runs.
Bottom row (d—f): Anomalous runs — (d) Imbalance, (e) Severe Imbalance, (f) Cracked propeller. Curves are colored by
time progression; the blue circle marks the start and the red square marks the end. Axes are in meters (altitude up to ~1.2m).
The comparable spatial envelopes across conditions indicate that faults were induced under similar flight volumes and pilot
behaviors, allowing subsequent analysis to attribute differences to health state rather than trajectory coverage.

5. DATA CLEANING PROCESS

To ensure reliable downstream analysis on our multi-modal
logs, we apply a concise, uniform preprocessing pipeline.
Each stream is first placed on a common time base via data-
driven alignment (time—shift search that maximizes cross-
correlation on overlapping signals). After alignment, we
subsample by a fixed factor of 1/100, yielding a common
rate of ~200Hz across modalities, which preserves flight
dynamics while reducing volume. Short gaps introduced
by asynchronous logging are then imputed with forward-fill
and backward-fill (f£i11/bfil1); we keep longer gaps as
missing to avoid artifactual data.

Figure 2 visualizes representative 3D trajectories for six
datasets (top: normal; bottom: abnormal), all flown by a pi-
lot with randomized maneuvers. Table 1 summarizes the six
datasets used in this study and the condition labels employed

in our experiments.

Table 1. Overview of the six datasets, condition labels, num-
ber of flights, and duration of each flight .

Label used in paper Number of flights Duration of each flight
Normal (1) 3 About T minute
Normal (2) 3 About 1 minute
Normal (3) 3 About 1 minute
Imbalance (propeller) 3 About 1 minute
Severe-Imbalance 3 About 1 minute
(propeller)

2 About 1 minute

Crack (propeller)

6. EXPLORATORY EXPERIMENTS
6.1. Representative signals (overview)

Figure 3 overlays a small set of indicative channels across the
flight. The vibration axis (e.g., sensor_accel_fifo_z)
shows a strong amplitude increase during powered flight,
tracking esc_rpm and battery current. RC input steps
appear as discrete changes in input_rc._values([2],
which induce attitude and lateral acceleration responses
(attitude[2], vehicle_local position_O_ay).
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Figure 3. A few representative synchronized channels from
one flight (subsampled to 200 Hz).

Near takeoff/landing the current and RPM ramp up/down and
the vibration envelope follows accordingly. This view ties
pilot commands to propulsion load and structural response,
and motivates vibration/temperature features for PHM.

6.2. Hierarchical Clustering

Motivation. Group channels with similar temporal behavior
so we can (i) spot redundant/degenerate signals and (ii) pick
a small set of representatives for analysis and modeling.

Method. We normalize each channel to have zero mean and
unit variance, and then perform agglomerative hierarchical
clustering on the full time profiles using Euclidean distance
and Ward linkage. This procedure is mathematically equiva-
lent to correlation distance up to a constant scaling, meaning
that negatively correlated signals (e.g., correlation = —1) are
treated as maximally distant and only positively correlated
profiles cluster together. Pilot-command channels (e.g., RC
inputs, arming/mode flags) are excluded to avoid clustering
driven by externally commanded steps rather than intrinsic
sensor/propulsion dynamics. The dendrogram is cut into six
clusters; each panel plots the normalized traces of all chan-
nels in that cluster.

Result (Fig. 4). Cluster 1 (2 signals) shows slowly varying
trend-like channels; Cluster 2 (11) contains stepwise/high-
variance traces with intermittent spikes (typical of actua-
tor or mode transitions); Cluster 3 (182) aggregates many
low-amplitude, quasi-stationary sensors with occasional steps
(high redundancy); Cluster 4 (1) is a high-energy vibration
channel with a clear flight envelope; Cluster 5 (1) is near-
constant (likely a degenerate/flag channel); Cluster 6 (1) is a
binary/latched signal (e.g., arming or mode flag). The separa-
tion highlights functional groups (vibration, flags, actuators)
and exposes redundant or uninformative channels, enabling
dimensionality reduction by selecting one representative per
cluster.

6.3. Principal Component Analysis

Motivation. We use PCA to reveal dominant modes and tem-
poral structure in the synchronized, multi-modal signals, and
to gauge redundancy across channels before building detec-
tors.

Method. After time alignment and 1/100 subsampling
(=200 Hz), each channel is normalized to zero mean and unit
variance (z-scored) and then stacked into a time x feature ma-
trix. PCA 1is fit separately to each dataset; we report the vari-
ance spectrum and visualize the time trajectory in the first
components (color = normalized time).

Findings (Fig. 5-8). Figures 5 and 6 are shown for normal
(nominal) flight data, whereas the projection plots (Fig. 7-8)
cover both normal and anomalous cases. (i) Variance spec-
trum: PC1 explains ~ 26% of the variance, PC2 ~ 7%,
and PC3 a few percent; the cumulative curve shows an el-
bow around 5-7 components and reaches ~ 0.75 by 25 PCs
(Fig. 5). This indicates strong low-dimensional structure with
moderate residual complexity. (ii) Time—domain PCs: The
panels show the first ten scores (PC1-PC10) versus time af-
ter projecting the z-scored multivariate signal onto the PCA
basis (Fig. 6). Consistent with the variance spectrum (PC1
~26%, PC2 ~7%), PC1 captures the slow flight envelope:
a rise at takeoff, a broad plateau during powered flight, and
a decay on landing (a surrogate for overall thrust/propulsion
load). PC2-PC3 capture related but distinct transients around
maneuver phases: PC2 emphasizes the broader accelera-
tion—deceleration trend, while PC3 highlights sharper, local-
ized excursions that resemble attitude bias effects. PC4 iso-
lates a short, high-amplitude burst (step-like actuator/mode
transition). Higher components PC5-PC10 contain higher-
frequency, quasi-stationary content with intermittent spikes,
consistent with vibration/attitude oscillations modulated by
control inputs. (iii) 2D projections: The PC1-PC2 plots
form smooth arcs/loops colored by time (Fig. 7), consistent
with flight phases (takeoff, maneuvering, landing). Different
flights exhibit similar shapes, suggesting a shared manifold
of nominal dynamics. (iv) 3D projections: Including PC3
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Figure 4. Agglomerative hierarchical clustering of z-scored channels (Euclidean distance, Ward linkage). Each panel shows
all signals in a cluster; the title lists the cluster size. Cluster 1: slowly varying trend-like signals; Cluster 2: stepwise/high-
variance traces with intermittent spikes; Cluster 3: many low-amplitude, quasi-stationary sensors (high redundancy); Cluster 4:
high-energy vibration with a clear flight envelope; Cluster 5: near-constant zero in this dataset—kept intentionally since the
same channel is non-constant in other datasets; Cluster 6: binary/latched flag. This grouping informs feature pruning and

representative-channel selection.
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Figure 5. Explained variance (bars) for the first 25 PCs and
cumulative variance (red). PC1 ~25-26%; elbow near 5-7
PCs.

separates segments more clearly and highlights bursts/phase
changes (Fig. 8). These observations motivate compact fea-
tures (e.g., first k PCs, energy ratios) and time-localized anal-
ysis for downstream PHM models.

7. ANOMALY DETECTION
7.1. Supervised Fault Identification - Random Forest

Motivation. We adopt a Random Forest (RF) as a strong,
low-bias baseline for multiclass anomaly detection. RFs han-
dle high-dimensional, heterogeneous sensor channels with-
out feature scaling, capture nonlinear interactions, offer cal-
ibrated class probabilities, and are robust when anomaly ex-
amples are relatively scarce.

Method. Raw multivariate signals are segmented into
sliding windows of 3s with a 1s stride. Each window
is flattened into a fixed-length feature vector (no normal-
ization) and labeled with one of four classes: Normal,
Imbalance, Severe-Imbalance, Crack. We train a mul-
ticlass RF with n_estimators=100, max_depth=8,
min_samples_leaf=10, max_features=sqrt,
class._.weight=balanced, bootstrap=True. The
depth/leaf constraints regularize the trees and speed up train-
ing; class_weight=balanced compensates for class
imbalance; max_features=sqrt is the standard choice
for decorrelated trees. At inference, the model outputs per-
window class probabilities; we aggregate to flight-level via
majority vote when needed.

Evaluation protocol. Because the dataset currently con-
tains few Crack flights, we use a 10x Repeated Stratified
Group Holdout: in each run we select ~30% of flights per
class as the test set (ensuring all four classes are present),
train on the remaining flights, and report window-level met-
rics. Grouping by flight prevents train/test leakage from over-
lapping windows of the same flight.

Results. Over 10 runs, Accuracy = 0.986+0.014, Macro-
F1 = 0.986 £ 0.015, Weighted-F1 = 0.986 + 0.014,
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Figure 6. First ten principal-component scores versus time
for one flight (after alignment and z-scaling). PC1 captures
the slow flight envelope (takeoff—cruise—landing), PC2-PC3
emphasize related but distinct maneuver-related transients
(one broader trend and one sharper excursion), PC4 isolates
a brief step-like event, and PCs 5-10 mainly reflect higher-
frequency/vibration content. (Note: PCA signs are arbitrary.)

Residual errors are dominated by occasional Imbalance win-
dows predicted as Normal; importantly, Crack windows are
not confused with other classes in this dataset.

Implications and limitations. These results indicate
that the RF readily separates severe faults (Crack)
from other conditions and largely distinguishes Severe-
Imbalance/lmbalance from Normal. The remaining con-
fusion between mild imbalance and normal behavior sug-
gests adding more diverse imbalance examples and/or
complementary features (e.g., band-power of vibration,

Table 2. Pooled 4x4 confusion matrix (rows: true; columns:
predicted).

Pred:
Pred: Pred: Severe Pred:

Normal Imbalance Imbalance  Crack
True: Normal 2994 2 1 0
True: Imbalance 71 913 0 0
True: Severe Imbalance 8 0 1014 0
True: Crack 0 0 0 897
Table 3. Confusion matrix with standard notation
(TN/FP/EN/TP).

Pred: Normal

TN =2149
FN =672

Pred: Anomaly

FP =839
TP = 2278

True: Normal
True: Anomaly

commanded-measured residuals) could further reduce false
negatives.

7.2. One-Class Anomaly Detection — PCA Reconstruc-
tion Error

Motivation. To detect previously unseen faults without la-
bels, we model normal behavior only: if a window cannot
be well reconstructed from a low-dimensional subspace, it
is flagged as anomalous. We use PCA on 3s windows (1s
stride), fit on train-normal windows, and classify by recon-
struction MSE with a threshold set from the train-normal dis-
tribution (99.5th percentile). In this section we use 64 princi-
pal components.

Results. Under the same 10x Repeated Stratified Group
Holdout (flight-level grouping; all four classes present in each
test), the PCA detector achieves Accuracy = 0.745 + 0.034,
Macro-F1 = 0.744 4+ 0.033, Weighted-F1 = 0.744 +
0.034, The pooled 2x2 confusion matrix (rows true: Nor-
mal/Anomaly; columns predicted: Normal/Anomaly) is

Limitations. PCA is linear and uses a single global thresh-
old on flattened windows; subtle, localized, or phase-shifted
faults can be under-detected, while benign transients inflate
false positives. As expected given the absence of label super-
vision, this unsupervised approach yields lower accuracy than
the supervised Random Forest classifier discussed earlier. In
future work, we will explore richer self-supervised models
(e.g., autoencoders/forecasting transformers, frequency-band
features, and per-flight calibration) to reduce FPR while im-
proving recall on subtle anomalies.

8. DATASET SHARING

We provide access to the complete suite of raw and synchro-
nized datasets. The raw dataset includes logs from the main
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Figure 7. PC1-PC2 projections for six flights; points are colored by normalized time progression (blue—red). Top row
(a—c): Normal flights trace smooth loops/arcs that align with flight phases (takeoff-maneuvering—landing). Bottom row (d—f):
Anomalous flights—(d) Imbalance, (e) Severe Imbalance, (f) Cracked propeller—show broader spreads, sharper turns, and
off-manifold excursions, indicating higher variability in the dominant modes. Axis annotations report the variance explained

by PC1/PC2 in each case (PC1 ~22-25%, PC2 ~6-12%).

flight controller, auxiliary controller (vibration and temper-
ature data), and the motion capture system, along with as-
sociated flight videos. The synchronized datasets contain
timestamp-aligned logs that concatenate all processed logs
into a single unified file. This dataset aggregates all relevant
sensor measurements, including vibration, temperature, mo-
tion capture position, motor RPM, and battery health metrics.
To improve usability and reduce dimensionality, we apply
feature selection based on domain knowledge of UAV health
monitoring. Redundant or low-variance variables are elimi-
nated using code-based preprocessing pipelines, ensuring the
dataset remains focused and computationally efficient.

This synchronized dataset serves as a recommended starting
point for researchers interested in developing and evaluating
prognostics and health management (PHM) algorithms with-
out the overhead of extensive data preparation. By providing
a clean, time-aligned, and feature-selected dataset, we enable
researchers to focus on algorithm design and analysis. We
also provide accompanying code snippets and documentation
to facilitate dataset exploration, visualization, and baseline
modeling.

The dataset is publicly available at: https://github
.com/ailab-utokyo/ut-drone-dataset

9. CONCLUSION

This work presents a modular indoor UAV platform for PHM
with rigid-mount vibration and dual-mode temperature sens-
ing alongside standard telemetry. After cleaning and syn-
chronization, we obtain time-aligned datasets suitable for
anomaly detection and fault identification. Exploratory anal-
yses and two reference models (supervised Random Forest;
one-class PCA) illustrate utility. We release the dataset, syn-
chronized videos, and code to accelerate research and collab-
oration.

Limitations & future work. The current release is indoor
and single-platform with a small, imbalanced fault set (e.g.,
only two crack flights); induced faults do not capture grad-
ual degradation. Next, we will (i) expand flight hours and
fault coverage—including run-to-failure sequences—and (ii)
validate on additional airframes and indoor/outdoor environ-
ments to assess generalization.


https://github.com/ailab-utokyo/ut-drone-dataset
https://github.com/ailab-utokyo/ut-drone-dataset
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Figure 8. PC1-PC2-PC3 trajectories for six flights; points are colored by normalized time progression (blue—red). Top row
(a—c): Normal flights trace smooth, low-curvature loops with limited depth along PC3, consistent with a stable flight envelope.
Bottom row (d-f): Anomalous flights—(d) Imbalance, (e) Severe Imbalance, (f) Cracked propeller—exhibit thicker, more
fragmented paths and larger spread in the PC3 dimension, indicating additional variability and mode excitation. Axis labels
report the per-flight variance explained by PC1/PC2 (typically ~22-25% and ~6-12%); the added PC3 dimension reveals
separations that are less visible in 2D, especially for the faulted cases.
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