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ABSTRACT

The operational reliability of heavy haul railways, such as the
Carajas Railway (EFC), depends on early detection of
failures in critical components like bearings. This study
proposes a predictive prioritization approach based on
acoustic similarity analysis of NOISY(RS1) alarms from the
RailBAM® wayside monitoring system. Traditionally
discarded due to suspected interference, these alarms have
shown statistical overlap with confirmed failures. By
applying multivariate similarity analysis using Mahalanobis
distance and acoustic parameters—ERS DB, ERS Neighbors
DB, and AERS DB—the methodology identifies patterns
indicative of real defects. A new rule was developed to
reclassify NOISY(RS1) alarms based on statistical thresholds
and repetition criteria, enhancing failure detection accuracy.
Experimental validation revealed previously unprioritized
bearings with physical damage, demonstrating the rule’s
potential to complement existing predictive matrices. The
approach improves maintenance planning, reduces
undetected failures, and supports the integration of data-
driven strategies in Prognostics and Health Management
(PHM) for railway assets.

1. INTRODUCTION

The operational reliability of railway systems heavily
depends on the ability to detect failures in critical
components, such as bearings, at an early stage. This
challenge is even more pronounced in heavy haul railways,
like the Carajas Railway (EFC), which operates long-haul,
high-tonnage trains and demands elevated levels of
performance, safety, and asset availability.

In this context, sensor-based predictive maintenance has
become an essential strategy. EFC is equipped with a robust
infrastructure of wayside systems—non-intrusive monitoring
equipment installed along the track that continuously assess
critical parameters of wheels, bearings, brakes, and other
components. Among these systems, RailBAM stands out for

its acoustic detection capabilities, identifying bearing
anomalies through the analysis of sound signatures generated
during wagon passage.

The management and analysis of data from these systems are
centralized at the Asset Monitoring Center (CMA), a unit
responsible for consolidating information, applying
prioritization  models, and  issuing  maintenance
recommendations based on technical, statistical, and
regulatory criteria. The adopted guidelines follow the
principles of ISO 17359, which establishes a systematic
approach for condition monitoring and machine diagnostics,
focusing on the identification of potential failures and the
definition of corrective actions (ISO, 2018).

Additionally, EFC’s maintenance strategy is aligned with the
concepts of Prognostics and Health Management (PHM),
which integrate continuous monitoring, diagnostics, and
prognostics to estimate the Remaining Useful Life (RUL) of
components. This approach enables failure anticipation based
on degradation trends, optimizing resource allocation and
reducing operational risks. According to Hu, Liu, and Zhang
(2021), PHM combines operational data and analytical
models to predict the future state of assets and support risk-
based maintenance decisions. Kumar et al. (2024) highlights
that RUL estimation in rotating machinery can be achieved
through physical, data-driven, or hybrid models, with
promising applications in industrial and railway systems.

In 2024, 18 bearing failure events were recorded, all in
wagons equipped with 6 %2 x12 bearings. By June 2025, 12
additional events were identified—91.7% in wagons with 6
¥, x12 bearings and 8.3% in wagons with 7x12 bearings—
indicating an upward annual trend.

During the same period, CMA issued 1,096 maintenance
recommendations, of which 10.1% (111) were classified as
emergency cases. Among these, 89.2% were due to grease
leakage, 9.0% to early-stage Hot Box Warning, and 1.8% to
acoustic anomalies. Notably, 91.5% of emergency cases were
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associated with wagons using 6 "2 x12 bearings, reinforcing
the concentration of failures in this equipment type.

Internal analyses revealed that some of these failures were
not predicted by the current prioritization matrix, which relies
solely on available alarms. NOISY(RS1) alarms and their
variants, often dismissed due to suspected interference, have
shown notable correlation with unexpected bearing failures.

This study proposes a new prioritization approach based on
statistical analysis of acoustic similarity, focusing on
NOISY(RS1) alarms and their variants. The methodology
aims to complement the existing matrix by improving the
predictive detection of real bearing failures, even when
masked by noise or ambiguous classifications. The proposal
is grounded in acoustic parameters extracted from the
RailBAM system, such as ERS DB, ERS Neighbors DB, and
AERS DB, and seeks to establish objective criteria for alarm
reclassification based on statistical patterns observed in
confirmed failures.

To achieve this, the study employs multivariate similarity
analysis using Mahalanobis distance as the classification
metric. This approach accounts for correlations between
acoustic variables and enables the identification of bearing
clusters with behavior similar to real failures, even when
individual values are not extreme. According to Ribeiro
Junior et al. (2023), combining Mahalanobis distance with
Gaussian mixture models allows for highly accurate fault
pattern identification in dynamic components, proving
especially effective in early detection of defects in bearings
and rotating systems.

2. TECHNICAL FOUNDATIONS OF THE RAILBAM SYSTEM
AND ACOUSTIC BEARING ANALYSIS

RailBAM is a wayside acoustic monitoring system for
railway bearings that classifies each bearing and wheel
passage using a standardized structure composed of prefixes,
types, severity levels, and descriptors, as described by Uygun
& Terzi (2023) and Tarawneh et al. (2021):

e Prefixes (indicate noise/interference): NOISY, FBS,
Shrk, Clpd;

o Types: RS (Running Surface), LF (Looseness/Fretting),
WHLFLT (Wheel Flat);

e Severity Levels: 1 (severe), 2 (moderate), 3 (minor), 4 (no
fault);

e Descriptors (suffixes): p (cup), n (cone), r (rollers),
_m (multiple), e (extended).

Bearing surfaces include the cup, cone, and rollers. Acoustic
signatures may result from defects such as spalling,
brinelling, water corrosion, electrical corrosion, and chemical
corrosion. The specific nature of a defect can be inferred from
the roller pass frequency, which varies according to the
component's geometry. When a fault is clearly identifiable, a

descriptor is added to the severity classification (e.g., RS1 p
indicates a severe fault on the cup surface).

Approximate rollers pass frequencies and corresponding
descriptors for different types of running surface (RS) defects
are presented in Table 1.

Fault ipti
Description Frequency (Hz) Description
Cone 125- 14 =
Cup 10-11,5 L
Rollers 3.5-4.8 :
] Any combination
Multiples of the above -
Any of the above
with additional
Extended indication of -
extended fault

Table 1. Roller pass frequency for different clear faults.

In the current workflow, maintenance requests are guided by
criteria defined in the predictive severity matrix (Table 2).
This matrix establishes intervention priorities (C0, C1, and
C2) based on fault type, severity level, and repetition
(consistency), considering a rolling 30-day evaluation
window.

Alarms C0 Cl| C2 Obs.:
>1 & Exp. Mov .
Clear level 1 Average >1 Retp elt ttions
Consistency>0,7 ot alarms
Clear level 2 51 | = | Repetitions
of alarms
Clear level 3 >1 =1 Repetitions
of alarms
>’.’.” e ) ) Repetitions
consistency of alarms
Potencial 1
& Count in the
0,1<exp. >6 >5 last 12
Moving passes
consistency<0,4
>4 alarms in
the last 12
FBS(RS1 >40% | passes (6 2
x12
bearings)

Table 2. Predictive Severity Matrix for RailBAM Alarms.

Consistency is a feature available in the supervisory system
designed to identify persistent noise patterns in the acoustic
signals of railway bearings over time. The tool analyzes the
historical acoustic measurements to determine whether the
recorded spectra remain similar across different time points,
even under varying load and speed conditions.

Clear alarms of levels 1, 2, or 3 with descriptors, even when
accompanied by a prefix, are treated as standard clear alarms
without prefix, following the classification and actions
defined in the current predictive severity matrix.
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The presence of a descriptor indicates that the RailBAM
algorithm successfully identified the physical nature of the
anomaly in the bearing component. While prefixes suggest
noise or interference, they do not eliminate the possibility of
a real fault. Treating these alarms equivalently helps prevent
the underestimation of events with genuine potential to
evolve into severe failures.

3. METHODOLOGY

The methodology consists of a descriptive statistical analysis
and a similarity-based comparison between two groups:

e Group A: Bearings with Clear Level 1 alarms, due to their
high accuracy in identifying actual faults.

e Group B: Bearings with NOISY(RS1) alarms and their
variants (_p, n, r, e, m).

The following acoustic parameters extracted from the
RailBAM system were analyzed:

e ERS DB: A characteristic value in decibels (dB) derived
from the processed acoustic signal, normalized by speed,
which may indicate an advanced or extended defect on the
bearing surface;

e ERS Neighbors DB: Acoustic energy of neighboring
bearings.

e AERS DB: The difference between the ERS value of the
bearing and that of its neighbors.

The use of AERS DB helps minimize the influence of
systemic noise or extreme operational conditions by focusing
on localized deviations. ERS DB is more sensitive to
advanced surface defects than RMS values. An increase in
ERS DB, regardless of neighboring ERS values, is more
likely to result from an actual bearing defect rather than
external factors. Elevated ERS DB values, combined with
repeated NOISY(RS1) alarms and their variants, suggest the
presence of advanced or extended defects on the bearing
surface.

The analysis was conducted using rolling 30-day windows to
identify statistical behavior similarities between the two
groups. The methodology aimed to detect statistical
intersections between bearings flagged with NOISY(RS1)
alarms and those with confirmed faults (Clear Level 1), to
establish a new prioritization rule based on acoustic
similarity.

4. RESULTS

Based on the statistical analysis of data extracted from the
RailBAM system, it was observed that bearings with
confirmed Clear Level 1 failures share common value ranges
across the three analyzed acoustic parameters. These
intervals served as the foundation for formulating the new
prioritization rule.

4.1. SIMILARITY ANALYSIS BETWEEN ACOUSTIC ALARMS

Figures 1, 2, and 3 below illustrate the overlap in statistical
values between bearings flagged with NOISY(RS1) alarms
and those with Clear Level 1 alarms, highlighting the
intersection region that motivated the development of the
new rule. The report considered a sample window covering
data from May 27 to June 9, 2025, which corresponds to the
period when the acoustic parameters used in this study
became available in the supervisory system. The analysis
focused exclusively on data from 6 "2 x12 bearings. Table 1
presents the descriptive statistics for bearings that exhibited
Clear, NOISY(RS1), and variant alarms, as well as those with
other attribute types.

Variable | N u 6 |Min|Ql
Noisy
ErsDB
Noisy
Ers

Nghbrs
DB

Noisy
Delta Ers | 1068
DB

Clear

ErsDB
Clear Ers
Nghbrs 225
DB
Clear
Delta Ers | 225 | 3,97 |2,66 | -1 2 4 6 15
DB

Med | Q3 | Max

1068 | 74,79 | 5,77 | 63 |70 | 75 [ 79| 95

1068 | 72,97 | 6,54 | 61 |66 | 74 | 78| 92

1,817 12,48 | -6 | O 1 3 14

225 | 66,65 | 3,51 | 58 | 64| 67 |69 | 76

62,69 | 2,34 | 57,7 61 63 | 64| 72

Table 3. Descriptive Statistics.

Figure 1 shows the distribution of ERS DB for bearings that
triggered Clear and NOISY(RS1) alarms
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Figure 1. Distribution ERS DB.
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Figure 2 shows the distribution of ERS Neighbors DB for
bearings that triggered Clear and NOISY(RS1) alarms.
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Figure 2. Distribution ERS Neighbors DB.

Figure 3 shows the distribution of AERS DB for bearings that
triggered Clear and NOISY(RS1) alarms.
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Figure 3. Distribution AERS DB.

Centroid Discriminant Analysis is a statistical method used
to classify observations into known groups based on predictor
variables, assuming that each group can be represented by its
centroid (the mean vector of the variables). The analysis is
based on the premise that each class—in this case,
NOISY(RS1) and Clear—has a mean vector for the variables
of interest. Each new observation is then assigned to the
group whose centroid is closest, typically using either
Euclidean distance or Mahalanobis distance.

The Mahalanobis distance between an observation vector x
and the group mean L is given by:

Dy (%) = /(x = TS (x — ) (1)

where:

e x is the vector of acoustic variables (ERS DB, ERS
Neighbors DB);

e n is the mean vector of the reference group (Clear Level
1);
e S7!isthe inverse covariance matrix of the variables.

In the analysis conducted using MINITAB 2022, ERS DB
and ERS Neighbors were used as predictor variables. Since
AERS is a linear combination of these two variables, it does
not add a new informational dimension to the Mahalanobis
analysis. Therefore, it was applied only as an additional filter
after the main analysis was completed. The quadratic method
was also used for class response, which does not assume
equal covariances, and cross-validation was performed. The
scatter plot with 95% confidence ellipses for each group is
shown in Figure 4.
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Figure 4. Scatter plot with 95% confidence ellipses.

Each point represents an observation based on the variables
ERS DB and ERS Neighbors. The ellipses indicate the region
where 95% of the observations for each group are expected
to fall, assuming a normal distribution. This visualization
helps to distinguish the separation between groups and the
internal dispersion within each class.

The analysis identified 288 indications that were initially
classified as NOISY(RS1) but were reallocated to the Clear
group. Additionally, three indications originally classified as
Clear were reassigned to the NOISY(RS1) group. As a result,
98.7% of the Clear group indications and 73% of the
NOISY(RS1) indications remained in their original groups,
as shown in Table 4.
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Table 4. Summary of Classifications with Cross-Validation

Prediction | True Class: Clear True Class:
NOISY(RS1)
Clear 222 288
NOISY(RS1) 3 780
Total N 225 1068
Correct N 222 780
Proportion 0,987 0,730

The centroid of each group is, the mean of each variable
within the respective group—is presented in Table 5.

Table 5. Group Centroids.

Class Centroid ERS Centroid ERS
DB Neighbors DB
Clear 66.66 62.69
NOISY(RS1) 74.79 72.97

A statistical analysis was performed on the 288 NOISY(RS1)
indications that exhibited Clear-like characteristics in the
ERS DB, ERS Neighbors DB, and AERS parameters, as
shown in Table 6.

Variable | N n 6 | Min|Ql
Noisy
ErsDB
Noisy
Ers

Nghbrs
DB

Noisy
Delta Ers | 288 | 3,54 | 290 | 0 1 3 5 14
DB

Med | Q3 | Max

288 | 68,17 |331| 63 |66 | 67 |70 | 80

288 | 64,63 | 1,19 | 61 | 4 65 | 65| 68

Table 6. Descriptive Statistics of 288 NOISY(RS1)
indications that exhibited Clear-like characteristics.

Due to the complexity of operational deployment, univariate
thresholds were selected as the metric for limit definition,
rather than adopting a multivariate criterion based on
similarity ellipses.

Based on data analysis using descriptive statistics and
individual value plots, it was possible to define acoustic
ranges observed in bearings associated with Clear Level 1
alarms. The newly established rule considers bearings with
NOISY(RS1) alarms (and its variants) as potentially faulty
when they simultaneously meet the following criteria within
a 30-day observation window:

e ERS DB between 63 and 76 dB;

e ERS Neighbors DB between 61 and 68 dB;
e AERS DB between 0 and 11 dB;

e Repetition: >3 occurrences of NOISY(RS1) alarms or
variants.

The requirement of >3 repetitions within 30 days for
NOISY(RS1) alarms is a key criterion because it:

e Reduces false positives (isolated noise events);
e Reinforces evidence of persistent real faults;
o Increases the reliability of fault signaling.

Criticality levels were defined based on the number of
observed repetitions, according to the following criteria:

e Criticality 1 (Cl): 4 or more occurrences, with a
maintenance deadline of 30 days;

e C(riticality 2 (C2): exactly 3 occurrences, with a
maintenance deadline of 60 days.

Initially, Criticality 0 will not be considered in the application
of this rule; therefore, the process will initially be guided by
weekly demand planning

Experimental application of the rule led to the identification
of two bearings that, although not prioritized by the current
predictive matrix, exhibited real faults during physical
inspections. Although repairable, these failures demonstrate
the potential of the new approach to detect risk conditions
that might otherwise be overlooked.

The first inspected bearing was from Wagon 1, axle 1, right
side. As shown in Figure 6, the workshop inspection
revealed:

e Presence of noise;
e Adapter marks with uneven seating;
e Resistance to rotation;

e Two bolts with excessive torque compared to the
reference of 570 N-m £4% (710 N-m and 705 N-m);

e Rollers with signs of overheating;

e Cup with contact marks from rollers.

8 \
Figure 6. Wagon 1, bearing 1, right side, with
nonconformity marks on rollers and cup.
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The second inspected bearing was from Wagon 2, axle 3,
right side. As shown in Figure 7, the workshop inspection
revealed the following issues:

e Presence of noise;
o Signs of grease leakage;
e Resistance to rotation;

e Two bolts with torque values outside the reference of 570
N-m £4% (400 N-m, 560 N-m, and 700 N-m);

e Rollers with signs of overheating;

e Seal ring with groove;

e Backing ring with impact marks and excessive punching.

Figure 7. Wagon 2, bearing 3, right side, with
nonconformity marks on rollers and signs of grease leakage.

By analyzing the ERS DB and AERS DB values, a noticeable
drop is observed after the wheelset replacement, as expected.
This behavior is illustrated in Figure 8 and 9 for bearing 1.
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Figure 9. Reduction in AERS DB values for bearing 1.

For the data from bearing 3, wagon 2, right side, a similar
drop in ERS DB and AERS DB values was observed after the
wheelset replacement, as shown in Figure 10 and 11.
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Figure 10. Reduction in ERS DB values for bearing 3,
Wagon 2, right side, after replacement of the wheelset with
a damaged bearing.
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Figure 11. Reduction in AERS DB values for bearing 3.

This experimental correlation validated the potential of the
new business rule to identify real bearing failures that were
either hidden or not captured by the current prioritization
model.

On August 12, 2025, a survey was conducted using the
proposed rule within the supervisory system. As a result, 19
bearings were identified that had not previously been mapped
for maintenance and were subsequently included through
predictive indication. For the initial samples (12 bearings),
the accuracy exceeded 80%, with 10 confirmed faulty
bearings.

The study indicated that 27% of the bearings identified by the
new criterion exhibit acoustic characteristics corresponding
to clear level 1 alarms yet show potential to avoid being
scrapped. Based on a projection using 2025 data, this could
represent significant cost avoidance.

5. DISCUSSION

The implementation of the proposed rule represents a
significant advancement in predictive prioritization accuracy,
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enabling earlier identification of bearings with real faults
before they progress to more critical stages. This approach
not only complements the existing prioritization matrix but
also expands its coverage by incorporating cases that might
otherwise go unnoticed. By substantially reducing the
occurrence of undetected failures, especially those masked by
wheel anomalies or ambiguous classifications, the
methodology directly contributes to improved operational
reliability.

Moreover, the proposed rule is grounded in a solid scientific
foundation, supported by statistical principles that enhance its
robustness within the context of predictive railway
maintenance. It effectively addresses key gaps in the current
matrix, particularly in situations where bearings with critical
acoustic behavior are not flagged for investigation due to
their classification as NOISY. By employing a statistically
driven approach, the rule reduces subjectivity in analysis and
strengthens the system’s ability to detect real faults early,
even when obscured by noise or interference.

The methodology also presents potential for further
development through the integration of supervised machine
learning models, where physically confirmed failures can
serve as labels and acoustic parameters extracted over time
windows as predictors. To ensure the rule’s continued
effectiveness, it is essential that it be periodically re-
evaluated in light of new samples and emerging patterns.
Additionally, seamless integration with existing systems and
rules must be maintained to avoid operational conflicts.
Finally, it is important to recognize that the rule’s
applicability may vary depending on wagon type, axle
configuration, or operational conditions, requiring caution in
its generalization.

6. CONCLUSION

This analysis demonstrated that NOISY(RS1) alarms and
their variants, when evaluated based on multiple occurrences
and specific statistical ranges, show potential for indicating
early-stage real failures.

The new prioritization rule, based on descriptive statistics,
represents a methodological and technical advancement,
enabling a more precise, agile, and data-driven approach to
support predictive maintenance of railway bearings.

The results obtained indicate the feasibility of incorporating
this rule as a complementary prioritization tool, enhancing
operational safety and the efficiency of predictive
maintenance. Further testing and expansion of the data set are
recommended to strengthen the robustness of the approach.
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