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ABSTRACT 

The operational reliability of heavy haul railways, such as the 

Carajás Railway (EFC), depends on early detection of 

failures in critical components like bearings. This study 

proposes a predictive prioritization approach based on 

acoustic similarity analysis of NOISY(RS1) alarms from the 

RailBAM® wayside monitoring system. Traditionally 

discarded due to suspected interference, these alarms have 

shown statistical overlap with confirmed failures. By 

applying multivariate similarity analysis using Mahalanobis 

distance and acoustic parameters—ERS DB, ERS Neighbors 

DB, and ΔERS DB—the methodology identifies patterns 

indicative of real defects. A new rule was developed to 

reclassify NOISY(RS1) alarms based on statistical thresholds 

and repetition criteria, enhancing failure detection accuracy. 

Experimental validation revealed previously unprioritized 

bearings with physical damage, demonstrating the rule’s 

potential to complement existing predictive matrices. The 

approach improves maintenance planning, reduces 

undetected failures, and supports the integration of data-

driven strategies in Prognostics and Health Management 

(PHM) for railway assets. 

1. INTRODUCTION  

The operational reliability of railway systems heavily 

depends on the ability to detect failures in critical 

components, such as bearings, at an early stage. This 

challenge is even more pronounced in heavy haul railways, 

like the Carajás Railway (EFC), which operates long-haul, 

high-tonnage trains and demands elevated levels of 

performance, safety, and asset availability. 

In this context, sensor-based predictive maintenance has 

become an essential strategy. EFC is equipped with a robust 

infrastructure of wayside systems—non-intrusive monitoring 

equipment installed along the track that continuously assess 

critical parameters of wheels, bearings, brakes, and other 

components. Among these systems, RailBAM stands out for 

its acoustic detection capabilities, identifying bearing 

anomalies through the analysis of sound signatures generated 

during wagon passage. 

The management and analysis of data from these systems are 

centralized at the Asset Monitoring Center (CMA), a unit 

responsible for consolidating information, applying 

prioritization models, and issuing maintenance 

recommendations based on technical, statistical, and 

regulatory criteria. The adopted guidelines follow the 

principles of ISO 17359, which establishes a systematic 

approach for condition monitoring and machine diagnostics, 

focusing on the identification of potential failures and the 

definition of corrective actions (ISO, 2018). 

Additionally, EFC’s maintenance strategy is aligned with the 

concepts of Prognostics and Health Management (PHM), 

which integrate continuous monitoring, diagnostics, and 

prognostics to estimate the Remaining Useful Life (RUL) of 

components. This approach enables failure anticipation based 

on degradation trends, optimizing resource allocation and 

reducing operational risks. According to Hu, Liu, and Zhang 

(2021), PHM combines operational data and analytical 

models to predict the future state of assets and support risk-

based maintenance decisions. Kumar et al. (2024) highlights 

that RUL estimation in rotating machinery can be achieved 

through physical, data-driven, or hybrid models, with 

promising applications in industrial and railway systems. 

In 2024, 18 bearing failure events were recorded, all in 

wagons equipped with 6 ½ x12 bearings. By June 2025, 12 

additional events were identified—91.7% in wagons with 6 

½ x12 bearings and 8.3% in wagons with 7x12 bearings—

indicating an upward annual trend. 

During the same period, CMA issued 1,096 maintenance 

recommendations, of which 10.1% (111) were classified as 

emergency cases. Among these, 89.2% were due to grease 

leakage, 9.0% to early-stage Hot Box Warning, and 1.8% to 

acoustic anomalies. Notably, 91.5% of emergency cases were 
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associated with wagons using 6 ½ x12 bearings, reinforcing 

the concentration of failures in this equipment type. 

Internal analyses revealed that some of these failures were 

not predicted by the current prioritization matrix, which relies 

solely on available alarms. NOISY(RS1) alarms and their 

variants, often dismissed due to suspected interference, have 

shown notable correlation with unexpected bearing failures. 

This study proposes a new prioritization approach based on 

statistical analysis of acoustic similarity, focusing on 

NOISY(RS1) alarms and their variants. The methodology 

aims to complement the existing matrix by improving the 

predictive detection of real bearing failures, even when 

masked by noise or ambiguous classifications. The proposal 

is grounded in acoustic parameters extracted from the 

RailBAM system, such as ERS DB, ERS Neighbors DB, and 

ΔERS DB, and seeks to establish objective criteria for alarm 

reclassification based on statistical patterns observed in 

confirmed failures. 

To achieve this, the study employs multivariate similarity 

analysis using Mahalanobis distance as the classification 

metric. This approach accounts for correlations between 

acoustic variables and enables the identification of bearing 

clusters with behavior similar to real failures, even when 

individual values are not extreme. According to Ribeiro 

Junior et al. (2023), combining Mahalanobis distance with 

Gaussian mixture models allows for highly accurate fault 

pattern identification in dynamic components, proving 

especially effective in early detection of defects in bearings 

and rotating systems. 

2. TECHNICAL FOUNDATIONS OF THE RAILBAM SYSTEM 

AND ACOUSTIC BEARING ANALYSIS 

RailBAM is a wayside acoustic monitoring system for 

railway bearings that classifies each bearing and wheel 

passage using a standardized structure composed of prefixes, 

types, severity levels, and descriptors, as described by Uygun 

& Terzi (2023) and Tarawneh et al. (2021): 

• Prefixes (indicate noise/interference): NOISY, FBS, 

Shrk, Clpd; 

• Types: RS (Running Surface), LF (Looseness/Fretting), 

WHLFLT (Wheel Flat); 

• Severity Levels: 1 (severe), 2 (moderate), 3 (minor), 4 (no 

fault); 

• Descriptors (suffixes): _p (cup), _n (cone), _r (rollers), 

_m (multiple), _e (extended). 

Bearing surfaces include the cup, cone, and rollers. Acoustic 

signatures may result from defects such as spalling, 

brinelling, water corrosion, electrical corrosion, and chemical 

corrosion. The specific nature of a defect can be inferred from 

the roller pass frequency, which varies according to the 

component's geometry. When a fault is clearly identifiable, a 

descriptor is added to the severity classification (e.g., RS1_p 

indicates a severe fault on the cup surface). 

Approximate rollers pass frequencies and corresponding 

descriptors for different types of running surface (RS) defects 

are presented in Table 1. 

Fault 

Description 
Frequency (Hz) Description 

Cone 12,5 - 14 _n 

Cup 10 - 11,5 _p 

Rollers 3,5 - 4,8 _r 

Multiples 
Any combination 

of the above 
_m 

Extended 

Any of the above 

with additional 

indication of 

extended fault 

_e 

Table 1. Roller pass frequency for different clear faults. 

 

In the current workflow, maintenance requests are guided by 

criteria defined in the predictive severity matrix (Table 2). 

This matrix establishes intervention priorities (C0, C1, and 

C2) based on fault type, severity level, and repetition 

(consistency), considering a rolling 30-day evaluation 

window. 

Alarms C0 C1 C2 Obs.: 

Clear level 1 

≥1 & Exp. Mov 

Average 

Consistency≥0,7 

≥1  
Repetitions 

of alarms 

Clear level 2  >1 =1 
Repetitions 

of alarms 

Clear level 3  >1 =1 
Repetitions 

of alarms 

>”.” e 

consistency 
 >2 =2 

Repetitions 

of alarms 

Potencial 1  

& 

0,1≤exp. 

Moving 

consistency<0,4 

 ≥6 ≥5 

Count in the 

last 12 

passes 

FBS(RS1   ≥40% 

≥4 alarms in 

the last 12 

passes (6 ½ 

x12 

bearings) 

Table 2. Predictive Severity Matrix for RailBAM Alarms. 

 

Consistency is a feature available in the supervisory system 

designed to identify persistent noise patterns in the acoustic 

signals of railway bearings over time. The tool analyzes the 

historical acoustic measurements to determine whether the 

recorded spectra remain similar across different time points, 

even under varying load and speed conditions.  

Clear alarms of levels 1, 2, or 3 with descriptors, even when 

accompanied by a prefix, are treated as standard clear alarms 

without prefix, following the classification and actions 

defined in the current predictive severity matrix. 
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The presence of a descriptor indicates that the RailBAM 

algorithm successfully identified the physical nature of the 

anomaly in the bearing component. While prefixes suggest 

noise or interference, they do not eliminate the possibility of 

a real fault. Treating these alarms equivalently helps prevent 

the underestimation of events with genuine potential to 

evolve into severe failures. 

3. METHODOLOGY 

The methodology consists of a descriptive statistical analysis 

and a similarity-based comparison between two groups: 

• Group A: Bearings with Clear Level 1 alarms, due to their 

high accuracy in identifying actual faults. 

• Group B: Bearings with NOISY(RS1) alarms and their 

variants (_p, _n, _r, _e, _m). 

The following acoustic parameters extracted from the 

RailBAM system were analyzed: 

• ERS DB: A characteristic value in decibels (dB) derived 

from the processed acoustic signal, normalized by speed, 

which may indicate an advanced or extended defect on the 

bearing surface; 

• ERS Neighbors DB: Acoustic energy of neighboring 

bearings. 

• ΔERS DB: The difference between the ERS value of the 

bearing and that of its neighbors. 

The use of ΔERS DB helps minimize the influence of 

systemic noise or extreme operational conditions by focusing 

on localized deviations. ERS DB is more sensitive to 

advanced surface defects than RMS values. An increase in 

ERS DB, regardless of neighboring ERS values, is more 

likely to result from an actual bearing defect rather than 

external factors. Elevated ERS DB values, combined with 

repeated NOISY(RS1) alarms and their variants, suggest the 

presence of advanced or extended defects on the bearing 

surface. 

The analysis was conducted using rolling 30-day windows to 

identify statistical behavior similarities between the two 

groups. The methodology aimed to detect statistical 

intersections between bearings flagged with NOISY(RS1) 

alarms and those with confirmed faults (Clear Level 1), to 

establish a new prioritization rule based on acoustic 

similarity. 

4. RESULTS 

Based on the statistical analysis of data extracted from the 

RailBAM system, it was observed that bearings with 

confirmed Clear Level 1 failures share common value ranges 

across the three analyzed acoustic parameters. These 

intervals served as the foundation for formulating the new 

prioritization rule. 

4.1. SIMILARITY ANALYSIS BETWEEN ACOUSTIC ALARMS 

Figures 1, 2, and 3 below illustrate the overlap in statistical 

values between bearings flagged with NOISY(RS1) alarms 

and those with Clear Level 1 alarms, highlighting the 

intersection region that motivated the development of the 

new rule. The report considered a sample window covering 

data from May 27 to June 9, 2025, which corresponds to the 

period when the acoustic parameters used in this study 

became available in the supervisory system. The analysis 

focused exclusively on data from 6 ½ x12 bearings. Table 1 

presents the descriptive statistics for bearings that exhibited 

Clear, NOISY(RS1), and variant alarms, as well as those with 

other attribute types. 

Variable N µ σ Min Q1 Med Q3 Max 

Noisy 

ErsDB 
1068 74,79 5,77 63 70 75 79 95 

Noisy 

Ers 

Nghbrs 

DB 

1068 72,97 6,54 61 66 74 78 92 

Noisy 

Delta Ers 

DB 

1068 1,817 2,48 -6 0 1 3 14 

Clear 

ErsDB 
225 66,65 3,51 58 64 67 69 76 

Clear Ers 

Nghbrs 

DB 

225 62,69 2,34 57,7 61 63 64 72 

Clear 

Delta Ers 

DB 

225 3,97 2,66 -1 2 4 6 15 

Table 3. Descriptive Statistics. 

 

Figure 1 shows the distribution of ERS DB for bearings that 

triggered Clear and NOISY(RS1) alarms 

Figure 1. Distribution ERS DB. 

 

Figure 2 shows the distribution of ERS Neighbors DB for 

bearings that triggered Clear and NOISY(RS1) alarms. 
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Figure 2. Distribution ERS Neighbors DB. 

 

Figure 3 shows the distribution of ΔERS DB for bearings that 

triggered Clear and NOISY(RS1) alarms. 

Figure 3. Distribution ΔERS DB. 

 
Centroid Discriminant Analysis is a statistical method used 

to classify observations into known groups based on predictor 

variables, assuming that each group can be represented by its 

centroid (the mean vector of the variables). The analysis is 

based on the premise that each class—in this case, 

NOISY(RS1) and Clear—has a mean vector for the variables 

of interest. Each new observation is then assigned to the 

group whose centroid is closest, typically using either 

Euclidean distance or Mahalanobis distance. 

The Mahalanobis distance between an observation vector x 

and the group mean μ is given by: 

 

 𝐷𝑀(𝑥) = √(𝑥 − µ)𝑇𝑆−1(𝑥 − µ) (1) 

where: 

• x is the vector of acoustic variables (ERS DB, ERS 

Neighbors DB); 

• μ is the mean vector of the reference group (Clear Level 

1); 

• S⁻¹ is the inverse covariance matrix of the variables. 

In the analysis conducted using MINITAB 2022, ERS DB 

and ERS Neighbors were used as predictor variables. Since 

ΔERS is a linear combination of these two variables, it does 

not add a new informational dimension to the Mahalanobis 

analysis. Therefore, it was applied only as an additional filter 

after the main analysis was completed. The quadratic method 

was also used for class response, which does not assume 

equal covariances, and cross-validation was performed. The 

scatter plot with 95% confidence ellipses for each group is 

shown in Figure 4. 

 

Figure 4. Scatter plot with 95% confidence ellipses. 
 

Each point represents an observation based on the variables 

ERS DB and ERS Neighbors. The ellipses indicate the region 

where 95% of the observations for each group are expected 

to fall, assuming a normal distribution. This visualization 

helps to distinguish the separation between groups and the 

internal dispersion within each class. 

The analysis identified 288 indications that were initially 

classified as NOISY(RS1) but were reallocated to the Clear 

group. Additionally, three indications originally classified as 

Clear were reassigned to the NOISY(RS1) group. As a result, 

98.7% of the Clear group indications and 73% of the 

NOISY(RS1) indications remained in their original groups, 

as shown in Table 4. 
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Table 4. Summary of Classifications with Cross-Validation 

Prediction True Class: Clear True Class: 

NOISY(RS1) 
Clear 222 288 

NOISY(RS1) 3 780 

Total N 225 1068 

Correct N 222 780 

Proportion 0,987 0,730 

 

The centroid of each group is, the mean of each variable 

within the respective group—is presented in Table 5. 

Table 5. Group Centroids. 

Class 
Centroid ERS 

DB 

Centroid ERS 

Neighbors DB 

Clear 66.66 62.69 

NOISY(RS1) 74.79 72.97 

 

A statistical analysis was performed on the 288 NOISY(RS1) 

indications that exhibited Clear-like characteristics in the 

ERS DB, ERS Neighbors DB, and ΔERS parameters, as 

shown in Table 6. 

Variable N µ σ Min Q1 Med Q3 Max 

Noisy 

ErsDB 
288 68,17 3,31 63 66 67 70 80 

Noisy 

Ers 

Nghbrs 

DB 

288 64,63 1,19 61 4 65 65 68 

Noisy 

Delta Ers 

DB 

288 3,54 2,90 0 1 3 5 14 

Table 6. Descriptive Statistics of 288 NOISY(RS1) 

indications that exhibited Clear-like characteristics. 

 

Due to the complexity of operational deployment, univariate 

thresholds were selected as the metric for limit definition, 

rather than adopting a multivariate criterion based on 

similarity ellipses.  

Based on data analysis using descriptive statistics and 

individual value plots, it was possible to define acoustic 

ranges observed in bearings associated with Clear Level 1 

alarms. The newly established rule considers bearings with 

NOISY(RS1) alarms (and its variants) as potentially faulty 

when they simultaneously meet the following criteria within 

a 30-day observation window: 

• ERS DB between 63 and 76 dB; 

• ERS Neighbors DB between 61 and 68 dB; 

• ΔERS DB between 0 and 11 dB; 

• Repetition: ≥3 occurrences of NOISY(RS1) alarms or 

variants. 

The requirement of ≥3 repetitions within 30 days for 

NOISY(RS1) alarms is a key criterion because it: 

• Reduces false positives (isolated noise events); 

• Reinforces evidence of persistent real faults; 

• Increases the reliability of fault signaling. 

Criticality levels were defined based on the number of 

observed repetitions, according to the following criteria: 

• Criticality 1 (C1): 4 or more occurrences, with a 

maintenance deadline of 30 days; 

• Criticality 2 (C2): exactly 3 occurrences, with a 

maintenance deadline of 60 days. 

Initially, Criticality 0 will not be considered in the application 

of this rule; therefore, the process will initially be guided by 

weekly demand planning 

Experimental application of the rule led to the identification 

of two bearings that, although not prioritized by the current 

predictive matrix, exhibited real faults during physical 

inspections. Although repairable, these failures demonstrate 

the potential of the new approach to detect risk conditions 

that might otherwise be overlooked. 

The first inspected bearing was from Wagon 1, axle 1, right 

side. As shown in Figure 6, the workshop inspection 

revealed:  

• Presence of noise; 

• Adapter marks with uneven seating; 

• Resistance to rotation;  

• Two bolts with excessive torque compared to the 

reference of 570 N·m ±4% (710 N·m and 705 N·m); 

• Rollers with signs of overheating; 

• Cup with contact marks from rollers. 

Figure 6. Wagon 1, bearing 1, right side, with 

nonconformity marks on rollers and cup. 
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The second inspected bearing was from Wagon 2, axle 3, 

right side. As shown in Figure 7, the workshop inspection 

revealed the following issues: 

• Presence of noise; 

• Signs of grease leakage; 

• Resistance to rotation; 

• Two bolts with torque values outside the reference of 570 

N·m ±4% (400 N·m, 560 N·m, and 700 N·m); 

• Rollers with signs of overheating; 

• Seal ring with groove; 

• Backing ring with impact marks and excessive punching. 

 

Figure 7. Wagon 2, bearing 3, right side, with 

nonconformity marks on rollers and signs of grease leakage. 

By analyzing the ERS DB and ΔERS DB values, a noticeable 

drop is observed after the wheelset replacement, as expected. 

This behavior is illustrated in Figure 8 and 9 for bearing 1. 

 

Figure 8. Reduction in ERS DB values for bearing 1,  

 

 

Figure 9. Reduction in ΔERS DB values for bearing 1. 

For the data from bearing 3, wagon 2, right side, a similar 

drop in ERS DB and ΔERS DB values was observed after the 

wheelset replacement, as shown in Figure 10 and 11. 

 

Figure 10. Reduction in ERS DB values for bearing 3, 

Wagon 2, right side, after replacement of the wheelset with 

a damaged bearing. 

 

 

Figure 11. Reduction in ΔERS DB values for bearing 3. 

 

This experimental correlation validated the potential of the 

new business rule to identify real bearing failures that were 

either hidden or not captured by the current prioritization 

model. 

On August 12, 2025, a survey was conducted using the 

proposed rule within the supervisory system. As a result, 19 

bearings were identified that had not previously been mapped 

for maintenance and were subsequently included through 

predictive indication. For the initial samples (12 bearings), 

the accuracy exceeded 80%, with 10 confirmed faulty 

bearings. 

The study indicated that 27% of the bearings identified by the 

new criterion exhibit acoustic characteristics corresponding 

to clear level 1 alarms yet show potential to avoid being 

scrapped. Based on a projection using 2025 data, this could 

represent significant cost avoidance. 

5. DISCUSSION 

The implementation of the proposed rule represents a 

significant advancement in predictive prioritization accuracy, 
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enabling earlier identification of bearings with real faults 

before they progress to more critical stages. This approach 

not only complements the existing prioritization matrix but 

also expands its coverage by incorporating cases that might 

otherwise go unnoticed. By substantially reducing the 

occurrence of undetected failures, especially those masked by 

wheel anomalies or ambiguous classifications, the 

methodology directly contributes to improved operational 

reliability. 

Moreover, the proposed rule is grounded in a solid scientific 

foundation, supported by statistical principles that enhance its 

robustness within the context of predictive railway 

maintenance. It effectively addresses key gaps in the current 

matrix, particularly in situations where bearings with critical 

acoustic behavior are not flagged for investigation due to 

their classification as NOISY. By employing a statistically 

driven approach, the rule reduces subjectivity in analysis and 

strengthens the system’s ability to detect real faults early, 

even when obscured by noise or interference. 

The methodology also presents potential for further 

development through the integration of supervised machine 

learning models, where physically confirmed failures can 

serve as labels and acoustic parameters extracted over time 

windows as predictors. To ensure the rule’s continued 

effectiveness, it is essential that it be periodically re-

evaluated in light of new samples and emerging patterns. 

Additionally, seamless integration with existing systems and 

rules must be maintained to avoid operational conflicts. 

Finally, it is important to recognize that the rule’s 

applicability may vary depending on wagon type, axle 

configuration, or operational conditions, requiring caution in 

its generalization. 

6. CONCLUSION 

This analysis demonstrated that NOISY(RS1) alarms and 

their variants, when evaluated based on multiple occurrences 

and specific statistical ranges, show potential for indicating 

early-stage real failures. 

The new prioritization rule, based on descriptive statistics, 

represents a methodological and technical advancement, 

enabling a more precise, agile, and data-driven approach to 

support predictive maintenance of railway bearings. 

The results obtained indicate the feasibility of incorporating 

this rule as a complementary prioritization tool, enhancing 

operational safety and the efficiency of predictive 

maintenance. Further testing and expansion of the data set are 

recommended to strengthen the robustness of the approach. 
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