A CNN-Multi-Head Attention Framework for Gearbox Incremental
Fault Diagnosis Under Non-Stationary Conditions

Hao Zhang'?3, Shunuan Liu'??3, Bin Luo'??, Konstantinos Gryllias*, and Chenyu Liu'%*"

ISchool of Mechanical Engineering, Northwestern Polytechnical University, Xi’an, China

’Key Laboratory of Aircraft High Performance Assembly, Ministry of Industry and Information Technology, Xi’an, China

3Key Laboratory of Aeronautics and Astronautics High Performance Assembly of Shaanxi, Xi’an, China

‘KU Leuven, Leuven, Belgium

* chenyuliu@nwpu.edu.cn

ABSTRACT

Deep learning-based gearbox fault diagnosis approaches
have demonstrated exceptional performance in achieving
accurate fault identification across diverse industrial
applications. Nonetheless, machines frequently operate
under conditions characterized by time-varying speeds or
loads, known as non-stationary working conditions. When a
series of different non-stationary conditions tasks are
sequentially input into the model for training, an issue arises
where the model tends to forget previous tasks, a
phenomenon referred to as "catastrophic forgetting". To
address the challenge posed by task increments within non-
stationary conditions, this paper proposes an incremental
learning-based multi-task fault diagnosis framework under
non-stationary conditions. This methodology enhances the
model's diagnostic capabilities under non-stationary
conditions by amalgamating convolutional neural network
(CNN) with multi-head self-attention mechanisms. It
employs exemplar replay and hybrid cross-head knowledge
distillation techniques to preserve the model's understanding
of prior tasks, thereby facilitating the incremental learning
of multiple tasks. The efficacy of this proposed framework
is substantiated through its application on the MCC5-THU
fault diagnosis datasets of gearbox under time-varying speed
working conditions. Experimental results demonstrate that
this approach significantly mitigates the "catastrophic
forgetting" effect, thereby offering a robust solution for
multi-tasks increment fault diagnosis of gearbox operating
under non-stationary conditions.

Hao Zhang et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License,
which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

1. INTRODUCTION

Gearbox is extensively utilized across multiple domains of
modern industry, such as aviation, chemical manufacturing,
and power generation, serving as a fundamental component
of industrial production systems (Du, Chen, Zhang, & Yan,
2015). The sustained and stable functioning of gearbox is
critical for ensuring the continuity and efficiency of
industrial productivity. Even a minor malfunction in such
equipment can trigger a series of chain reactions, potentially
leading to significant economic losses across the production
line and broader industrial systems, as well as posing
serious risks to the safety of personnel (Peng, Qiao, Cheng,
& Qu, 2021). Therefore, the rapid and accurate diagnosis of
faults of gearbox, along with timely detection and
maintenance during the early stages of failure, is of critical
importance (Feng, Chen, & Zuo, 2018).

The advancement of artificial intelligence has drawn
significant attention to data-driven diagnostic methods
based on machine learning. Compared to traditional signal
processing techniques, data-driven methods not only
significantly enhance diagnostic accuracy but also enable
end-to-end detection. Widely adopted algorithms for these
methods encompass support vector machines (Yin & Hou,
2016), multi-layer perceptrons (Sinitsin, Ibryaeva,
Sakovskaya, & Eremeeva, 2022), and convolutional neural
networks (CNN) (Qin et al., 2024), among others. For
instance, Lin, Li, Yang, and Wang (2018) constructed a
GAN-CNN few-samples fault diagnosis model: GAN
generates virtual samples in the target domain through
cross-domain feature learning, and CNN fuses virtual and
real samples to improve the fault diagnosis accuracy under
few-samples conditions. Yu et al. (2023) introduced an
intelligent diagnostic method based on an autoencoder
network, utilizing a multi-layer sparse autoencoder to
classify and identify frequency domain signals of various
faults, thereby achieving fault diagnosis for aircraft engine
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bearings. However, these methods are currently used mainly
for gearbox fault diagnosis under stable speed and load
conditions. In real-world industrial settings, due to
variations in production tasks and operational conditions, a
significant portion of mechanical equipment operates under
non-stationary working conditions, and the speed or load of
some equipment may even fluctuate periodically (Liu,
Wang, Yang, & Qin, 2019). Speed variations cause dynamic
shifts in characteristic frequencies, while load fluctuations
alter the amplitude modulation characteristics of vibration
signals. Consequently, non-stationary operating conditions
induce significant domain drift in gearbox fault information.
This phenomenon not only obscures discriminative fault
features but also complicates the establishment of reliable
mappings between fault signatures and corresponding
categories (Dong, Jiang, Yao, Mu, & Yang, 2024).

So far, more and more researches focuses on using Deep
Learning (DL)-based algorithms to deal with domain drift
issue caused by non-stationary conditions. Zhao, Kang,
Tang, and Pecht (2017) developed a ResNet framework
integrated with wavelet packet decomposition that
dynamically adjusted wavelet coefficients across frequency
bands, achieving adaptive fault feature extraction and
improving gearbox diagnosis accuracy under non-stationary
conditions. Zhao et al. (2022) proposed a 1D-CNN method
that combined the Fisher criterion with an adaptive
activation function. By embedding the Fisher discriminant
criterion into the network to optimize the feature projection
direction and combining it with an adaptive activation
function to adjust the nonlinear mapping, accurate diagnosis
of gearbox faults under non-stationary conditions was
achieved.

The aforementioned methods enhance the efficiency and
accuracy of gearbox fault diagnosis but most research
predominantly focus on one specific diagnostic task, which
means the model is trained once-for-all. In actual industrial
environments, it is unrealistic to collect and learn fault
information of gearbox under all possible operating
conditions at one time. As new working conditions
continuously emerging, the model needs to be retrained in
order to adapt to the streaming data . This re-training
process is recognised as a “new task” (Wang, Xiong, & He,
2023). A critical challenge arises when the model is
incrementally updated with new task data: the inherent
discrepancy between feature distributions of historical and
novel tasks triggers parameter drift. This drift biases the
model toward the feature domain of the latest task, resulting
in the loss of knowledge from old tasks—a phenomenon
termed catastrophic forgetting (Shi et al., 2024).

To mitigate this limitation, Incremental Learning (IL)-based
approaches have emerged as a promising solution. These
methods aim to develop adaptive models capable of
continuous evolution, which learn new tasks while retaining
knowledge from previously learned tasks by designing task-
adaptive knowledge retention mechanisms (Wang, Liu, &

Xiao, 2024). Current IL techniques are primarily
categorized into replay-based methods (Ostapenko, Puscas,
Klein, Jahnichen, & Nabi, 2019; Rebuffi, Kolesnikov, Sperl,
& Lampert, 2017; Yin et al., 2020), constraint-based
methods (Kirkpatrick et al., 2017; Li & Hoiem, 2017,
Lopez-Paz & Ranzato, 2017), and structure-based methods
(Mallya & Lazebnik, 2018; Veniat, Denoyer, & Ranzato,
2020). Some of the IL methods have been applied for
mechanical systems' fault diagnostics. Zhang et al. (2024)
developed a task-aware ResNet architecture with dynamic
parameter adaptation, which can selectively preserve task-
critical parameters. The method was applied to a class-
incremental diagnostic case where new gearbox faults
emerge among different tasks. Chen et al. (2022) introduced
a dual-branch CNN architecture with dynamic-stable
aggregation, where the weights of the dynamic and stable
branches were adaptively adjusted to balance diagnostic
performance between new and historical fault categories.
This approach facilitated IL of gearbox fault categories
under the operating condition of motor speed 1496 rpm.
Chen et al. (2023) proposed a continuous domain adaptive
diagnosis framework that retains prior task knowledge
through classifier solidification and aligns the distribution of
new and old tasks through the maximum mean difference,
thus enabling multi-task bearing fault diagnosis under
stationary operating conditions. Experiments showed that
this method can incrementally learn tasks under six different
operating conditions: 500 rpm-20N, 1000 rpm-20N, 1500
rpm-40N, etc.

On the one hand, these IL-based methods can maintain the
fault classification accuracy with less knowledge forgotten
dealing with multiple diagnostic tasks. On the other hand,
most current methods are mostly proposed for IL under
stationary working conditions with constant speed and load.
In real industrial environment, different non-stationary
conditions always appear through the diagnostic tasks.
Therefore, a thorough research on multi-task IL for gearbox
fault diagnosis under non-stationary conditions is of great
importance.

This paper proposes a multi-head self-attention IL model for
gearbox fault diagnostics under non-stationary working
conditions. A CNN framework was adopted to extract fault-
related features, which were further sent to a fully connected
feed-forward network. The correlation weights within the
fault feature space were adaptively adjusted from multiple
perspectives, thereby improving the model's understanding
of the fault features. The model used exemplar replay
strategy to achieve data-level knowledge retention. By
constructing a hybrid cross-head knowledge distillation loss
between the teacher model and student model, the
knowledge of old tasks was continuously transferred during
the training process, achieving parameter-level knowledge
retention. Finally, the proposed method was validated on a
real-world gearbox fault diagnosis datasets under non-
stationary working conditions. Experiments demonstrated
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Figure 1. Diagnostic model network structure.

that the method outperformed existing approaches in multi-
task IL for gearbox fault diagnosis under non-stationary
scenarios.

The rest of this paper is structured as follows: Section 2
presents the proposed framework and delineates its training
process. Section 3 and Section 4 demonstrates the efficacy
of the proposed framework through validation on a gearbox
dataset under non-stationary conditions. The paper
concludes with a summary in Section 5.

2. METHODOLOGY

2.1. Network architecture

In this study, a five-layer CNN was implemented to build
the feature extraction module, which constitutes the initial
phase of the feature processing pipeline. In the second phase,
the feature extraction module was constructed using a multi-
head self-attention encoder layer to improve contextual
understanding of the features obtained from the first stage.
The detailed architecture of the network is illustrated in
Figure 1. The acquired time-domain signals first underwent
truncation, followed by spectral transformation via FFT to
derive  frequency-domain  representations of fault
characteristics. The spectrum was standardized via min-max
amplitude normalization and subsequently fed into the deep
neural network. After processing through the two feature
extraction modules, the feature information was flattened
and passed to the final classifier to achieve fault
classification.

2.2. Training process

The IL process can be categorized into two phases: the
initial phase and the later IL phase. In order to emulate the
data condition in real-time industrial gearbox fault
diagnostic scenarios, this paper makes the following
assumptions: (1) Owing to constraints related to data
confidentiality and limited storage capacity during machine
operating, once the model completes a diagnostic task, only
a small subset of samples (constituting less than 3% of the
total sample size) is retained, while the remaining data
becomes inaccessible. (2) After the completion of learning
for the current task, the parameters of the diagnostic model
are preserved temporarily; however, these parameters are
promptly deleted after the model finishes learning the
subsequent new task to alleviate storage demands. As the
model undergoes IL across multiple tasks, its classification
capability is progressively enhanced, enabling it to perform
fault diagnosis under multiple operational conditions
simultaneously.

2.2.1. Initial phase (Phase 0)

The initial stage aligns with conventional DL training
methodologies. Following data preprocessing, the samples
of all kinds of faults are partitioned into training and testing
sets, after which classification training is conducted. After
completion of the training process, the model parameters are
retained, and all training samples are replayed and forward
propagated to capture the feature map generated by the
intermediate feature extraction layer. The fault feature space
of each sample is derived from the average of the input and
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Figure 2. The pipeline of proposed framework.

output sequences in the multi-head self-attention layer, as
these sequences may contain richer and more effective
information. Subsequently, the sample closest to the
centroid of the feature space for each fault is iteratively
selected. The mathematical representation of the average
feature space for each sample is provided in Eq. (1), the
centroid of the feature space for each fault category is
detailed in Eq. (2), and the iterative exemplar selection
process is formalized in Eq. (3).

sizes between new and old tasks, each batch is constructed
to include data from the new task alongside exemplars from
the older tasks.

After feeding the frequency spectrum into both the student
model and the teacher model, the respective outputs  and

are generated. Concurrently, the output features from the
encoder layer of the student model are passed through the
classifier of the teacher model to produce the cross-
prediction distribution . Recent research has demonstrated

(., )= (2.0 ) 2., ) (1) that minimizing the Kullback-Leibler (KL) divergence
L between the cross prediction and the teacher prediction,
== _ (.) (2)  referred to as the cross distillation loss, enables the student
model to focus more effectively on learning the feature
- ” _i[ ()+ _—11 ( )]” 3) extraction capabilities of the teacher model during
- backpropagation (Wang et al., 2024). As illustrated in
where 1, is the number of exemplars, Figure 3, this paper defines the knowledge distillation loss
represents the -th sample of fault in task . and as the sum of the soft loss and the cross distillation loss.
represents the model parameters after learning task . The Free Frozen
exemplars are subsequently selected and stored utilizing Eq. —
(1) - (3) % _E Classifier
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Figure 3. Hybrid cross-head knowledge distillation.

The mathematical formulation of the KL divergence is
provided in Eq. (4), while the hybrid cross-head knowledge
distillation loss is detailed in Eq. (5).



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2025

(. )= S O 0% =) @
(.= .+ (.) ©

where is the size of batch, is the size of fault
prediction sequence, and  are the output sequences of
the student model and the teacher model respectively, and

is the cross prediction. The cross-entropy loss function is
utilized to quantify the discrepancy between  and the truth
labels of the samples, thereby constructing the hard loss
function ( , ). The overall loss function, which
comprises two components, (,) and (., ), is
formulated as presented in Eq. (6).

= (. )+@-> . ) ©

where is a weight factor used to control the weights of the
two losses and balance the model's diagnostic capabilities
for new and old tasks.  represents the true label of the
sample.

3. EXPERIMENTS
3.1. Dataset and experiment setup

3.1.1. MCCS5-THU dataset

The proposed framework was validated using the MCC5-
THU variable working condition gearbox fault dataset
(Chen, Liu, He, Zou, & Zhou, 2024). The test rig, as
illustrated in Figure 4, was primarily composed of a motor,
a torque sensor, a two-stage parallel gearbox, a magnetic
powder brake, and two triaxial vibration sensors. The
vibration sensors were positioned at the motor's output end
and the exterior of the gearbox's intermediate shaft to
capture vibration data under non-stationary conditions, with
a sampling frequency of 12.8 kHz. The gear module was 1.5
mm with a face width of 10 mm. Both the faulty gears and
bearings were located on the intermediate shaft. The data
from five distinct single gear fault types and a healthy
condition were used to validate the accuracy of the model.
Each fault was obtained by laser etching with an accuracy of
0.0lmm. The detailed fault information and the

corresponding label settings are shown in Table 1.

- e ey al
% Torque Sensor
A N

S
v
-

Three axis vibration
acceleration sensor

Frequency Inverter ;

Three axis vibration
acceleration sensor

Figure 4. The gearbox fault test rig (Chen, Liu, He, Zou, &
Zhou, 2024).

The experiments in MCC5-THU dataset use a constant
torque of 10 Nm, and three speed levels, i.e., 0-500-1000
RPM, 0-1500-2000 RPM, and 0-2500-3000 RPM. The
speed spectrum is illustrated in Figure 5, where the speed is
modulated in a stepwise fashion. The overlaid annotations in
y-axis indicate the three speed levels following the same
fashion.

Table 1. Fault types and label settings.

Fault type Fault severity Label
Health \ 0
Gear pitting Fault diameter 1.5 mm 1
Gear wear Full teeth surface area 2
Miss teeth \ 3
Teeth break 3/4 of the teeth width 4
Teeth crack 3/4 of the teeth height 5
E (13383)
E (3000)
& 500
2 (1500)
5 (2500)
0 10 20 25 35 40 50 60

Time(s)

Figure 5. The time-varying rotational speed curve (Chen,
Liu, He, Zou, & Zhou, 2024).

Table 2. The speed levels of the three tasks.

Phase Task Speed range ~ Number of
[rpm] samples
Phase 0 Task 0 0-500-1000 4932
Task 0 0-500-1000 144
Phase 1
Task 1 0-1500-2000 4932
Task 0 0-500-1000 144
Phase 2 Task 1 0-1500-2000 144
Task 2 0-2500-3000 4932

In order to emulate the incremental operating conditions in
the real industrial environment, three phases with multiple
tasks were defined for model training. Phase 0 was the
initial phase of the IL process, and the fault data under non-
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Table 3. Parameters of the proposed model.

. . . Activation
Component Layers Filter Filter number Output size function
Input - - 36 X1X2560 -
Conv 1D 1 11X1/4X1 64 36 X64X639 ReLU
Maxpool 3X1/2X1 64 36 X64X319 -
Conv 1D 2 5X1/1X1 192 36X192X319 ReLU
Maxpool 3X1/2X1 192 36X192X159 -
CNN feature Conv 1D 3 3IX11X1 384 36 X384 X159 ReLU
extraction Conv 1D 4 3IX1/1X1 256 36 X256 X159 ReLU
module Conv 1D 5 3IX11X1 256 36 X256 X159 ReLU
Maxpool 3X1/2X1 256 36 X256 X79 -
Flatten - - 36X20224 -
Dropout - 0.5 36X20224 -
FC 20224 X 4096 - 36 X4096 ReLU
Dropout - 0.5 36X4096 -
Head num:8
Multi-head Depth:512
self-attention Q dim:64 - 36 X8X512 -
Encoder feature mechanism K dim:64
extraction Series_dim:8
module Add & Norm Layer norm - 36 X8X512 -
Fully connected i i 36782048 ReLU
- - 36 X8X512 -
Add&Norm Layer norm - 36 X8X512 ReLU
Flatten - - - 36 X4096 -
Classifier FC 4096 X 6 - 36 X6 -

stationary conditions with a speed of 0-500-1000 RPM was
used as Task O to train the initial model. In Phase 1, newly
acquired fault data from distinct non-stationary working
conditions were designated as Task 1 to retrain the model,
while replaying exemplars from Task 0. The same
framework applies to Phase 2 for IL. There were 4932
samples for each task, and 3600 of them were used for
training. The rest 1332 samples were used for testing in each
phase. Detailed information of the tasks is provided in Table
2.

Considering the substantial vibration signal attenuation
induced at near-zero rotation speeds during equipment
startup/shutdown phases (0-1.5s and 56.5-60s), this study
exclusively retained vibration data within the range of 1.5s
to 56.5s. A sliding window is used to sample the original
vibration data, with a window length of 5120 points and a
sliding step size of 2560 points.

3.1.2. Experiment settings

The detailed parameters of the proposed network framework
are presented in Table 3. The CNN feature extraction
module comprised 5 convolutional layers. Dropout layers
with a retention rate of 0.5 were incorporated to mitigate

overfitting. The encoder feature extraction module was
constructed with an 8-head self-attention layer followed by
a feedforward neural network layer. The output sequence
from the CNN feature extraction module was segmented
into eight subsequences, each of length 512, to serve as
contextual information. The dimensions of the query (Q)
and key (K) matrices were set to 64. Following the CNN
and encoder feature extraction modules, the processed
information was ultimately mapped to six fault categories
through a classifier consisting of a linear layer.

During the IL process, different tasks were sequentially
introduced into the model. In the training phase, the batch
size was set to 36, and the model was trained for 400 epochs.
The optimization process employed Stochastic Gradient
Descent (SGD) with a learning rate of 1x10-4 and a decay
rate of 0.99. The loss function was composed of the hard
loss and the hybrid cross-head knowledge distillation loss,
with a weighting factor a set to 0.9 to ensure the model's
predictive accuracy for new tasks. To smooth the output
distribution, and facilitate the learning of more generalized
features, the temperature coefficient T for the distillation
term was set to 2 according to (Li & Hoiem, 2017). Within
each batch, the new task data constituted 24 samples, while
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Table 4. Diagnostic accuracies and BWTs of the IL methods in different phases.

Method Phase 0 Phase 1 Phase 2
Task 0 Task 0 Task 1 BWT Task 0 Task 1 Task 2 BWT
EWC 96.24% 58.18%  95.57%  -0.3806 61.41%  83.25%  97.29%  -0.2357
IL-VOC 97.74% 94.52%  97.52%  -0.0322 91.14%  96.31%  97.52%  -0.0391
Proposed 99.47% 97.29%  99.47%  -0.0218 96.47%  98.87%  99.69%  -0.0180
framework

the older data comprised a total of 12 samples. In Phase 1,
Task 0 accounted for 12 samples per batch. In Phase 2, the
old data from Task 0 and Task 1 each contributed 6 samples,
with this pattern continuing for subsequent tasks. The
random seed was fixed to ensure reproducibility.

3.2. Comparative experiments

3.2.1. Comparison methods

The diagnostic performance of the proposed model was
evaluated through a comparative analysis with two
previously published IL methods. To ensure fairness, the
normalized frequency spectrum was also used as input data
for the other two methods.

(1) Elastic Weight Consolidation

Elastic Weight Consolidation (EWC) is a weight parameter
constraint approach in IL, designed to quantify the
significance of model parameters for previously learned
tasks. By incorporating an importance regularization term
into the loss function, the method restricts the update
gradient of model parameters critical to old tasks when
learning new tasks, thereby preserving prior knowledge
(Kirkpatrick et al., 2017).

The EWC model comprised three fully connected layers,
which served as input layer, intermediate hidden layer and
classifier respectively, and the dimension of the
intermediate hidden layer was 800x800. ReLU activation
function and dropout layer with retention rate of 0.5 were
added after the input layer and hidden layer. After
completing the training of t_n, all training samples from t n
were replayed to compute and store the Fisher information
matrix. During the Phase of n+1, the regularization loss was
defined based on the Fisher information matrix to penalize
updates to parameters sensitive to old tasks. In this method,
the hyperparameter A, which governs the degree of
protection for old knowledge, was set to 1x108. The
training process involved 400 epochs, utilizing SGD as the
optimizer, with a learning rate of 1x10-3 and a decay rate of
0.99.

(2) IL-based varying
method

operating conditions diagnosis

IL-based varying operating conditions diagnosis method
(IL-VOC) is developed for comparative analysis based on
the methodology outlined in reference (Wang, Xiong, & He,
2023), representing a multi-task diagnostic approach for
rotating machinery that incorporates IL principles. The
method leverages CNN as its foundational framework,
integrating multiple IL mechanisms to effectively mitigate
forgetting. It demonstrates robust multi-task learning
capabilities, exhibiting consistent performance stability
under steady-state operational conditions. The optimization
process employs the Adam optimizer with a learning rate of
1x10-2. During the IL phase, the weight matrix in the total
loss function was set to [1.0, 0.001, 0.1, 0.1]. The
temperature coefficient for the distillation loss was
configured as T=2, and the batch size was maintained at 36.

3.2.2. Evaluation metrics

After the completion of training in each phase, the model's
classification accuracy across all previously learned tasks
was assessed. To comprehensively evaluate the model's
performance, this paper employs two key metrics to analyse
the IL capabilities. The first metric (Accs) is the average
classification accuracy across all learned tasks, which serves
as an indicator of the model's overall diagnostic
performance. The second metric, Backward Transfer (BWT),
quantifies the model's tendency to forget previously
acquired knowledge. The mathematical formulation of BWT
is provided in Eq. (7).
1 _

BWT == - @)
where represents the phase number, and the value of BWT
ranges between [-1, 1]. BWT = 0 indicates no forgetting of
previous tasks. When BWT > 0, it suggests that the learning
of subsequent tasks has positively influenced the accuracy
of prior tasks. Conversely, BWT < O signifies the presence
of forgetting, with lower BWT values indicating a higher
degree of forgetting.

4. RESULTS

4.1. Comparative analysis of different IL methods

The test results of the EWC, the IL-VOC, and the proposed
framework are summarized in Table 4. As evident from the
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Table 5. The classification accuracies and the BWTs of the five methods in different phases.

Method Phase 0 Phase 1 Phase 2
Task 0 Task 0 Task 1 BWT Task 0 Task 1 Task 2 BWT
JT(best) 99.47% 99.24%  99.69%  -0.0023 99.39%  99.84%  99.69%  0.0004
BM 99.47% 87.38%  99.69%  -0.1209 80.40%  98.34%  99.62%  -0.1021
ES+BM 99.47% 96.54%  99.77%  -0.0293 96.17%  99.09%  99.62%  -0.0199
KD+BM 99.47% 96.39%  99.62%  -0.0308 89.18%  98.42%  99.69%  -0.0575
Proposed 99.47% 97.29%  99.47%  -0.0218 96.47%  98.87%  99.69%  -0.0180
framework

table, the proposed framework demonstrated superior
performance in terms of accuracy and BWT compared to
both EWC and IL-VOC in all the phases. In general, the
proposed methodology not only enhanced the diagnostic
accuracy, but also effectively mitigated the issue of
forgetting.

EWC IL-VOC Proposed framework
100 o6z 772 2V 9607 58 PR

~_ -

2 80 76,87 | 50.65

5y

= 60
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2 40
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Figure 6. The accuracies of IL methods.

The averaged classification accuracy of each model across
different phases are visualized in Figure 6. The figure
indicates that the accuracy of EWC experienced a
significant decline in Phase 1, accompanied by a higher
degree of forgetting. However, the forgetting showed a
recovery in Phase 2. According to the data presented in
Table 4, the accuracy of Task 0 in Phase 2 is higher than
that in Phase 1, suggesting that the EWC achieves a certain
level of knowledge retention through parameter constraints.
Despite this, its overall accuracies remains lower than that
of the other two methods. In contrast, the proposed
framework demonstrates consistently higher accuracies
compared to IL-VOC, with no significant drop observed
across the three stages. This indicates that this solution is
more effective in mitigating the model's tendency to forget
previous knowledge.

4.2. Ablation experiments

4.2.1. Comparison methods

Given that the proposed framework incorporates multiple
strategies to mitigate the forgetting of previous tasks, an
ablation study is conducted to validate the effectiveness of
this integrated approach and to evaluate the contribution of
each component within the proposed framework.

(1) Benchmark Model

The Benchmark Model (BM) serves as the baseline model
in this study. Unlike other models, BM did not incorporate
any IL techniques to constrain its training process for new
tasks, except for initializing the model parameters of Phase
n with those from Phase -1. This experiment was designed
to investigate the minimum level of knowledge retention
achievable by the diagnostic model with incremental tasks.

(2) Joint Training

Joint Training (JT) is regarded as the theoretical upper
bound for the classification accuracy of the diagnostic
model. This approach retains all historical task samples and
integrates data from task o to in phase , ensuring
comprehensive knowledge preservation throughout the
continuous learning. As the number of tasks increases, the
volume of training data progressively expands, leading to a
corresponding rise in computational and training costs.

(3) ES+BM

Building on the baseline model, only the exemplar replay
method was implemented, utilizing the same parameter
configurations as those defined in the proposed framework.

(4) KD+BM

KD+BM was an IL model that only added hybrid cross-
head knowledge distillation to the baseline model. The
parameter setting of the distillation loss term was consistent
with the proposed framework. This experiment was
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proposed to explore the effect of hybrid cross-head
knowledge distillation on alleviating forgetting.

4.2.2. Analysis of results

The test results for the four methods and the proposed
framework are presented in Table 5. In Phase 0, all methods
exhibit accuracy levels consistent with the BM. In Phase 1,
the proposed framework demonstrated better knowledge
retention capabilities, achieving higher Task 0 accuracy
compared to BM, ES+BM, and KD+BM (though marginally
lower than JT’s). The accuracy of the proposed framework
on Task 1 was lower than that of the other four methods,
which might due to the fact that the knowledge distillation
and example replay methods limited the performance of the
model on Task 1 to some extent. In the Phase 2, the
proposed framework sustains its advantage in Task O,
outperforming BM, ES+BM, and KD+BM while
performing second to JT. For Task 1, it ranks third behind
JT and ES+BM, and achieves parity with JT in Task 3.
Notably, the proposed framework achieved superior BWT
values across all three stages compared to BM, ES+BM, and
KD+BM, approaching JT's performance level. These results
collectively demonstrated the proposed framework's
effectiveness in mitigating catastrophic forgetting while
preserving knowledge from previously learned tasks.

BM JT ES+BM KD+BM [l Proposed framework
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Figure 7. Classification accuracy of the IL methods.

For a more detailed comparison, Figure 7 illustrates the
averaged accuracies of each method across different phases.
The significant decline in the accuracies of BM suggested
that, in the absence of IL techniques, the diagnostic model
exhibited substantial forgetting of previous tasks. During the
subsequent incremental stages, the accuracies of the
KD+BM was significantly higher than that of BM,
demonstrating that the hybrid cross-head knowledge
distillation effectively mitigates the issue of forgetting. The
accuracies of the ES+BM were superior to those of KD+BM
but remained lower than the proposed framework. This
suggested that the exemplar replay method was more
effective in retaining knowledge compared to the hybrid
cross-head knowledge distillation method. Furthermore, the

contribution of the exemplar replay method to the proposed
framework was more significant than that of the hybrid
cross-head knowledge distillation approach. In summary,
the experimental results demonstrated that the proposed
framework effectively retained knowledge of previous tasks
while maintaining high accuracy for new tasks, even when
sequentially learning multiple tasks of non-stationary
operating conditions of the gearbox.

5. CONCLUSIONS

This study proposes a novel approach to address the
challenges of multi-task IL under non-stationary conditions
for a gearbox. The framework integrated a CNN with the
encoder feature extraction module of a transformer
architecture to achieve fault diagnosis using frequency-
domain spectra. To mitigate the issue of forgetting in IL, the
approach incorporated exemplar replay and hybrid cross-
head knowledge distillation, effectively preserving
knowledge of previously learned tasks and reducing the
knowledge forgetting. The efficacy of this framework was
validated using the MCCS5-THU dataset. Across three
incremental learning phases with various working condition
tasks, the framework sequentially learned tasks with
different time-varying speed ranges of non-stationary
conditions, achieving average diagnostic accuracy of
99.47%, 98.38%, and 98.34%, respectively, outperforming
other IL models. Furthermore, ablation experiments
confirmed that exemplar replay contributes most
significantly to knowledge retention, while the fusion of
multiple components enhances the method's overall ability
to retain knowledge. This research offers a new solution for
incremental learning and fault diagnosis under non-
stationary conditions. Future work will focus on extending
this method to multi-task IL under more complex and
random time-varying speed or load conditions, with the aim
of improving the model's generalization capability and
applicability.
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