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ABSTRACT

Recent advances in data-driven methods, particularly deep
learning, have transformed predictive maintenance for rotary
machinery. These methods enable intelligent, sensor-based
condition monitoring from unlabeled operational data, even
under rare-fault conditions. This study proposes an unsuper-
vised anomaly detection framework for rotary equipment that
utilizes continuous wavelet transform (CWT) to transform
unlabeled, multichannel vibration signals into stacked time-
frequency scalograms using complex Morlet wavelet. These
scalograms are then processed by an enhanced U-Net deep
convolutional autoencoder (CWT-U-Net CAE), which learns
features of healthy operational conditions and detects anoma-
lies by identifying significant deviations in reconstruction er-
ror. Coupled with its edge-compatibility, the framework en-
ables scalable real-time condition monitoring in industrial en-
vironments. A custom test bench with an induction motor
was used to obtain realistic vibrational signatures under nor-
mal operating conditions, assessing the effectiveness of the
proposed approach.

1. INTRODUCTION

Rotary equipment, particularly induction motors, is respon-
sible for driving a wide range of industrial assets. Ensur-
ing reliable operation of rotary equipment is a key strategy
in Industry 4.0. Recent advances integrate sensor-based con-
dition monitoring with data-driven machine learning to im-
prove efficiency, predict failures, and optimize maintenance
schedules (Benhanifia, Cheikh, Oliveira, Valente, & Lima,
2025). Manufacturing environments operate predominantly
under normal conditions, and faulty/anomalous conditions
rarely occur. This can cause class imbalances when relying on
supervised learning approaches and has motivated the adop-
tion of unsupervised anomaly detection methods that lever-
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age abundant healthy operational data (Pang, Shen, Cao, &
van den Hengel, 2021).

Recent developments in MEMS accelerometers have further
advanced condition monitoring through improved vibration
analysis. These sensors offer the necessary bandwidth and
noise performance for cost-effective monitoring (Jain, Patel,
& Raj, 2020). These advances address previous limitations
where high-quality vibration data acquisition required expen-
sive piezoelectric systems that hindered scalable deployment.

However, rotary vibration signals are inherently non-
stationary, and this characteristic limits the effectiveness
of conventional frequency-domain analysis. Time-frequency
methods, such as continuous wavelet transform scalograms,
preserve both temporal dynamics and spectral content, thus
capturing transient fault signatures (Bernitsas & Kourkoutos-
Ardavanis, 2021). The image-like structure of scalogram
representations further enables the application of convolu-
tional architectures, which originally is designed for visual
pattern recognition tasks.

Building on this, autoencoder networks, when combined with
convolutional layers, have demonstrated effectiveness for un-
supervised anomaly detection using visual features. By learn-
ing to reconstruct normal patterns, the models flag devia-
tions during inference, making them well suited for analyz-
ing scalogram representations of vibration signals. However,
traditional CNN autoencoders, while effective, often strug-
gle to capture fine-grained spatial details due to information
loss in pooling operations. U-Net architectures address this
limitation through skip connections that preserve spatial res-
olution throughout the encoding-decoding process (Yedurkar
et al., 2023). This capability proves particularly important
when analyzing scalogram representations where localized
time-frequency anomalies must be accurately reconstructed.

In industries, edge computing improves continuous vibration
monitoring by processing large volumes of high-frequency
data, which are impractical to stream to the cloud in real
time. By shifting the processing pipeline closer to the ma-
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chine, edge devices allow complex models such as U-Net-
based autoencoders to be deployed directly at the source of
data. This architecture supports rapid reconstruction error
analysis and anomaly detection without dependency on re-
mote servers, ensuring both resilience to network interrup-
tions and compliance with industrial demands for real-time
decision support (Kanungo, 2025). The synergy of MEMS
sensing, time-frequency analysis, and edge-optimized deep
learning facilitates the practical deployment of unsupervised
anomaly detection in constrained industrial environments.

This study explores a unified framework that combines ad-
vanced signal representations with deep learning architec-
tures. It addresses challenges in predictive maintenance
through unsupervised learning, while dealing with the non-
stationary nature of vibration signals and the practical con-
straints of deploying models on edge hardware. Data, the
non-stationary nature of vibration signals, and the practi-
cal constraints of deploying models on edge hardware. The
following section reviews previous work on time-frequency
analysis, deep autoencoder-based anomaly detection, and
edge-enabled.

2. RELATED WORK

Rotary equipment produces inherently non-stationary vibra-
tion signals, making time-frequency analysis crucial for fault
detection and health monitoring. The continuous wavelet
transform (CWT) offers a more effective trade-off between
temporal and spectral resolution, allowing subtle anomalies
in bearings and motor systems to be detected (Guo, Yang,
Gao, & Zhang, 2018; Zhang & Chen, 2023; Chou & Wang,
2025). By representing vibration signals as two-dimensional
scalograms, CWT facilitates the application of deep learning
architectures for enhanced analysis.

However, most studies treat these scalograms as static im-
ages, overlooking temporal dependencies across consecutive
signal windows. To address this limitation, hybrid mod-
els such as CNN-LSTM and residual CNNs have been de-
veloped to incorporate temporal correlations, leading to im-
proved robustness under variable operating conditions (Yang
& Li, 2021; Tang & Han, 2024; Zheng & Xu, 2023). Atten-
tion mechanisms have also been introduced to highlight weak
fault signatures, demonstrating improved anomaly localiza-
tion in industrial data sets (Park & Kim, 2023).

Beyond vibration-only analysis, researchers have explored
multi-sensor fusion approaches, particularly combining vi-
bration with stator current or power signals, to improve di-
agnostic accuracy (Li & Zhou, 2023; Huang & Sun, 2025).
Although these strategies report improved performance on
benchmark datasets, they often rely on high-precision sensors
and controlled experimental setups, which limits their prac-
ticality in cost-constrained industrial environments. Studies
employing MEMS accelerometers demonstrate their poten-

tial for low-cost condition monitoring, although challenges
remain in maintaining signal quality and noise robustness
(Chen & Wu, 2024; Ventricci & Marino, 2024).

In parallel to methodological advances, there is growing in-
terest in the deployment of anomaly detection models at the
edge. Lightweight CNN and CAE architectures implemented
on embedded or FPGA-based platforms have demonstrated
feasibility for real-time fault detection (Malviya & Singh,
2022; Chou & Wang, 2025). However, most evaluations
are based on curated datasets, which do not fully capture the
variability and unpredictability of real-world factory environ-
ments, such as variable load conditions, temperature fluctua-
tions, and concurrent machine operations.

Previous research has advanced CWT-based feature extrac-
tion, hybrid deep learning architectures, sensor fusion, and
edge-compatible deployment. However, a unified frame-
work that combines these advancements with cost-effective
MEMS-based sensing, CWT-derived scalogram representa-
tions, and unsupervised CAE-driven anomaly detection for
real-time edge deployment remains underexplored. This
study addresses this gap by proposing an end-to-end method-
ology and presents the following contributions.

* A cost-effective predictive maintenance framework for
anomaly detection utilizing low-cost accelerometers for
condition monitoring

* Implementation of wavelet transform with MEMS sen-
sor, making the data acquisition and processing pipeline
lighter while integrating multi-channel sensor fusion

* An enhanced CWT-U-Net CAE architecture is intro-
duced for anomaly detection using scaleograms

e A practically validated approach that addresses real-
world deployment challenges at the Edge

The paper is organized as follows. Section 3 provides an
overview of the anomaly detection framework, including its
key components and theoretical foundations. Section 4 then
describes the experimental test setup and data generation pro-
cess. The experimental results and framework evaluation are
presented in Section 5. Finally, Section 6 summarizes the
conclusions and outlines directions for future work.

3. PROPOSED ANOMALY DETECTION FRAMEWORK
3.1. Framework Overview

The framework, Figure 1, illustrates the proposed pipeline for
condition monitoring and anomaly detection in rotary equip-
ment. The data acquisition stage records multichannel vibra-
tional data as input reflecting the operating condition of the
machine using MEMS accelerometers. These raw 1D time
series signals undergo pre-processing and are then segmented
into discrete windows for feature extraction. Applying a Con-
tinuous Wavelet Transform (CWT) to each window produces
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Figure 1. The proposed framework architecture consists of three main sections. The training pipelines encode raw data into an
image representation using CWT and train a CNN autoencoder. The real-time pipelines assess the machine’s health using the
generated sequences for condition monitoring. Finally, the decision logic block computes the anomaly metric of the transformed

segments, providing real-time, unsupervised anomaly detection.

a 2D image-like format, known as scalograms, which are
then encoded into a multi-dimensional array suitable for deep
learning input. These stacked multichannel scalograms input
sequences preserve both temporal and spectral information
across axes.

During the offline training pipeline, a U-Net 2D Convolu-
tional Neural Network (CNN)-based autoencoder was trained
on the generated sequences. This CWT-CAE learns to ex-
tract hierarchical features and reconstruct the scalogram with
minimal loss, effectively capturing the underlying patterns
for anomaly detection. The framework then evaluates an
anomaly segment by calculating the reconstruction error and
comparing it against the threshold value established from the
training data. Finally, for the real-time in-pipeline deploy-
ment, the model is implemented on a Raspberry Pi as an Edge
device for on-site inference.

3.2. Data Acquisition

A tri-axial MEMS accelerometer is adopted for vibration
sensing in this study due to its compact form factor, cost ef-
ficiency, and suitability for edge deployment. Data acquisi-
tion focuses on utilizing a multi-channel signal configuration
from tri-axial accelerometers. This setup provides improved
sensitivity by offering spatial diversity in vibration measure-
ments along different axes, enabling the detection of direc-
tional fault signatures and enhancing overall diagnostic ac-
curacy. As recommended in the work done by (Guo et al.,
2018), changes in rotating speed and load can significantly
affect CWT calculations; therefore, vibration signals are col-

lected with a stable rotating speed to ensure accurate CWT
representations.

3.3. Preprocessing

The preprocessing pipeline begins with the removal of the
DC component from the vibration signal, thereby eliminat-
ing static bias and gravity-related offsets associated with the
MEMS sensor positioning. This step is crucial for vibra-
tion analysis, as the presence of DC components can in-
troduce artifacts in the frequency-domain representation and
compromise the accuracy of the continuous wavelet trans-
form (CWT) analysis. The continuous 1-D accelerometer
signals are segmented into fixed-length windows (WW;) using
a sliding-window approach. This method includes an op-
tional overlap (e.g., 50%), which serves to increase the num-
ber of training samples and improve the likelihood of captur-
ing short-lived transients. Each window produces an array of
shape (NN, C), where N is the number of samples per channel
and C is the number of channels.

In theory, the window length (17}) is determined primarily by
the timescales of anomalous phenomena, which are closely
linked to the machine’s rotational dynamics. Since fault sig-
natures such as bearing defects, gear meshing, imbalance, and
misalignment occur at frequencies tied to shaft speed (RPM),
W, is typically chosen to span one or more characteristic cy-
cles. In practice, it is set as a function of the rotational period,
balancing temporal resolution and computational cost.

The sampling frequency f, likewise affects preprocessing:
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higher f; offers finer temporal resolution, but increases com-
putational load for downstream continuous wavelet trans-
form (CWT) analysis. For this study, a sampling frequency
fs = 3.2 kHz was chosen to capture harmonics up to 1.6
kHz, which balances the need for detail with the feasibility of
edge deployment. For constrained devices, lower rates (e.g.,
1 kHz) reduce memory and computation requirements but at
the expense of spectral detail.

Thus, parameter selection requires balancing diagnostic fi-
delity with deployment feasibility. While high-resolution
DAQ systems allow very high sampling rates, this work em-
phasizes the practicality of MEMS accelerometers at moder-
ate rates, which limit cost and computational demand while
still providing sufficient fidelity for wavelet-based feature ex-
traction.

3.4. Continuous Wavelet Transformation

Vibration signals from rotating machines are typically non-
stationary, with frequency content that changes over time
due to transients and evolving spectral patterns (Yan, Gao, &
Chen, 2014). Continuous wavelet transform (CWT) provides
an adaptive framework for time-frequency analysis. CWT
addresses the fixed-resolution issue of Short Time Fourier
Transform (STFT) by decomposing a signal into wavelets,
which are small, oscillatory functions localized in both time
and frequency. The foundation of the wavelet transform is to
scale and translate the mother wavelet ¢)(t), to analyze differ-
ent frequencies and localized points in time within a signal,
and generate the family of daughter’ wavelets. The continu-
ous wavelet transform of a signal f(¢) is mathematically de-
fined as:

1 i L[t—D
Wi(a,b) = fOyr (—— ) dt
Vial J oo a

Here, a > 0 is the scale parameter (inversely related to fre-
quency), b € R is the translation parameter (shifting the
wavelet in time), and ¢* is the complex conjugate of the
mother wavelet. The normalization term ensures constant en-
ergy across scales.

The output of the transform, Wy(a,b), is visualized as a
scalogram. Varying b and a visualizes the energy distribu-
tion of the vibration signal, thus resulting in a 2D plot, which
is typically visualized as a heatmap representing the intensity
of the signal’s energy. With time on the horizontal axis and
scale on the vertical axis, and color (or intensity) represent-
ing the magnitude of the wavelet complex wavelet coefficient
at that specific time and scale. Unlike fixed-window meth-
ods (STFT), scalograms with their variable window lengths
adapt according to the frequency content, providing optimal
time-frequency trade-offs. An important preprocessing step
is required before the final generation of the time-frequency

image. Three common techniques are applied in this frame-
work for preprocessing the scalogram:

1. Logarithmic Transformation (to compress dynamic
range):
Xiog = log(1+ X) (D

Logarithmic scaling compresses the wide dynamic range
of scalograms, enhancing visibility of weak features
while preventing high-intensity regions from dominat-
ing. The offset ensures stability near zero.

2. Min-Max Normalization (to scale into [0, 1] for image
representation):
X _ X - Xmin (2)
o Xmax - Xmin
Normalization maps the data to a fixed intensity interval,
ensuring consistent contrast across windows.

3. Resizing (to reduce computational cost):
Xresized = ReSiZC(Xnorma o, W) 3)

To lower memory and processing demands, normalized
images are resized to fixed dimensions (H,W). This
preserves the essential structure of the signal represen-
tation.

For this predictive maintenance framework, the complex
Morlet wavelet was selected for its ability to capture both am-
plitude and phase information in vibration signals (Yan et al.,
2014). A key novelty of this framework is the per-axis stack-
ing of scalograms into a 3D representation, enabling simul-
taneous visualization of tri-axial accelerometer signals. The
preprocessed scalograms are structured as three-dimensional
tensors (H x W x ('), where each channel represents a signal
axis.

3.5. U-Net CNN Autoencoder (CAE)

Although standard CNN autoencoders serve as effective fea-
ture extractors, they often struggle to accurately reconstruct
fine-grained spatial details due to information loss during re-
peated downsampling and pooling operations. To address this
limitation, this framework adopts a U-Net architecture, which
has demonstrated superior performance in tasks requiring
precise localization and reconstruction in anomaly detection
(Yedurkar et al., 2023). Their U-shaped architecture with skip
connections bridging encoder-decoder layers preserves high-
resolution spatial features throughout the network, enabling
the accurate reconstruction of textures and edges that are crit-
ical for identifying subtle, localized anomalies. This allows
the decoder to recover high-frequency details and texture in-
formation that would otherwise be lost in the bottleneck layer,
making it particularly suitable for analyzing industrial scalo-
grams. Originally developed for biomedical imaging with
limited data, the U-Net is particularly well-suited for prog-
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nostics applications where scarce labeled normal samples are
available, as it minimizes smoothing artifacts and enhances
sensitivity to deviations.

The proposed framework is illustrated in Figure 2. It en-
hances a standard U-Net with residual learning and regular-
ization for improved performance and training stability. The
architecture is as follows.

* The encoder path follows a convolutional design, con-
sisting of a series of repeated downsampling blocks, each
followed by a max-pooling operation, with LeakyReLU
activation (ReLU), batch normalization, and spatial
dropout (rate=0.3) for regularization. Deeper layers uti-
lize residual blocks (He, Zhang, Ren, & Sun, 2016), each
containing two convolutional layers with batch normal-
ization. An identity shortcut connection bypasses these
layers, projected via a 1x1 convolution when necessary
to resolve dimensional mismatches. This design miti-
gates the vanishing gradient problem, enabling a more
effective and deeper architecture.

» Atits base lies the bottleneck. The encoded features are
distilled at the base of the network through two succes-
sive residual blocks, forming a rich latent representation
of the input.

* The decoder reconstructs the scalogram from this latent
space using a sequence of transposed convolution lay-
ers for upsampling. Critically, feature maps from the en-
coder are concatenated to the corresponding decoder lay-
ers via skip connections at each step, preserving the fine-
grained spatial information lost during downsampling.
The final layer is a 1x1 convolution with a sigmoid ac-
tivation function, producing a reconstructed output with
pixel values normalized to [0, 1].

32 32 32 2 32 32

128 128 128 uﬂ
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Figure 2. Proposed U-Net Architecture for anomaly detection
framework

The U-Net’s skip connections preserve fine spatial details
across the network, while the integrated residual blocks en-
able stable training of a deeper network and enhance feature
learning.

4. EXPERIMENTAL VALIDATION

Figure 3. Experimental setup of Induction motor

Data Acquisition: To validate the proposed anomaly detec-
tion framework, a test bench was set up consisting of a three-
phase induction motor mechanically coupled to a variable DC
motor acting as a controllable load, as shown in Figure 3. The
induction motor was run at a nominal speed of 1440 rpm un-
der 75% load, as standard operating conditions. While vibra-
tion data were acquired using a tri-axial digital MEMS ac-
celerometer (ADXL345, Analog Devices) under both healthy
and induced fault scenarios.

Two triaxial accelerometers were screw-mounted onto the
motor casing in vertical and horizontal orientations, provid-
ing redundancy in the measurement. The accelerometers’
axes were aligned with the motor’s axial (x), horizontal ra-
dial (y), and vertical radial (z) directions. Of the two ac-
celerometers recorded, only the accelerometer with the high-
est signal-to-noise ratio was used to generate the dataset for
model training. Each sensor connects to a custom data ac-
quisition (DAQ) device based on an STM microcontroller via
an individual data channel, interfaced with a Raspberry Pi
5 for storage. For this experimental setup, the signals were
recorded at the highest possible sampling rate supported by
the accelerometer at 3200 Hz with a £2 g range and 13-bit res-
olution, satisfying the Nyquist criterion for the sensor’s 1600
Hz bandwidth. A total of thirty minutes of known healthy op-
eration of the motor was recorded, which served as the input
dataset for training the autoencoder.

To assess real-time capability, different anomalies were intro-
duced by varying mechanical load (abrupt torque changes, ir-
regular speed fluctuations, and transient spikes) to the system,
simulating realistic operational disturbances. Furthermore,
the test bench facilitates the introduction of controlled faults,
including rotor imbalance, rotor foot damage, misalignment,
damaged coupling, and bearing defects. Because such sce-
narios are difficult to simulate during otherwise normal oper-
ation, a series of datasets was created by concatenating nor-
mal operating data with faulty scenarios, with the number of
test datasets corresponding to the number of simulated fault
conditions, discussed in the evaluation.
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Figure 4. Power spectral density of accelerometer signals in
the z, y, and 2 axes, obtained using Welch’s method.

The raw recorded vibration signals undergo an initial prepro-
cessing by removing the DC component. Power spectral den-
sity analysis (Figure 4) reveals that the energy is broadly dis-
tributed up to 1600 Hz bandwidth, with notable peaks occur-
ring near 600-800 Hz for the signals. This indicates the pres-
ence of dominant vibration modes in this frequency range.
These pronounced peaks are often linked to structural reso-
nances or harmonics from rotating machinery, are valuable
for tracking resonance behavior and detecting early mechan-
ical faults.

Data Preparation: The conditioned vibration signals from
each axis were simultaneously segmented in temporal order
into fixed-length window length (W; = 1 second), aligned
across channels using the sliding window technique. At the
sampling rate of 3200 Hz, each fixed window contains 3200
samples per channel, resulting in a two-dimensional array of
shape (3200,3). This segmentation converts the continuous
signals into arrays, where rows represent temporal samples
and columns correspond to the x, ¢, and z channels, suitable
for time-frequency transformation and deep learning.

Thereafter, each window was transformed into a scalogram
by applying the continuous wavelet transform (CWT) using
complex Morlet (cmor) as the mother wavelet. This multi-
channel signal-to-scalogram conversion method is shown in
Figure 5. CWT computation was performed using 128 log-
arithmically spaced scales, spanning the sensor’s usable fre-
quency range (10-1600 Hz), producing a coefficient matrix
of size 128 x 3200 per channel. A loglp transformation was
first applied to the absolute values of the complex coefficients
before they were normalized to [0, 1] (min-max) using global
statistics computed from the healthy training dataset. This ap-
proach eliminates amplitude differences across measurement
sessions while preserving relative spectral patterns relevant to
anomaly detection. Normalization was performed separately
for each axis prior to fusion.

Raw Accelerometer Signal

- A

Alauuil
Ly

ET——

ommedas

C

Figure 5. Data preparation pipeline from raw tri-axial vibra-
tion to multi-channel CWT scalograms.

For computational efficiency, the normalized scalograms are
resized to a fixed resolution of 128 x 256 through bilinear in-
terpolation, reducing input size while preserving spectral con-
tinuity across adjacent scales and time bins. This step stan-
dardizes input dimensions across all samples for CNN input,
while reducing memory requirements, and facilitates batch
training. Downsampling compresses the temporal axis, and
the chosen resolution was found sufficient to retain transient
features relevant to anomaly detection in preliminary experi-
ments.

Subsequently, the three normalized scalograms (correspond-
ing to the x, y, and z axes) were concatenated along the chan-
nel dimension, forming a unified tensor of shape (128, 256, 3)
per window. This leverages cross-axis relationships, which
mimic RGB image representations and allow convolutional
neural networks to exploit cross-axis correlations that may
not be apparent when analyzing each axis independently. The
framework’s integration of directional information via chan-
nel fusion enhances the network’s capacity to detect complex
vibration signatures associated with machine anomalies.

4.1. Model Architecture and Training

The model was implemented according to the U-Net-based
architecture with residual blocks detailed in Section 3.5. The
specific layer configuration and hyperparameters are sum-
marized in Table 1. The network was trained to minimize
the mean squared error (MSE) between the input and recon-
structed scalograms, using the Adam optimizer with a learn-
ing rate of 0.001 and gradient clipping at a norm of 0.5 to
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ensure stable training. The model was regularized during
training with spatial dropout (rate=0.3) and L2 weight decay
A=1x10"%.

Encoder
Conv2D Block 1 32 filters, 3 x 3, LeakyReLU, BN
MaxPool2D 2 X 2 stride
ResBlock 2 64 filters, 3 x 3, BN, Dropout
MaxPool2D 2 X 2 stride
ResBlock 3 128 filters, 3 x 3, BN, Dropout
MaxPool2D 2 X 2 stride

Bottleneck

ResBlock x2 256 filters, 3 x 3, BN, Dropout

Decoder
Conv2DTranspose 128 filters, 2 x 2, stride 2
Skip + ResBlock 128 filters, skip from Encoder
Conv2DTranspose 64 filters, 2 x 2, stride 2
Skip + ResBlock 64 filters, skip from Encoder
Conv2DTranspose 32 filters, 2 x 2, stride 2
Skip + ResBlock 32 filters, skip from Encoder

Table 1. U-Net autoencoder architecture

The training dataset was divided into 1860 windows, of which
70% (1302 segments) were used for training and 30% (558
segments) for validation. Training was conducted with a
batch size of 32. To prevent overfitting, early stopping with
a patience of 10 epochs (restoring the best weights) and a
learning rate reduction by a factor of 0.5 after 5 epochs of
validation loss plateau were applied. This configuration en-
sured stable convergence and good generalization.The testing
dataset, which remained unseen during training and valida-
tion, comprised 1507 samples in total, including 386 normal
windows and 1121 fault windows randomly selected from
six distinct fault conditions. To ensure fair evaluation, faulty
samples were evenly distributed across these fault types, en-
abling consistent assessment of the model’s anomaly detec-
tion capability across diverse failure modes.

5. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we present the results organized into two sub-
sections: one discussing the anomaly detection performance
on the induction machine test rig, and the other evaluating
the efficacy of edge deployment with the anomaly detection
framework.

5.1. Induction machine anomaly detection performance

The anomaly detection capability of the proposed U-Net
autoencoder-based framework was assessed based on its re-
construction error on unseen test data. Consequently, the
Mean Squared Error (MSE) between the original and recon-
structed scalogram windows was used as a robust anomaly
score, as it quantifies the deviation from the learned healthy
state. Higher MSE values, specifically those exceeding a
predefined threshold, directly indicated deviations from the
learned healthy state, signaling a potential anomalous state.

0.8

- 05
0.6

~ 0.0
0.4
0.2 - 05
0.8

~ 05
0.6

~ 0.0
0.4
0.2 — 0.5
0.8 [l

~ 05
0.6

- 0.0
0.4

|

02 | ~ 0.5

Figure 6. Scalogram comparison for normal operation: origi-
nal (left), reconstructed (middle), and difference (right) for x,
Y, Z axes

1.00 - 0>
CLLLLLVRC T RERTSLT LY
075 V4 AW i
T - 00
050
025 s— - 05
1.0g MVINHM I o5
075
| - 0.0
050 WJ; o

!
025 |- o5

o ARV o5

0.75 LT R Y

Figure 7. Scalogram comparison for an anomalous segment:
original (left), reconstructed (middle), and difference (right)
for x, y, z axes



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2025

Reconstruction Error - Healthy operation

0.06

— Reconstruction Error
0.05 4 | =- Anomaly Threshold
« Anomalies

0.04 4

0.02 4

0.01 o mememememom m o o e .. v e e

0 10 20 30 40 50 60
Time (s)

Reconstruction Error - 100% load

0.06
— Reconstruction Error

0.05 - =+ Anomaly Threshold
« Anomalies

0.04 4

0.02 A

.00 = o . . 0 .., ..., .0

Time (s)

Reconstruction Error - Rotor foot damage

0.06

— Reconstruction Error
0.05 4 =+ Anomaly Threshold
« Anomalies

0.04 4

0.02 4

; <.
LY e s e f o

0.00 T T T T T T T
0 10 20 30 40 50 60
Time (s)

Reconstruction Error - NO Load
0.06 T
— Reconstruction Error

0.05 o =+ Anomaly Threshold
« Anomalies

0.04 4

0.02 +

00l =T mm s e e e e s e ————- I e e e

0.00 T T T T T T

0 10 20 30 40 50 60
Time (s)

Reconstruction Error - bearing defect

NN SRR

0.06
— Reconstruction Error

0.05 4 |-+ Anomaly Threshold
« Anomalies

0.04 4

0.02 4

0.01 J™ " .. . . . . . b e o

0.00 T T 1 T T T

0 10 20 30 40 50 60
Time (s)

Reconstruction Error - damaged coupling

0.06

— Reconstruction Error
0.05 4 |=- Anomaly Threshold
« Anomalies

0.04 4

0.02 4

0.01

T T T T T T

0 10 20 30 40 50 60
Time (s)

0.00

Figure 8. Reconstruction error (MSE) over time under normal
operation and different induced faults

Post-training, the model achieved a mean reconstruction error
of 0.001725 on the training set and 0.001832 on the validation
set. The narrow gap between these values indicates minimal
overfitting and confirms the model’s ability to capture nor-
mal operational patterns, establishing a reliable baseline for
unsupervised anomaly detection.

A visual comparison in Figure 6 illustrates the reconstruc-
tion quality, where the output scalograms closely match the
original inputs across all three accelerometer axes within
a representative time window. This close correspondence
demonstrates that the model successfully preserves essential
time-frequency features and captures the fine-grained struc-
ture of healthy operation. In contrast, Figure 7 highlights the
discrepancy between original and reconstructed scalograms
when anomalous inputs are presented. Here, the difference
between the two is explicitly shown; in anomalous cases, this
difference becomes more pronounced, making the deviations
clearly visible. The threshold for anomaly detection was set
using the mean plus three standard deviations (i + 30) of re-
construction errors derived from a validation subset of healthy
data.

To further evaluate robustness, Figure 8 illustrates, differ-
ent fault scenarios concatenated with 30 seconds of healthy
data, which plots the anomaly score (MSE) over time. Dur-
ing normal operation, the score remained below threshold. In
these sequences, the reconstruction error displays a sudden
and sustained spike precisely at the onset of faults, showing
that the model can reliably distinguish faulty conditions with-
out supervised labels. The reconstruction of healthy segments
serves as a stable baseline, while the absence of false alarms
in the 100% load scenario, previously seen during training
demonstrates that the model does not misclassify familiar op-
erating states as anomalies.

Models P/% R/% F1/% ROC AUC/%
U-Net-CAE (CWT) 98.42 100.00 99.20 100.00
2D-CAE (CWT) 98.67 9295 95.73 94.17
1D-CAE (Raw) 97.56  90.00 92.77 95.85

Table 2. Comparison of experimental results

To contextualize these findings, we performed a comparative
analysis against two common unsupervised baselines: a stan-
dard 1D Convolutional Autoencoder (1D-CAE) operating on
the raw time-series data, and a standard 2D-CAE (without
U-Net skip connections) operating on the same CWT scalo-
grams. The experimental results, as shown in Table 2, com-
pare the performance of the anomaly detection models. The
U-Net—CAE (CWT) demonstrates clear superiority, achiev-
ing perfect recall (100%) and ROC AUC (100%), while also
attaining the highest F1-score (99.20%). This highlights the
advantage of its architecture, where skip connections effec-
tively preserve high-resolution features from the CWT, which



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2025

is critical for reconstructing the complex patterns of healthy
operation and detecting subtle deviations.

Taken together, these results validate the effectiveness of the
proposed anomaly detection framework. The low reconstruc-
tion error on healthy data confirms its ability to learn the com-
plex representation of normal operation, while the consistent
error escalation and clear visual separability under faults un-
derline its sensitivity to abnormal patterns. These findings po-
sition the model as a strong candidate for industrial anomaly
detection, offering both accuracy and robustness in real-world
settings.

5.2. Real-Time Edge Deployment and Monitoring System
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Figure 9. Raw vibration signal vs. reconstruction error for
test data with induced anomalies. Spikes correspond to de-
tected anomalies.

For real-time deployment on an edge device, the number of
scales in the Continuous Wavelet Transform (CWT) was re-
duced from 128 to 64, significantly lowering the computa-
tional load during feature extraction and model parameters.
Within the framework, the CWT remains the most resource-
intensive step. Its implementation was carried out on a Rasp-

berry Pi 5, equipped with a high-speed SSD to support rapid
data transfer from the acquisition system and the execution of
the CWT algorithm.

The deployment architecture also integrated a lightweight
web interface built with Flask!, hosted directly on the Rasp-
berry Pi. This interface enabled real-time visualization of di-
agnostic metrics, including reconstruction error and anomaly
alerts allowing operators to monitor system health remotely.
Benchmarking showed that the revised CWT computation
across 64 scales required an average of 705 milliseconds
per cycle, almost halving the 1395 milliseconds observed
with the original 128-scale configuration. Subsequent pre-
processing steps, such as normalization and resizing to match
the autoencoder’s input, added only 2.3 milliseconds per in-
stance. The inference stage, involving a compact 31 MB
autoencoder and threshold-based anomaly scoring, averaged
177 milliseconds per cycle and ran effectively on the Pi’s
CPU without GPU support. Taken together, the end-to-end
pipeline from raw acquisition to anomaly classification oper-
ated with an average latency of 900 milliseconds, comfort-
ably within the sub-second response times demanded in in-
dustrial edge applications. During this end-to-end inference
cycle, the average CPU load on the Raspberry Pi 5 remained
at approximately 27-40%, and the entire process consumed
776-900 MB of system RAM. These metrics confirm the fea-
sibility of deploying the framework on such constrained de-
vices without overwhelming the system, leaving resources for
parallel tasks.

The system’s ability to separate normal from abnormal oper-
ation was assessed through semi-supervised testing. To this
end, anomalies were deliberately introduced in the form of
short-duration load spikes, gradual torque shifts, and other
fault states. Figure 9 shows the reconstruction error profile
over one such test sequence, with pronounced spikes aligning
closely with the onset of induced anomalies. The dataset con-
tained six mechanically induced load spikes, during which the
reconstruction error exceeded the anomaly threshold by 30—
45%. These events were consistently detected within 2 sec-
onds of their occurrence, confirming the framework’s respon-
siveness. The performance gains can be attributed to the mul-
tichannel design, which processes vibration and other sen-
sor signals simultaneously to improve sensitivity across fault
modes.

6. CONCLUSION AND FUTURE WORK

This study presented an anomaly detection framework tai-
lored for rotary equipment, with a focus on induction motors.
By combining continuous wavelet transform (CWT) with a
residual U-Net autoencoder, the approach leverages scalo-
gram representations of tri-axial vibration signals to capture
both temporal and spatial features across machine axes. The

https://palletsprojects.com/projects/flask/
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reconstruction error provided a robust anomaly score, allow-
ing subtle deviations from normal operation to be identified
without the need for supervised labels.

Experimental validation confirmed the framework’s ability to
detect a range of induced fault scenarios with high sensitivity
while retaining robustness under known operating conditions.
The reduction of CWT scales from 128 to 64, coupled with
an optimized autoencoder, enabled real-time deployment on
a Raspberry Pi 5 with sub-second inference latency, demon-
strating its suitability for industrial edge applications.

Despite these promising results, we acknowledge several lim-
itations inherent in this study. The experimental validation
was conducted exclusively on a single induction motor test
bench under controlled laboratory conditions. The vibration
characteristics can differ significantly across various types of
rotary equipment, and the model’s generalization to other ma-
chines has not yet been verified. Furthermore, the exper-
iments did not cover the full range of complexities found
in real industrial environments, such as high environmental
noise or highly dynamic operating conditions. The unavail-
ability of a suitable, publicly available benchmark dataset for
our specific multi-axis MEMS sensor configuration also con-
strained our ability to perform a broader comparative analysis
against other published methods.

Future work will be directed at addressing these limitations.
A primary goal is to validate the framework’s robustness by
applying it to different equipment types and, where possi-
ble, under the variable speed and load conditions common
in real-world scenarios. Additionally, to improve adaptability
in diverse industrial settings, we will explore more dynamic
anomaly thresholding techniques (e.g., adaptive, statistics-
based thresholds) as an alternative to the current static 1+ 3o
rule, aiming to reduce false alarms and enhance sensitivity.
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