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ABSTRACT 

Electric vehicles (EVs) rely on electric motors (EMs) for 
drive, offering an eco-friendly alternative to conventional 
internal combustion engines. However, EMs in EVs are 
prone to multiple defects, such as bearing faults and load 
torque fluctuations, induced by electromagnetic interference 
(EMI), mechanical misalignments, and variable loading 
conditions arising from dynamic driving environments and 
controller-induced torque ripple. The resulting external 
mechanical load on the electric motor, which in turn 
modulates the stator current, produces distinct fault-related 
frequency components in the motor stator current spectrum. 
This study presents a system for remotely monitoring the 
health of such EMs which are used to drive EVs.  A non-
invasive fault detection methodology using Motor Current 
Signature Analysis (MCSA) which has come of age in 
present day to detect and characterize bearing-related faults 
and load torque fluctuations is used. The proposed approach 
is examined and validated on permanent magnet synchronous 
motors (PMSM), which are predominantly used as drive 
motors in EVs. A hall effect current sensor in one situation 
and a current transformer (CT) in another have been used to 
measure the current waveform of the stator current in the 
PMSM motors, which is then analyzed using the principles 
of MCSA. MCSA identifies the fault frequencies associated 
with bearing defects and torque fluctuations without 
requiring motor disassembly or additional vibration sensors. 
By implementing MCSA into a standalone monitoring 
system, this study demonstrates a reliable means of detecting 
bearing and load torque-related faults, ultimately improving 
the durability, efficiency, and operational safety of electric 
vehicle drivetrains. Future work can explore scaling this 
approach with cyber-physical system (CPS)-based 
architectures for real-time monitoring of EVs, enabling 

centralized analytics and smart decision-making as has been 
showcased in the present work. 

1. INTRODUCTION 

Electric vehicles (EVs) primarily use electric motors (EMs) 
as a prime mover for their drivetrain (Thangavel, Deepak, 
Girijaprasanna, Raju, Dhanamjayulu, & Muyeen, 2023). The 
power source for these EMs is a battery. Due to limits on 
emissions and a low carbon footprint in the ecosystem, 
worldwide, everyone is moving away from traditional 
internal combustion engines for powering vehicles and 
looking for EMs in vehicles powered by non-hydrocarbon-
based fuel sources, ranging from pure hydrogen to solar to 
lithium-ion, sodium-ion based batteries (Kachhwaha, Shah, 
& Shimin, 2016). Active research is being pursued as an 
alternate energy source for these EMs in electric vehicles.  

Many different types of EMs are being used in electric 
vehicles nowadays, which depend on the power 
consumption, peak power requirement, speed, control, cost, 
etc. To name a few, some of these motors are permanent 
magnet synchronous motors (PMSMs) and induction motors 
(IMs), brushless direct current (BLDC) motors, etc. 
(Yildirim, Polat, & Kürüm, 2014). EVs are susceptible to a 
specific vulnerability when utilizing motor controllers 
tailored to their unique propulsion needs (Pal & Mohanty, 
2020). These controllers, essential for managing speed and 
torque, introduce electromagnetic interference (EMI) within 
the electric motors (EMs). EMI can induce bearing faults by 
generating electrical currents along the motor's shaft, 
infiltrating the bearings (Rai & Mohanty, 2007; Prabhakar, 
Mohanty & Sekhar, 2002). These currents, known as bearing 
or shaft currents, initiate a damaging cycle within the bearing 
structure, leading to gradual issues like pitting and fluting, 
compromising bearing integrity. Over time, these detrimental 
currents can result in significant problems within the motor's 
bearings and pose a risk to the adjacent gearbox, potentially 
causing catastrophic failure (Kar & Mohanty, 2006). 
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To proactively address these vulnerabilities and ensure 
uninterrupted EM performance in EVs, non-invasive fault 
detection methodologies are indispensable. Motor current 
signature analysis (MCSA) proves particularly valuable to 
detect faults in EMs (Thomson & Fenger, 2001). MCSA has 
been used to detect faults in rotor bars, stator winding, air-
gap eccentricity, bearing, and load torque fluctuations of a 
motor (Cameron, Thomson & Dow, 1986; Thomson, 
Chalmers & Rankin, 1987; Thomson & Chalmers, 1988; 
Thomson, 2001; Blodt, Regnier & Faucher, 2009). MCSA 
permits real-time assessments of motor health during active 
operation, enabling EV owners and manufacturers to pinpoint 
and detect issues without necessitating motor disassembly or 
operational downtime. This approach significantly enhances 
EV reliability and durability, reducing maintenance costs and 
bolstering customer satisfaction (Lei, Yang, Jiang, Jia, Li & 
Nandi, 2020). 

Furthermore, various machine learning (ML) models have 
been employed to diagnose faults in motors using current and 
vibration signals. Centrifugal pumps have been investigated 
for fault diagnosis using a multi-class Support Vector 
Machine (SVM) with optimized hyperparameters to classify 
five categories: Healthy, Vane tip fault, Cracked impeller, 
Leakage, and Cavitation (Araste, Sadighi, & Moghaddam, 
2020). They achieved high classification accuracy for both 
healthy and leakage conditions, as well as above-average 
accuracy for cavitation. Similarly, Stator winding faults have 
been detected and classified based on the amplitudes of 
harmonics, mean, and root mean square (RMS) values of the 
current spectrum, as well as SVM (Pietrzak & Wolkiewicz, 
2021). They identified multiple severity levels using this 
approach and achieved an accuracy of 97% on test data. 
Later, a two-class autoencoder model has been examined for 
fault detection in centrifugal pumps using vibration signals 
(Vasiliev, Frangu, & Cristea, 2022). They investigated 
autoencoder models in both feed-forward and convolutional 
settings to extract sensitive features to detect faults by 
training models based on normal operating conditions. 

This article outlines a fault detection methodology for various 
faults, integrating real-time remote monitoring of the motor's 
health during its operation. Bearing and load torque 
fluctuations typically yield distinct fault frequency signatures 
within the vibration spectrum, resulting in fluctuations in 
electromagnetic torque. Consequently, fault frequencies 
manifest as additional spectral components around the supply 
line frequency in the motor current spectrum. These detection 
techniques seamlessly integrate into a broader cyber-physical 
system (CPS), merging digital technologies with physical 
machinery to enhance overall system reliability and 
performance. The article illustrates the on-field 
implementation of MCSA-based fault detection within a 
CPS-based architecture, executed automatically without 
human intervention. Furthermore, the article examines fault 
detection using an ML model based on current signals. 

Detecting faults in PMSM motors is crucial to enhancing 
overall system reliability. 

2. FAULT DETECTION IN PMSM 

2.1. Bearing Fault Detection Using MCSA 

The PMSM is a specialized three-phase synchronous motor 
featuring rare-earth permanent magnets, offering advantages 
such as compactness, high power-to-weight ratio, precise 
torque control, and efficiency. However, PMSMs are 
susceptible to electrical, magnetic, or mechanical faults 
during prolonged operation in challenging conditions, posing 
risks to machine reliability and its safety. To address these 
issues, early detection through real-time monitoring is vital. 
Bearing faults are particularly common contributors to motor 
failures, impacting the system's vibration and motor current 
signatures as they progress. Here focus is given to investigate 
bearing faults in PMSMs, considering fault severity and 
motor speed effects. Bearing defects generate impulses 
during each shaft rotation (Pal & Mohanty, 2022), leading to 
torque pulsations and a characteristic fault frequency (CFF) 
denoted as fBPFO in Eq. (1). 

 𝑓!"#$ = 𝑁%
𝑓&
2 %1 −

𝐵𝐷
𝑃𝐷 cos𝛽/ (1) 

where, fm is the motor rotational frequency, Nb is number 
of balls in the bearing; and BD, PD and β represent ball 
diameter, pitch diameter, and contact angle of the bearing, 
respectively.  

The bearing vibrations affect the motor current. Bearing 
defects disrupt magnetic flux, altering electromagnetic 
torque, and causing amplitude modulation with CFFs around 
fs. For outer race defects, these CFFs appear as sidebands 
expressed in Eq. (2). 

 𝑓!'()*+, = 𝑓- ± 𝑘𝑓!"#$ (2) 

where, k is an integer 1, 2, 3… 

2.2. Load Torque Fluctuation Detection Using MCSA 

Load torque fluctuation refers to the periodic variation in the 
mechanical torque load applied to an electric motor, typically 
due to uneven or cyclic mechanical loads such as imbalance, 
misalignment, or other mechanical interactions. When a 
motor operates under a fluctuating load torque, the 
mechanical variations at the frequency interact with the 
electromagnetic field of the motor. This interaction 
modulates the stator current and air-gap flux density, leading 
to the generation of sideband frequencies around the 
fundamental supply frequency. The torque fluctuation acts as 
a low-frequency modulating signal, while the stator current 
fundamental frequency serves as the carrier signal. Torque 
fluctuations disrupt the magnetic flux, altering 
electromagnetic torque, and generate sidebands around the 
supply frequency as 𝑓- in Eq. (3). 
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 𝑓. = 𝑓- ±  𝑓/ (3) 

where, 𝑓/ is the load torque fluctuation frequency, 𝑓. is 
the sideband frequency, respectively.	

2.3. Unsupervised autoencoder model 

To perform unsupervised anomaly detection on multivariate 
sensor data, a fully connected autoencoder architecture has 
been developed. The autoencoder receives an n-dimensional 
feature vector as input and learns a compressed latent 
representation through a bottleneck structure. The network 
consists of two main components: an encoder and a decoder. 
The encoder progressively reduces dimensionality using a 
series of linear transformations with nonlinear activation 
functions (e.g., ReLU). The decoder mirrors the encoder, 
reconstructing the original feature space from the latent 
vector. During training, the network minimizes the error 
between the input and the reconstructed output, enabling the 
autoencoder to model the normal operating condition of the 
system. These errors are compared against a threshold to 
determine whether the input data corresponds to a normal or 
abnormal condition. Overall, the autoencoder is effective for 
fault detection because it does not require labeled fault data. 

3. METHODOLOGY OF FAULT DETECTION 

The present study explores motor current analysis, focusing 
on detecting faults by measuring the motor current waveform 
in one of the phases. Two different motors with different 
defects have been examined: one motor with outer race 
defects in bearings and another with load torque fluctuations. 
The complete experimental setup of both motors is provided 
in Sections 3.1 and 3.2. Later, an autoencoder model is used 
to detect these defects in the motor as an anomaly. 

3.1. Experimental Setup for Bearing Defect Detection 

In this study, a 1 kW PMSM was tested as shown in Figure 1 
with motor parameters as depicted in Table 1. A PWM 
adjustable speed drive controlled it while subjected to load 
via a DC generator and a resistor bank. Data from the phase 
stator winding's current were collected using a Hall effect 
current probe (Tektronix A622) and a National Instruments 
data acquisition system (NI-DAQ 9215) with a sampling 
frequency of 10 kHz. The primary focus was on the drive end 
bearing, with Table 2 showing bearing dimensions. Three 
sets of bearings were used: one healthy (Brg-1), and two 
artificially faulted (Brg-2 and Brg-3) using electro-discharge 
machining, with Brg-3 exhibiting more significant faults than 
Brg-2 as depicted in Table 3. 

Table 1. PMSM M0 parameters. 
 

Parameter Value 
Rated power 1 kW 
Rated speed 3000 RPM 
Rated voltage 48 V 

Rated current 21 A 
Number of pole pairs 5 
No. of phases 3 
Bearing number 6206 

 

 
Figure 1. Laboratory-level experimental setup for EV. 

 
Table 2. Specifications of bearing 6206. 

 
Parameter Value 
Ball diameter 10 mm 
Pitch diameter 46 mm 
Contact angle 0o 
Number of balls 9 
Ball diameter 10 mm 

 
 

Table 3. Specifications of defect in bearings of PMSM. 
 

Bearing type Fault dimensions 
(width X breath X thickness) 

Healthy bearing (Brg-1) - 
Faulty bearing 1 (Brg-2) 1 mm X 1 mm X 0.1 mm 
Faulty bearing 2 (Brg-3) 2 mm X 2 mm X 0.1 mm 

3.2. Experimental Setup for Load Torque Fluctuation 

In this study, a 1 kW PMSM was tested as shown in Figure 2 
with motor parameters as depicted in Table 4. Data from a 
phase stator winding's current was collected with a YMDC 
SCT013 split core current transformer (CT) and the data 
acquisition system with a sampling frequency of 10 kHz, as 
detailed in Section 3.1. The primary focus was on the load 
torque fluctuation due to defective cooling fan blades. To 
simulate different mechanical unbalance load conditions on 
motor, three sets of fan blades were used, as depicted in 
Figure 3 and provided in Table 5. 
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Figure 2. Experimental setup for load torque fluctuation. 

 
Table 4. PMSM M1 parameters. 

 
Parameter Value 
Rated power 1 kW 
Rated speed 3000 RPM 
Rated voltage 48 V 
Rated current 21 A 
Maximum current  50 A 
Rated power 1000 W 
Peak power 2139 W 
Rated speed 3000 RPM 
Max speed 3500 RPM 
No. of pole pairs 5 
No. of phases 3 
Bearing number 6203 

 

 
(a) 

 
(b) 

 
(c) 

Figure 3. View of the seeded defects on cooling fan of 
PMSM: Normal (b) 3 blades removed (c) 3 blades 

removed+ nut and bolt. 
 

Table 5. Specifications of torque fluctuation defect. 
 

Fan blade condition Load condition 
Healthy fan (Fb-1) Normal fan blades 
Faulty fan 1 (Fb-2) 3 blades removed 
Faulty fab 2 (Fb-3) 3 blades removed + nut and bolt 

3.3. Autoencoder for fault detection 

An autoencoder model is developed for fault detection using 
eight input features: spectral Energy, Spectral Centroid, 
Spectral spread, spectral entropy, mean frequency, standard 
deviation of frequency, spectral kurtosis, and spectral 
skewness. The encoder sequentially reduces the feature space 
through layers (8, 256, 128, 64, 32) using ReLU activations 
to capture nonlinear relationships. The decoder mirrors this 
structure (32, 64, 128, 256, 8), reconstructing the original 

input. By minimizing reconstruction error, the model learns 
normal data behavior and identifies anomalies when 
reconstruction deviation is high. The Adam optimizer with a 
learning rate of 0.001 and a weight decay of 10-4 has been 
implemented. The trained model predicted two classes: either 
normal or abnormal, based on the test data. 

4. REMOTE FAULT DETECTION OF EVS USING MCSA 

A demonstration of remote monitoring using MCSA is 
showcased to detect two different fault types: bearing faults 
and load torque fluctuations. An industrial mini-computer 
(IMC) processes data wirelessly acquired from a data 
acquisition (DAQ) system operating at a sampling frequency 
of 10 kHz, identifying fault occurrences with a binary value 
of 0 or 1. These binary values, alongside corresponding 
current spectrum data, were saved in separate CSV files, 
which were then uploaded to Google Cloud Storage (GCS) 
for the electric vehicle workshop personnel to access the 
motor condition. This framework forms a CPS that provides 
sustainable and remote motor health monitoring. 

4.1. Architecture of Remote Fault Detection 

The proposed CPS enables real-time motor health assessment 
with minimal human intervention, thereby enhancing overall 
operational reliability. It integrates electromagnetic modules, 
current sensors, wireless data acquisition, an IMC, and GCS, 
as illustrated in Figure 4. The IMC performed Fast Fourier 
Transform (FFT) analysis on the acquired current signals to 
extract CFFs that indicate potential motor abnormalities. The 
processed results and detection reports were compiled into 
CSV files and automatically uploaded to GCS for centralized 
access and remote decision-making. This approach ensures 
timely fault detection, maintenance scheduling, and rapid 
issue resolution, ultimately improving electric vehicle 
reliability and availability. This system can also provide 
updates to the vehicle driver in the dashboard display or a 
mobile application. 

 
Figure 4. Architecture of remote fault detection. 

4.2. Experimental Setup for Remote Fault Detection 

In an experiment utilizing a CPS for motor health and fault 
detection, two motors (M0, M1) with specifications provided 
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in Tables 1 and 4 were employed, and the setup is illustrated 
in Figure 5. An Intel NUC served as the central processing 
unit, while a current probe measured the stator winding 
current for motor M0, and a CT measured the stator winding 
current for motor M1. Data was collected using a National 
Instruments (NI) 4-channel voltage input module (NI-9215), 
wirelessly connected to an IMC via a DAQ chassis (NI-
9191). An autonomous IMC software application detected 
CFFs without human intervention and employed the Google 
Cloud SDK for connectivity to GCS. Reports were stored as 
CSV files and securely uploaded to a dedicated GCS storage 
bucket via HTTP with TLS encryption, with GCS preserving 
metadata for tracking fault timing. Communication utilized 
the 802.11 internet protocol between the DAQ, IMC, and 
GCS. 

 
Figure 5. EMs real-time fault detection experiment setup. 

5. RESULTS 

5.1. Bearing Fault Detection in PMSM 

The PMSM motor M0 was run at 2220 RPM, with the 
current's time-domain waveform shown in Figure 6(a). FFT 
with a logarithmic scale was applied to analyze the signal, 
and a Hanning window prevented spectral leakage. Using 
bearing dimensions from Table 2 in Eq. (1), the 𝑓!"#$ value 
was calculated as 130.30 Hz at 2220 RPM. Vibration-induced 
torque pulsations affected electromagnetic torque, causing 
harmonics to appear in current spectrum as sidebands at the 
frequency of (𝑓- + 𝑓!"#$). At 2220 RPM, (𝑓- + 𝑓!"#$) was 
determined as 315.30 Hz (Figure 6(b)). An increase in fault 
severity at given motor speed led to higher current amplitudes 
corresponding to (𝑓- + 𝑓!"#$ ), as detailed in Table 6. For 
motor M0, operating at a 50 Hz supply frequency, a bearing 
fault (Brg-2) was introduced. The corresponding CFFs were 
successfully identified, and the fault was detected, as 
indicated by a Boolean value of “1”, as shown in Figure 7. 

 

 

Table 6. Current amplitude {Log (Current [A])} 
corresponding to bearing faults. 

 
Bearing type Current amplitude (dB) 

Brg-1 -50.12 dB 
Brg-2 -45.17 dB 
Brg-3 -41.65 dB 

 
(a) 

 
(b) 

Figure 6. (a) Current time-domain signal, (b) Current 
spectrum, of healthy and faulty bearings for fm =37 Hz. 

 
Figure 7. Boolean report for bearing fault in motor M0. 
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5.2. Detection of Load Torque Fluctuation  

Similarly, the process involves recording the time-domain 
current signals from motor M1 at different load conditions (as 
shown in Figure 3) and converting them into the frequency 
domain using FFT. The motor M1 was run at 3450 RPM with 
the current's time domain waveform, as shown in Figure 8(a). 
At 3450 RPM, the supply frequency was calculated to be 
287.5 Hz, as shown in Figure 8(b). The software then 
analyzes the spectrum to identify CFFs caused by load torque 
fluctuations. When fault severity increases from normal to the 
removal of fan blades and unbalance mass, current 
amplitudes increase, as detailed in Table 7. These 
fluctuations appear as sidebands around the main supply 
frequency at (𝑓- ±  𝑓/ ) with a Boolean value of “1” in the 
report file, which shows “Torque fluctuation” defect. These 
reports are uploaded to GCS and can be remotely accessed by 
plant personnel to monitor motor performance, detect torque-
related issues early, and take corrective actions to maintain 
smooth and reliable operation. 

 
(a) 

 
(b) 

Figure 8. (a) Current time-domain signal, (b) Current 
spectrum of load torque fluctuation. 

 
Table 7. Current amplitude {Log (Current [A])} 

corresponding to torque fluctuation. 
 

Load condition Current amplitude (dB) 
Fb-1 -24.28 dB 
Fb-2 -12.98 dB 
Fb-3     1.01 dB 

5.3. Fault detection as anomaly using autoencoder model 

The current data from the PMSM motor, as mentioned in 
Section 3.2, has been utilized for fault detection using an 
autoencoder model. A total of 240 datasets were created to 
test the model, with 80 datasets for each kind of fault. The 
autoencoder model was trained on a dataset of normal 
conditions and tested on both normal and faulty conditions. 
The test results are presented in Table 8. The autoencoder 
model predicted zero anomaly for the normal condition of the 
fan blade, whereas 98.75% and 91.25% of anomaly for the 
faulty conditions. This showed that one input of the Fb-2 load 
condition (3 blades removed) and seven inputs of Fb-3 load 
condition (3 blades removed + nut and bolt) cases were 
misclassified as the normal condition. This clarified that 
additional features are needed to improve the prediction 
accuracy of the Fb-3 load condition, specifically in terms of 
frequency content. 

Table 8. Anomaly prediction for load conditions. 
 

Load condition Test data Predicted Accuracy (%) 
Fb-1 80 80 (Normal) 100 
Fb-2 80 79 (Anomaly) 98.75 
Fb-3 80 73 (Anomaly) 91.25 

6. CONCLUSIONS 

Permanent magnet synchronous motors (PMSMs) in electric 
vehicles offer high efficiency and power density, ensuring 
precise control for optimized performance. However, motor 
controllers for EVs can introduce electromagnetic 
interference (EMI), leading to bearing faults due to induced 
shaft currents and other faults related to load torque 
fluctuations. Non-invasive detection methods, such as motor 
current signature analysis (MCSA), are crucial for ensuring 
the reliability of EM. The MCSA was implemented on a 
remote monitoring system through a cyber-physical system 
(CPS) to enable detectability from a remote location. The 
proposed monitoring approach successfully detected bearing 
and load torque fluctuation faults in two PMSM motors 
remotely. Further, the implemented autoencoder model was 
able to predict faults as anomalies in the PMSM motor. This 
monitoring solution can be integrated with CPS-based 
architectures for real-time monitoring, better automation, 
smart maintenance planning, and decision-making in electric 
motor health management for EVs. 
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