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ABSTRACT

Electric vehicles (EVs) rely on electric motors (EMs) for
drive, offering an eco-friendly alternative to conventional
internal combustion engines. However, EMs in EVs are
prone to multiple defects, such as bearing faults and load
torque fluctuations, induced by electromagnetic interference
(EMI), mechanical misalignments, and variable loading
conditions arising from dynamic driving environments and
controller-induced torque ripple. The resulting external
mechanical load on the electric motor, which in turn
modulates the stator current, produces distinct fault-related
frequency components in the motor stator current spectrum.
This study presents a system for remotely monitoring the
health of such EMs which are used to drive EVs. A non-
invasive fault detection methodology using Motor Current
Signature Analysis (MCSA) which has come of age in
present day to detect and characterize bearing-related faults
and load torque fluctuations is used. The proposed approach
is examined and validated on permanent magnet synchronous
motors (PMSM), which are predominantly used as drive
motors in EVs. A hall effect current sensor in one situation
and a current transformer (CT) in another have been used to
measure the current waveform of the stator current in the
PMSM motors, which is then analyzed using the principles
of MCSA. MCSA identifies the fault frequencies associated
with bearing defects and torque fluctuations without
requiring motor disassembly or additional vibration sensors.
By implementing MCSA into a standalone monitoring
system, this study demonstrates a reliable means of detecting
bearing and load torque-related faults, ultimately improving
the durability, efficiency, and operational safety of electric
vehicle drivetrains. Future work can explore scaling this
approach  with  cyber-physical system (CPS)-based
architectures for real-time monitoring of EVs, enabling
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centralized analytics and smart decision-making as has been
showcased in the present work.

1. INTRODUCTION

Electric vehicles (EVs) primarily use electric motors (EMs)
as a prime mover for their drivetrain (Thangavel, Deepak,
Girijaprasanna, Raju, Dhanamjayulu, & Muyeen, 2023). The
power source for these EMs is a battery. Due to limits on
emissions and a low carbon footprint in the ecosystem,
worldwide, everyone is moving away from traditional
internal combustion engines for powering vehicles and
looking for EMs in vehicles powered by non-hydrocarbon-
based fuel sources, ranging from pure hydrogen to solar to
lithium-ion, sodium-ion based batteries (Kachhwaha, Shah,
& Shimin, 2016). Active research is being pursued as an
alternate energy source for these EMs in electric vehicles.

Many different types of EMs are being used in electric
vehicles nowadays, which depend on the power
consumption, peak power requirement, speed, control, cost,
etc. To name a few, some of these motors are permanent
magnet synchronous motors (PMSMs) and induction motors
(IMs), brushless direct current (BLDC) motors, etc.
(Yildirim, Polat, & Kiirlim, 2014). EVs are susceptible to a
specific vulnerability when utilizing motor controllers
tailored to their unique propulsion needs (Pal & Mohanty,
2020). These controllers, essential for managing speed and
torque, introduce electromagnetic interference (EMI) within
the electric motors (EMs). EMI can induce bearing faults by
generating electrical currents along the motor's shaft,
infiltrating the bearings (Rai & Mohanty, 2007; Prabhakar,
Mohanty & Sekhar, 2002). These currents, known as bearing
or shaft currents, initiate a damaging cycle within the bearing
structure, leading to gradual issues like pitting and fluting,
compromising bearing integrity. Over time, these detrimental
currents can result in significant problems within the motor's
bearings and pose a risk to the adjacent gearbox, potentially
causing catastrophic failure (Kar & Mohanty, 2006).
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To proactively address these vulnerabilities and ensure
uninterrupted EM performance in EVs, non-invasive fault
detection methodologies are indispensable. Motor current
signature analysis (MCSA) proves particularly valuable to
detect faults in EMs (Thomson & Fenger, 2001). MCSA has
been used to detect faults in rotor bars, stator winding, air-
gap eccentricity, bearing, and load torque fluctuations of a
motor (Cameron, Thomson & Dow, 1986; Thomson,
Chalmers & Rankin, 1987; Thomson & Chalmers, 1988;
Thomson, 2001; Blodt, Regnier & Faucher, 2009). MCSA
permits real-time assessments of motor health during active
operation, enabling EV owners and manufacturers to pinpoint
and detect issues without necessitating motor disassembly or
operational downtime. This approach significantly enhances
EV reliability and durability, reducing maintenance costs and
bolstering customer satisfaction (Lei, Yang, Jiang, Jia, Li &
Nandi, 2020).

Furthermore, various machine learning (ML) models have
been employed to diagnose faults in motors using current and
vibration signals. Centrifugal pumps have been investigated
for fault diagnosis using a multi-class Support Vector
Machine (SVM) with optimized hyperparameters to classify
five categories: Healthy, Vane tip fault, Cracked impeller,
Leakage, and Cavitation (Araste, Sadighi, & Moghaddam,
2020). They achieved high classification accuracy for both
healthy and leakage conditions, as well as above-average
accuracy for cavitation. Similarly, Stator winding faults have
been detected and classified based on the amplitudes of
harmonics, mean, and root mean square (RMS) values of the
current spectrum, as well as SVM (Pietrzak & Wolkiewicz,
2021). They identified multiple severity levels using this
approach and achieved an accuracy of 97% on test data.
Later, a two-class autoencoder model has been examined for
fault detection in centrifugal pumps using vibration signals
(Vasiliev, Frangu, & Cristea, 2022). They investigated
autoencoder models in both feed-forward and convolutional
settings to extract sensitive features to detect faults by
training models based on normal operating conditions.

This article outlines a fault detection methodology for various
faults, integrating real-time remote monitoring of the motor's
health during its operation. Bearing and load torque
fluctuations typically yield distinct fault frequency signatures
within the vibration spectrum, resulting in fluctuations in
electromagnetic torque. Consequently, fault frequencies
manifest as additional spectral components around the supply
line frequency in the motor current spectrum. These detection
techniques seamlessly integrate into a broader cyber-physical
system (CPS), merging digital technologies with physical
machinery to enhance overall system reliability and
performance. The article illustrates the on-field
implementation of MCSA-based fault detection within a
CPS-based architecture, executed automatically without
human intervention. Furthermore, the article examines fault
detection using an ML model based on current signals.

Detecting faults in PMSM motors is crucial to enhancing
overall system reliability.

2. FAULT DETECTION IN PMSM

2.1. Bearing Fault Detection Using MCSA

The PMSM is a specialized three-phase synchronous motor
featuring rare-earth permanent magnets, offering advantages
such as compactness, high power-to-weight ratio, precise
torque control, and efficiency. However, PMSMs are
susceptible to electrical, magnetic, or mechanical faults
during prolonged operation in challenging conditions, posing
risks to machine reliability and its safety. To address these
issues, early detection through real-time monitoring is vital.
Bearing faults are particularly common contributors to motor
failures, impacting the system's vibration and motor current
signatures as they progress. Here focus is given to investigate
bearing faults in PMSMs, considering fault severity and
motor speed effects. Bearing defects generate impulses
during each shaft rotation (Pal & Mohanty, 2022), leading to
torque pulsations and a characteristic fault frequency (CFF)
denoted as fzrro in Eq. (1).

fm BD
fapro =Nb7(1_ﬁcosﬁ) (D
where, fin is the motor rotational frequency, N, is number
of balls in the bearing; and BD, PD and f represent ball
diameter, pitch diameter, and contact angle of the bearing,
respectively.

The bearing vibrations affect the motor current. Bearing
defects disrupt magnetic flux, altering electromagnetic
torque, and causing amplitude modulation with CFFs around
fs. For outer race defects, these CFFs appear as sidebands
expressed in Eq. (2).

fBearing = fs t kaPFO (2)

where, k is an integer 1, 2, 3...

2.2. Load Torque Fluctuation Detection Using MCSA

Load torque fluctuation refers to the periodic variation in the
mechanical torque load applied to an electric motor, typically
due to uneven or cyclic mechanical loads such as imbalance,
misalignment, or other mechanical interactions. When a
motor operates under a fluctuating load torque, the
mechanical variations at the frequency interact with the
electromagnetic field of the motor. This interaction
modulates the stator current and air-gap flux density, leading
to the generation of sideband frequencies around the
fundamental supply frequency. The torque fluctuation acts as
a low-frequency modulating signal, while the stator current
fundamental frequency serves as the carrier signal. Torque
fluctuations  disrupt the magnetic flux, altering
electromagnetic torque, and generate sidebands around the
supply frequency as f; in Eq. (3).
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where, f; is the load torque fluctuation frequency, f; is
the sideband frequency, respectively.

2.3. Unsupervised autoencoder model

To perform unsupervised anomaly detection on multivariate
sensor data, a fully connected autoencoder architecture has
been developed. The autoencoder receives an n-dimensional
feature vector as input and learns a compressed latent
representation through a bottleneck structure. The network
consists of two main components: an encoder and a decoder.
The encoder progressively reduces dimensionality using a
series of linear transformations with nonlinear activation
functions (e.g., ReLU). The decoder mirrors the encoder,
reconstructing the original feature space from the latent
vector. During training, the network minimizes the error
between the input and the reconstructed output, enabling the
autoencoder to model the normal operating condition of the
system. These errors are compared against a threshold to
determine whether the input data corresponds to a normal or
abnormal condition. Overall, the autoencoder is effective for
fault detection because it does not require labeled fault data.

3. METHODOLOGY OF FAULT DETECTION

The present study explores motor current analysis, focusing
on detecting faults by measuring the motor current waveform
in one of the phases. Two different motors with different
defects have been examined: one motor with outer race
defects in bearings and another with load torque fluctuations.
The complete experimental setup of both motors is provided
in Sections 3.1 and 3.2. Later, an autoencoder model is used
to detect these defects in the motor as an anomaly.

3.1. Experimental Setup for Bearing Defect Detection

In this study, a | kW PMSM was tested as shown in Figure 1
with motor parameters as depicted in Table 1. A PWM
adjustable speed drive controlled it while subjected to load
via a DC generator and a resistor bank. Data from the phase
stator winding's current were collected using a Hall effect
current probe (Tektronix A622) and a National Instruments
data acquisition system (NI-DAQ 9215) with a sampling
frequency of 10 kHz. The primary focus was on the drive end
bearing, with Table 2 showing bearing dimensions. Three
sets of bearings were used: one healthy (Brg-1), and two
artificially faulted (Brg-2 and Brg-3) using electro-discharge
machining, with Brg-3 exhibiting more significant faults than
Brg-2 as depicted in Table 3.

Table 1. PMSM MO parameters.

Parameter Value
Rated power 1 kW
Rated speed 3000 RPM
Rated voltage 48V

Rated current 21 A
Number of pole pairs 5
No. of phases 3
Bearing number 6206

DC

Motor Generator

Current probe

Isower Supply Resistor Bank

DAQ

IMC

Figure 1. Laboratory-level experimental setup for EV.

Table 2. Specifications of bearing 6206.

Parameter Value
Ball diameter 10 mm
Pitch diameter 46 mm
Contact angle 0°
Number of balls 9

Ball diameter 10 mm

Table 3. Specifications of defect in bearings of PMSM.

Fault dimensions

(width X breath X thickness)
Healthy bearing (Brg-1) -
Faulty bearing 1 (Brg-2) I mmX 1 mmX0.1 mm
Faulty bearing 2 (Brg-3) 2mm X 2 mm X 0.1 mm

Bearing type

3.2. Experimental Setup for Load Torque Fluctuation

In this study, a | kW PMSM was tested as shown in Figure 2
with motor parameters as depicted in Table 4. Data from a
phase stator winding's current was collected with a YMDC
SCTO013 split core current transformer (CT) and the data
acquisition system with a sampling frequency of 10 kHz, as
detailed in Section 3.1. The primary focus was on the load
torque fluctuation due to defective cooling fan blades. To
simulate different mechanical unbalance load conditions on
motor, three sets of fan blades were used, as depicted in
Figure 3 and provided in Table 5.
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Power Supply
PMSM motor

Figure 2. Experimental setup for load torque fluctuation.

Table 4. PMSM M1 parameters.

Parameter Value
Rated power 1 kW
Rated speed 3000 RPM
Rated voltage 48V
Rated current 21 A
Maximum current 50 A
Rated power 1000 W
Peak power 2139 W
Rated speed 3000 RPM
Max speed 3500 RPM
No. of pole pairs 5

No. of phases 3

Bearing number 6203

(b)

Figure 3. View of the seeded defects on cooling fan of
PMSM: Normal (b) 3 blades removed (c) 3 blades
removed+ nut and bolt.

Table 5. Specifications of torque fluctuation defect.

Load condition

Normal fan blades

3 blades removed

3 blades removed + nut and bolt

Fan blade condition
Healthy fan (Fb-1)
Faulty fan 1 (Fb-2)
Faulty fab 2 (Fb-3)

3.3. Autoencoder for fault detection

An autoencoder model is developed for fault detection using
eight input features: spectral Energy, Spectral Centroid,
Spectral spread, spectral entropy, mean frequency, standard
deviation of frequency, spectral kurtosis, and spectral
skewness. The encoder sequentially reduces the feature space
through layers (8, 256, 128, 64, 32) using ReLU activations
to capture nonlinear relationships. The decoder mirrors this
structure (32, 64, 128, 256, 8), reconstructing the original

input. By minimizing reconstruction error, the model learns
normal data behavior and identifies anomalies when
reconstruction deviation is high. The Adam optimizer with a
learning rate of 0.001 and a weight decay of 10 has been
implemented. The trained model predicted two classes: either
normal or abnormal, based on the test data.

4. REMOTE FAULT DETECTION OF EVS USING MCSA

A demonstration of remote monitoring using MCSA is
showcased to detect two different fault types: bearing faults
and load torque fluctuations. An industrial mini-computer
(IMC) processes data wirelessly acquired from a data
acquisition (DAQ) system operating at a sampling frequency
of 10 kHz, identifying fault occurrences with a binary value
of 0 or 1. These binary values, alongside corresponding
current spectrum data, were saved in separate CSV files,
which were then uploaded to Google Cloud Storage (GCS)
for the electric vehicle workshop personnel to access the
motor condition. This framework forms a CPS that provides
sustainable and remote motor health monitoring.

4.1. Architecture of Remote Fault Detection

The proposed CPS enables real-time motor health assessment
with minimal human intervention, thereby enhancing overall
operational reliability. It integrates electromagnetic modules,
current sensors, wireless data acquisition, an IMC, and GCS,
as illustrated in Figure 4. The IMC performed Fast Fourier
Transform (FFT) analysis on the acquired current signals to
extract CFFs that indicate potential motor abnormalities. The
processed results and detection reports were compiled into
CSYV files and automatically uploaded to GCS for centralized
access and remote decision-making. This approach ensures
timely fault detection, maintenance scheduling, and rapid
issue resolution, ultimately improving electric vehicle
reliability and availability. This system can also provide
updates to the vehicle driver in the dashboard display or a
mobile application.

=

=
NI DAQ } [ mc |—

Current

Transducer
~
g — Stator

Transfer report file to
GCs

Real-time information
of motor

Figure 4. Architecture of remote fault detection.

4.2. Experimental Setup for Remote Fault Detection

In an experiment utilizing a CPS for motor health and fault
detection, two motors (MO0, M 1) with specifications provided
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in Tables 1 and 4 were employed, and the setup is illustrated
in Figure 5. An Intel NUC served as the central processing
unit, while a current probe measured the stator winding
current for motor M0, and a CT measured the stator winding
current for motor M1. Data was collected using a National
Instruments (NI) 4-channel voltage input module (NI-9215),
wirelessly connected to an IMC via a DAQ chassis (NI-
9191). An autonomous IMC software application detected
CFFs without human intervention and employed the Google
Cloud SDK for connectivity to GCS. Reports were stored as
CSV files and securely uploaded to a dedicated GCS storage
bucket via HTTP with TLS encryption, with GCS preserving
metadata for tracking fault timing. Communication utilized
the 802.11 internet protocol between the DAQ, IMC, and
GCS.

Real-time
status of
motor health
condition
Current probe
CT
Transfer
report files to
Google Cloud
NI DAQ with IMC
Wi-Fi

Figure 5. EMs real-time fault detection experiment setup.
5. RESULTS

5.1. Bearing Fault Detection in PMSM

The PMSM motor MO was run at 2220 RPM, with the
current's time-domain waveform shown in Figure 6(a). FFT
with a logarithmic scale was applied to analyze the signal,
and a Hanning window prevented spectral leakage. Using
bearing dimensions from Table 2 in Eq. (1), the fzppo value
was calculated as 130.30 Hz at 2220 RPM. Vibration-induced
torque pulsations affected electromagnetic torque, causing
harmonics to appear in current spectrum as sidebands at the
frequency of (f; + fzpro)- At 2220 RPM, (f; + fzpro) Was
determined as 315.30 Hz (Figure 6(b)). An increase in fault
severity at given motor speed led to higher current amplitudes
corresponding to (f; + fzpro), as detailed in Table 6. For
motor MO, operating at a 50 Hz supply frequency, a bearing
fault (Brg-2) was introduced. The corresponding CFFs were
successfully identified, and the fault was detected, as
indicated by a Boolean value of “1”, as shown in Figure 7.

Table 6. Current amplitude {Log (Current [A])}
corresponding to bearing faults.

Bearing type Current amplitude (dB)
Brg-1 -50.12dB
Brg-2 -45.17 dB
Brg-3 -41.65dB
20 50 N \ M ~—Brg-1
(VML ——Brg-2
A ‘
0 [ \ ™ ’\ —Brg-3
5 VR
< 10
T
o
£
=]
© 0
-10 ! '
0 5 10 15 20
Time (s)
(a)
40
20
<
= 0
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£
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S-40t
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0 ‘ 100

200 300
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Figure 6. (a) Current time-domain signal, (b) Current
spectrum, of healthy and faulty bearings for f» =37 Hz.

A

B C D

Rotor fault

‘Stator winding fault
Eccentricity fault
Bearing fault
Torque fluctuations

X N O A WD =

Developed at Indian Institute of Technology Kharagpur

O OO O

Figure 7. Boolean report for bearing fault in motor MO.
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5.2. Detection of Load Torque Fluctuation

Similarly, the process involves recording the time-domain
current signals from motor M1 at different load conditions (as
shown in Figure 3) and converting them into the frequency
domain using FFT. The motor M1 was run at 3450 RPM with
the current's time domain waveform, as shown in Figure 8(a).
At 3450 RPM, the supply frequency was calculated to be
287.5 Hz, as shown in Figure 8(b). The software then
analyzes the spectrum to identify CFFs caused by load torque
fluctuations. When fault severity increases from normal to the
removal of fan blades and unbalance mass, current
amplitudes increase, as detailed in Table 7. These
fluctuations appear as sidebands around the main supply
frequency at (f; + f,) with a Boolean value of “1” in the
report file, which shows “Torque fluctuation” defect. These
reports are uploaded to GCS and can be remotely accessed by
plant personnel to monitor motor performance, detect torque-
related issues early, and take corrective actions to maintain
smooth and reliable operation.

100
100—

=/ \ W\ /Y Normal /\
751 12 3 blades removed
=\ A A \ 3 blades removed +nut and bolt

500

25

Current(A)

0

-25

9 10 11 12 13 14 15 16 17 18 19 20
Frequency (Hz)

Normal

3 blades removed

3 blades removed +nut and bolt

Log(Current[A])

50 100 150 200 250 300 350 400 450 500
Frequency (Hz)

(b)
Figure 8. (a) Current time-domain signal, (b) Current

spectrum of load torque fluctuation.

Table 7. Current amplitude {Log (Current [A])}
corresponding to torque fluctuation.

Load condition Current amplitude (dB)
Fb-1 -24.28 dB
Fb-2 -12.98 dB
Fb-3 1.01dB

5.3. Fault detection as anomaly using autoencoder model

The current data from the PMSM motor, as mentioned in
Section 3.2, has been utilized for fault detection using an
autoencoder model. A total of 240 datasets were created to
test the model, with 80 datasets for each kind of fault. The
autoencoder model was trained on a dataset of normal
conditions and tested on both normal and faulty conditions.
The test results are presented in Table 8. The autoencoder
model predicted zero anomaly for the normal condition of the
fan blade, whereas 98.75% and 91.25% of anomaly for the
faulty conditions. This showed that one input of the Fb-2 load
condition (3 blades removed) and seven inputs of Fb-3 load
condition (3 blades removed + nut and bolt) cases were
misclassified as the normal condition. This clarified that
additional features are needed to improve the prediction
accuracy of the Fb-3 load condition, specifically in terms of
frequency content.

Table 8. Anomaly prediction for load conditions.

Load condition | Test data | Predicted Accuracy (%)
Fb-1 80 80 (Normal) 100

Fb-2 80 79 (Anomaly) | 98.75

Fb-3 80 73 (Anomaly) | 91.25

6. CONCLUSIONS

Permanent magnet synchronous motors (PMSMs) in electric
vehicles offer high efficiency and power density, ensuring
precise control for optimized performance. However, motor
controllers for EVs can introduce electromagnetic
interference (EMI), leading to bearing faults due to induced
shaft currents and other faults related to load torque
fluctuations. Non-invasive detection methods, such as motor
current signature analysis (MCSA), are crucial for ensuring
the reliability of EM. The MCSA was implemented on a
remote monitoring system through a cyber-physical system
(CPS) to enable detectability from a remote location. The
proposed monitoring approach successfully detected bearing
and load torque fluctuation faults in two PMSM motors
remotely. Further, the implemented autoencoder model was
able to predict faults as anomalies in the PMSM motor. This
monitoring solution can be integrated with CPS-based
architectures for real-time monitoring, better automation,
smart maintenance planning, and decision-making in electric
motor health management for EVs.
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