Predicting Maintenance Actions from Historical Logs using Domain-
Specific LLMs

Aman Kumar', Ahmed Farahat!, and Chetan Gupta'

'Hitachi America Ltd., Santa Clara, California, USA
Aman.kumar@hal. hitachi.com, Ahmed.farahat@hal.hitachi.com, Chetan. Gupta@hal.hitachi.com

ABSTRACT

Maintenance logs of complex specialized equipment capture
problem—action records that are essential for building
predictive maintenance solutions but remain difficult to
utilize due to their terse, abbreviation-heavy style. This work
provides the first systematic benchmark and domain-
adaptation study of large language models (LLMs) for
predicting maintenance actions from free-text problem
descriptions in the MaintNet aviation dataset. We evaluate a
range of proprietary and open-source LLMs under zero-shot
and few-shot prompting and additionally fine-tune selected
open models for supervised evaluation. Experiments are
conducted on both raw-abbreviation and expanded datasets,
using both lexical (ROUGE, BLEU) and semantic (cosine
similarity, BERTScore) metrics. Results show that GPT-40
achieves the strongest semantic alignment, while the instruct
version of Gemma-3-4B leads in lexical overlap. Few-shot
prompting boosts weaker models disproportionately,
narrowing the gap with stronger baselines. Fine-tuning
delivers the most significant gains, with instruct versions of
Gemma-3-4B, LLaMA-3.2-3B, and Phi-4-mini, improving
BLEU by up to 90% and ROUGE-2 by 30%. Notably, the
fine-tuned Gemma-3-4B surpasses GPT-40 across multiple
metrics, demonstrating the effectiveness of domain-specific
adaptation. These findings highlight the potential of fine-
tuned LLMs to utilize unstructured aviation logs for building
reliable maintenance systems.

1. INTRODUCTION

As digital technologies advance, engineering systems
generate vast volumes of data increasingly leveraged to
enhance performance and reliability. Among these sources,
maintenance logs are particularly significant, especially in
aviation, where safety and efficiency are paramount (Tanguy
et al., 2016; Altuncu et al., 2018). Such logs, often kept as
event records, capture valuable problem—action information
that can enable predictive maintenance, helping
organizations anticipate failures, mitigate risks, and reduce
costs (Jarry et al., 2020; Meunier-Pion et al., 2024).

Maintenance logs of complex specialized equipment (e.g.,
aviation), however, present unique challenges: they are
written in terse, domain-specific language, laden with
abbreviations and non-standard spellings. Each entry
typically pairs a problem description with the corrective
action taken, providing a natural but underutilized basis for
building predictive models. Automatically predicting likely
corrective actions from such problem descriptions could
support technicians, improve turnaround times, and enhance
decision-making in safety-critical contexts.

Early research applied traditional NLP tools to this domain,
focusing on preprocessing and classification. Akhbardeh et al.
(2020) introduced the MaintNet toolkit with domain-specific
spell-checkers and part-of-speech taggers, significantly
outperforming general-purpose tools like NLTK or CoreNLP.
Other studies classified log entries into problem or fault
categories (Tanguy et al., 2016) but faced severe class
imbalance where a few common classes dominated. To
address this, Akhbardeh et al. (2021) proposed specialized
resampling strategies adapted from computer vision,
improving accuracy on rare issue types. These efforts
underscore the difficulty of applying standard supervised
learning to sparse, noisy maintenance data.

Beyond classification, unsupervised and retrieval methods
have sought to uncover latent structure in logs and support
technicians with past examples. MaintNet researchers
showed that clustering techniques like DBSCAN and k-
means could reveal recurring issue groups such as engine-
related clusters. Payette et al. (2025) and Vidyaratne et al.
(2024) combined text mining with Failure Modes and Effects
Analysis (FMEA), mapping free-text to structured failure
modes and improving extraction of affected components and
causes. More recently, retrieval-based systems using
sentence embeddings have been applied: Sundaram et al.
(2024) and Nagqvi et al. (2024) demonstrated semantic search
that retrieves similar historical cases and suggests candidate
corrective actions, illustrating the value of domain-trained
embedding models for maintenance decision support.
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In addition to retrieval-based approaches, researchers have
explored transfer learning and, more recently, large language
models (LLMs). Akhbardeh et al. (2022) and Naqvi et al.
(2021) showed that intra-domain transfer (e.g., between
aviation datasets) yields consistent gains, while cross-domain
transfer (e.g., from automotive to aviation) often degrades
performance. These findings emphasize the importance of
domain-specific adaptation, as logbooks across industries
diverge sharply in vocabulary and style. Parallel to these
advances, LLMs have emerged as powerful tools for handling
unstructured technical text (Lukens et al. 2024). Kelma et al.
(2025), for instance, demonstrated that GPT-4-based models
can automatically generate structured assembly instructions
for cognitive assistance systems, achieving expert-level
quality when evaluated with BLEU and METEOR.

Despite these advances, current methods still struggle with
rare or unseen issues; the very cases where decision support
is most critical. Retrieval systems depend on close historical
matches, while classifiers often fail on long-tail categories.
LLMs offer strong potential, but their ability to predict
corrective actions from maintenance logs has not been
systematically studied. This work presents the first
comprehensive benchmark of LLMs and develops domain-
specific language models for aviation maintenance action
prediction. Our contributions are twofold: (1) We compare
proprietary and open-source LLMs under zero-shot and few-
shot prompting to assess baseline capabilities, (2) We fine-
tune selected open models on progressively larger training
splits, analyzing how domain adaptation scales and whether
compact models can surpass GPT-40. We evaluate
performance with both lexical (ROUGE-1, ROUGE-2,
BLEU) and semantic (cosine similarity, BERTScore) metrics,
providing a comprehensive assessment of LLM-generated
maintenance actions in this safety-critical settings.

The remainder of this paper is structured as follows. Section
2 introduces the dataset and problem formulation. Section 3
details the experimental setup, including model selection,
fine-tuning objectives, and evaluation metrics. Section 4
presents results across zero-shot, few-shot, and fine-tuned
settings. Section 5 provides a discussion of key findings, and
Section 6 concludes with implications and future directions.

2. DATA AND PROBLEM FORMULATION

In this work, we focus on the Aircraft Historical Maintenance
Dataset (2012-2017) from the University of North Dakota’s
aviation program, a corpus of 6,169 maintenance logbook
entries released via the MaintNet repository (Akhbardeh et al.
2020). Each entry has free-text ‘“Problem” and “Action”
fields describing maintenance issues and the corrective
actions taken. These log entries are typically short, domain-
specific texts written by mechanics or pilots, often containing
technical jargon and abbreviations.
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Figure 1: Overview of workflow for generating
maintenance actions from historical logs.

Of the 6,169 entries, 5,122 are unique problem-action pairs,
and within these, 3,595 are unique problems. Since our
objective is a prediction task where the model must generate
an action given a problem, we restricted the dataset to entries
where each problem maps to exactly one action. This filtering
yielded 2,859 entries with a one-to-one mapping, while the
remaining 736 entries contained multiple actions (ranging
from 2 to 19 per problem). Consequently, our experiments
were conducted on the 2,859 single-action samples.

The textual data is domain-specific (aircraft parts and
maintenance actions), often abbreviated, and relatively brief
(primarily a single sentence). The task is to learn a mapping
from a problem description P (inpuf) to an action description
A (output). We treat this as a sequence-to-sequence prediction
problem: given the text of a problem, generate the text of the
likely maintenance action.

We also prepared two dataset versions: abbreviated and
expanded. In the abbreviated version, an entry might read “#2
& #4 cyl rocker cover gasket are leaking” which requires
domain knowledge to interpret (“cyl” meaning cylinder). The
expanded version replaces abbreviations with their full forms,
e.g., “#2 & #4 cylinder rocker cover gasket are leaking”. To
construct the expanded version, we used the standardized
abbreviation dictionary released with MaintNet, which
defines 65 aviation-specific terms. For example, “cyl” was
expanded to “cylinder” and “batt” to “battery.”

3. EXPERIMENTS

We designed our experiments to fine-tune and evaluate
different LLMs to predict the action given a problem. In this
section, we explain the different models, experimental setup,
and evaluation metrics used.

3.1. Models and Baselines

We evaluated a mix of proprietary and open-source models.
The proprietary baseline included GPT-4o0, while open-
source candidates included instruct versions of Meta’s
Llama-3.2-3B (Grattafiori et al. 2024), Google’s Gemma-3-
4B (Team et al. 2025), Microsoft’s Phi-3.5-mini and Phi-4-
mini (Abouelenin et al. 2025), NVIDIA’s Nemotron-Mini-
4B (Adler et al. 2024), and Alibaba’s Qwen2.5-3B (Team et
al. 2024). We selected open-source models of 3-4B parameter
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range for fair comparison, balancing availability and fine-
tuning feasibility. For each model, we tested two conditions:

e  Zero-shot: Models were evaluated on the filtered single-
action subset by prompting the model to generate the
action given a problem.

e Few-shot (5-shot): Models were evaluated on the filtered
single-action subset by prompting the model to generate
the action given a problem along with 5 examples of
problem-action pairs. This experiment was conducted to
examine whether in-context learning could supplement
model performance.

In addition, we performed supervised full-parameter fine-
tuning on three candidate models: Llama-3.2-3B, Gemma-3-
4B, and Phi-4-mini based on the preliminary baseline results
and feasibility of fine-tuning. Fine-tuning was performed
using subsets of the MaintNet aviation dataset, with ratio-
based splits (10%—-90%), and models were evaluated with
zero-shot prompting on held-out test sets.

3.2. Fine-Tuning Objective

Each problem-action pair was reformatted into a dialogue-
like instruction format using special tokens, inspired by
Alpaca-style instruction tuning. The fine-tuning objective
was causal language modeling (CLM), with the model trained
to maximize the likelihood of the target tokens in the action
sequence conditioned on the problem. The cross-entropy loss
was applied at the token level across the generated output.

The fine-tuning pipeline was implemented using the
HuggingFace Transformers framework (Wolf et al. 2020).
Each model employed its native tokenizer, with input
sequences truncated or padded to a maximum length of 512
tokens. The training data were split into ratio-based subsets
(10%—-90%), with each subset further divided into a fixed
90/10 train/validation split. Optimization was carried out
with the AdamW optimizer, using a learning rate of 5e-6,
weight decay of 0.01, and 50 warm-up steps. Training was
performed with an effective batch size of §, achieved through
a per-device batch size of 1 and gradient accumulation over
8 steps. All experiments used BF16 precision for
computational efficiency. Each model was fine-tuned for
three epochs per split, retaining the best-performing model
based on validation performance. The compute and runtime
details are provided in the Appendix.

3.3. Evaluation Metrics

We used a combination of lexical overlap and semantic
similarity metrics to assess prediction quality:

e ROUGE-1 / ROUGE-2: Measures n-gram overlap
between generated and reference actions.

e BLEU: Captures precision of n-gram matches, useful for
structured technical text.

e Cosine Similarity: Based on sentence embeddings,
capturing semantic relatedness.

e BERTScore: Uses contextual embeddings from
Bidirectional Encoder Representations from
Transformers (BERT) to evaluate semantic alignment.

Each score was reported as the mean + standard deviation
across three trials. To reduce prompt drift and standardize
outputs at test time, we prepend a fixed domain pre-prompt
describing the MaintNet aviation dataset and the expected
style of the action statement; the model is then given Input:
{problem} and asked to complete the Output. Decoding uses
stochastic sampling with parameters max_new_tokens=100,
do_sample=True, top p=0.9, and temperature=0.5. The full
prompts for zero-shot and few-shot settings are provided in
the Appendix.

4. RESULTS

4.1. Evaluation of LLMs on Aviation raw-
abbreviation dataset

As presented in Table 1, on the raw-abbreviation version of
the dataset, Google’s Gemma-3-4B consistently performs the
best on ROUGE-based measures, achieving 9.4-43.1%
higher ROUGE-1 and 18.3—147.2% higher ROUGE-2 scores
compared to the next best and weakest models. At the same
time, GPT-40 establishes itself as the strongest performer on
semantic alignment benchmarks, obtaining the highest BLEU,
cosine similarity, and BERTScore. Specifically, GPT-40
leads by 15.0-144.3% in BLEU, 4.4-14.0% in cosine
similarity, and 0.6-2.2% in BERTScore over the next best
and weakest models. These results suggest that while Gemma
is better at capturing lexical overlap with reference actions,
GPT-40 demonstrates greater consistency in producing
semantically faithful responses.

4.2. Evaluation of LLMs on expanded dataset

On the expanded dataset, Google’s Gemma-3-4B performs
the best on lexical overlap metrics, achieving ROUGE-1 of
0.3577 and ROUGE-2 of 0.1400. Compared to other models,
Gemma is ahead by 5.5-41.0% on ROUGE-1 and 16.9-133.0%
on ROUGE-2, showing that abbreviation expansion
marginally amplifies its advantage in capturing precise
problem-action correspondences. On the other hand, GPT-40
continues to lead on semantic and mixed measures, recording
the highest BLEU (0.0547), cosine similarity (0.5906), and
BERTScore (0.8717). Relative to the next-best models, GPT-
4o achieves improvements of 1.8—147.5% in BLEU, 4.2-13.5%
in cosine similarity, and 0.6-2.1% in BERTScore. These
results, presented in Table 2, indicate that while Gemma
remains the strongest at reproducing lexical matches with
reference actions, GPT-40 leads in semantic alignment, with
its margin of improvement widening in some cases once the
dataset is normalized and expanded.
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Table 1: Evaluation of different LLLMs on Aviation raw-
abbreviation dataset showing ROUGE-1, ROUGE-2,
BLEU, Cosine Similarity and BERTScore metrics.

Model ROUG | ROUG | BLEU | Cosine | BERT
E-1 E-2 Sim. Score
GPT-40 0.3226 | 0.1136 | 0.0513 | 0.5866 | 0.8710
+ + + + +
0.0014 | 0.0001 | 0.0003 | 0.0009 | 0.0002
Qwen2.5- | 0.2859 | 0.0871 | 0.0290 | 0.5237 | 0.8530
3B + + + + +
0.0004 | 0.0013 | 0.0006 | 0.0009 | 0.0002
Gemma- 0.3530 | 0.1357 | 0.0446 | 0.5620 | 0.8655
3-4B + + + + +
0.0004 | 0.0009 | 0.0001 | 0.0006 | 0.0000
Llama- 0.3156 | 0.1122 | 0.0394 | 0.5346 | 0.8589
3.2-3B + + + + +
0.0021 | 0.0014 | 0.0008 | 0.0010 | 0.0004
Phi-3.5- 0.2467 | 0.0549 | 0.0210 | 0.5148 | 0.8527
mini + =+ + + =+
0.0006 | 0.0005 | 0.0000 | 0.0018 | 0.0001
Phi-4- 0.2900 | 0.0801 | 0.0282 | 0.5182 | 0.8555
mini + + + + +
0.0017 | 0.0018 | 0.0007 | 0.0012 | 0.0002
Nemotron | 0.3192 | 0.1147 | 0.0419 | 0.5320 | 0.8593
-Mini-4B + + + + +
0.0011 | 0.0011 | 0.0005 | 0.0008 | 0.0002

Table 2: Evaluation of different LLMs on Aviation
expanded dataset showing ROUGE-1, ROUGE-2, BLEU,
Cosine Similarity and BERTScore metrics.

Model ROU ROUG | BLEU | Cosine | BERT

GE-1 E-2 Sim. Score

GPT-40 0.3295 | 0.1210 0.0547 | 0.5906 0.8717
+ + + + +

0.0013 | 0.0007 0.0007 | 0.0011 0.0002

Qwen2.5- 0.2923 | 0.0901 0.0297 | 0.5272 0.8534
3B + + + + +

0.0015 | 0.0013 0.0004 | 0.0007 0.0001

Gemma-3- | 0.3577 | 0.1400 0.0466 | 0.5669 0.8662
4B + + + + +

0.0002 | 0.0003 0.0001 | 0.0012 0.0001

Llama-3.2- | 0.3189 | 0.1166 0.0408 | 0.5382 0.8587
3B + + + + +

0.0008 | 0.0014 0.0007 | 0.0019 0.0001

Phi-3.5- 0.2537 | 0.0601 0.0221 | 0.5205 0.8535
mini + + + + +

0.0005 | 0.0009 0.0004 | 0.0008 0.0001

Phi-4-mini | 0.3020 | 0.0855 0.0310 | 0.5256 0.8568
+ + + + +

0.0019 | 0.0003 0.0006 | 0.0013 0.0003

Nemotron- | 0.3252 | 0.1190 0.0435 | 0.5377 0.8595
Mini-4B + + + + +

0.0003 | 0.0009 0.0002 | 0.0005 0.0001

4.3. Few-shot evaluation of LLMs on Aviation
raw-abbreviation dataset

Few-shot prompting noticeably alters model performance,
amplifying gains for certain models while modestly helping
others, as presented in Table 3. GPT-40 not only retains its
position as the top model but also records meaningful gains,
especially in ROUGE-2 (+25.3%) and BLEU (+16.6%).
Interestingly, weaker models benefit disproportionately: Phi-
3.5 nearly doubles its BLEU and ROUGE-2 scores, while
Phi-4-mini also more than doubles BLEU and improves
ROUGE-2 by nearly 60%. Llama-3.2-3B achieves consistent
gains across all metrics, most notably a 28% boost in BLEU.
By contrast, Gemma and Nemotron experience small drops
in ROUGE, though both improve on semantic measures like
cosine similarity and BERTScore. Qwen shows a similar
pattern, losing ground in ROUGE while gaining in BLEU and
BERTScore. Overall, few-shot prompting emerges as
particularly advantageous for underperforming models,
helping them narrow the gap with stronger baselines.

Table 3: 5-shot evaluation of different LLMs on Aviation
raw-abbreviation dataset

Model ROUG ROU | BLEU | Cosine | BERT

E-1 GE-2 Sim. Score

GPT-40 0.3534 0.1423 | 0.0598 | 0.5949 0.8765
+ + + + +

0.0010 0.0007 | 0.0010 | 0.0008 0.0001

Qwen2.5- 0.2737 0.0836 | 0.0354 | 0.5257 0.8668
3B + + + + +

0.0026 0.0021 | 0.0010 | 0.0006 0.0002

Gemma-3- | 0.3385 0.1304 | 0.0530 | 0.5777 0.8760
4B + + + + +

0.0014 0.0015 | 0.0005 | 0.0007 0.0001

Llama-3.2- | 0.3224 0.1184 | 0.0504 | 0.5577 0.8741
3B + + + + +

0.0006 0.0008 | 0.0005 | 0.0006 0.0001

Phi-3.5- 0.3280 0.1032 | 0.0425 | 0.5711 0.8744
mini + + + + +

0.0006 0.0006 | 0.0008 | 0.0005 0.0001

Phi-4-mini | 0.3454 0.1279 | 0.0571 | 0.5711 0.8758
+ + + + +

0.0004 0.0004 | 0.0009 | 0.0014 0.0003

Nemotron- | 0.2943 0.1105 | 0.0458 | 0.5465 0.8721
Mini-4B + + + + +

0.0033 0.0021 | 0.0019 | 0.0013 0.0004

4.4. Few-shot evaluation of LLMs on expanded
dataset

On the expanded dataset under 5-shot prompting, GPT-40
once again emerges as the overall best-performing model,
achieving the highest scores across ROUGE-1, ROUGE-2,
BLEU, and cosine similarity, while maintaining essential
parity with Gemma on BERTScore, as shown in Table 4.
Specifically, GPT-40 attains a ROUGE-1 of 0.3559,
outperforming Gemma by 3.8% and the weakest baseline
(Qwen) by 29.1%. On ROUGE-2, GPT-40 records 0.1455,
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which is 8.1% stronger than Gemma and nearly 74.0% higher
than Qwen. For BLEU, GPT-40’s score of 0.0615 exceeds
the second-best (Phi-4-mini) by 10.2% and Qwen by 75.7%.
Its cosine similarity of 0.5996 is 3.1% higher than Gemma
and 14.0% higher than Qwen, underscoring its ability to
generate semantically aligned actions.

Table 4: 5-shot evaluation of different LLMs on Aviation
expanded dataset

Model ROUG ROU | BLEU | Cosine | BERT

E-1 GE-2 Sim. Score

GPT-40 0.3559 0.1455 | 0.0615 | 0.5996 0.8763
+ + + + +

0.0011 0.0004 | 0.0004 | 0.0012 0.0002

Qwen2.5- 0.2754 0.0837 | 0.0350 | 0.5259 0.8669
3B + + + + +

0.0015 0.0016 | 0.0010 | 0.0011 0.0002

Gemma-3- | 0.3429 0.1346 | 0.0548 | 0.5814 0.8765
4B + + + + +

0.0002 0.0004 | 0.0003 | 0.0008 0.0001

Llama-3.2- | 0.3261 0.1197 | 0.0507 | 0.5636 0.8740
3B + + + + +

0.0028 0.0022 | 0.0010 | 0.0016 0.0004

Phi-3.5- 0.3267 0.1007 | 0.0422 | 0.5722 0.8741
mini + + + + +

0.0014 0.0009 | 0.0004 | 0.0008 0.0001

Phi-4-mini | 0.3454 0.1268 | 0.0558 | 0.5744 0.8755
+ + + + +

0.0007 0.0012 | 0.0013 | 0.0001 0.0002

Nemotron- | 0.2973 0.1115 | 0.0459 | 0.5507 0.8720
Mini-4B + + + + +

0.0019 0.0020 | 0.0005 | 0.0012 0.0003

Interestingly, Gemma-3-4B performs very competitively in
BERTScore, achieving 0.8765, which is marginally higher
than GPT-40’s 0.8763 (by 0.02%), while outperforming the
weakest baseline (Nemotron) by 0.5%. These results suggest
that on the expanded dataset, GPT-40 leads most dimensions
of evaluation, but Gemma demonstrates resilience in
maintaining lexical-semantic fidelity as captured by
BERTScore. Overall, these results indicate that few-shot
prompting on the expanded dataset offers broader and more
consistent performance benefits than its raw-abbreviation
counterpart, though the magnitude of gains varies across
models, with some (e.g., GPT-40 and Gemma) improving
more substantially than others.

4.5. Evaluation results after Fine-tuning LL.Ms

4.5.1. Gemma-3-4B model evaluation results

The evaluation of Google’s Gemma-3-4B model before and
after supervised fine-tuning on different splits of the
MaintNet aviation dataset is shown in Table 5. The splits
range from 10% to 90% of the available training data, with

the remaining portion reserved for evaluation. This design
allows us to assess how model performance scales with
increasing amounts of fine-tuning data and to compare
improvements over the zero-shot baseline.

Across all splits, fine-tuning leads to consistent and
substantial gains in nearly every evaluation metric, as shown
in Figure 2. ROUGE-1 improves by 10—14%, with the largest
increase observed at the 0.6 split (+13.77%). Similarly,
ROUGE-2 shows remarkable improvements, ranging from
15% to over 31%, indicating that fine-tuning greatly
enhances the model’s ability to capture bigram-level overlaps
between generated and reference actions. BLEU scores
benefit the most, with improvements ranging from +28% (at
0.1 split) up to a striking +88.8% at 0.9 split, demonstrating
that fine-tuning dramatically strengthens the model’s
precision in reproducing exact phrasing of corrective actions.

In addition to lexical overlap, fine-tuning also improves
semantic alignment. Cosine similarity increases steadily,
with relative gains between +4.4% and +9.7%, showing that
the model produces predictions more semantically consistent
with references. Likewise, BERTScore sees incremental
gains of +0.8% to +2.3%, confirming that fine-tuning
preserves and even slightly enhances lexical-semantic
fidelity. These smaller but steady increases suggest that while
Gemma already had strong semantic representations, fine-
tuning sharpened its alignment to domain-specific action
phrasing.

The magnitude of improvement correlates with the size of the
fine-tuning split. For example, at lower data fractions (0.1—
0.3), improvements are noticeable but moderate, whereas at
higher splits (0.6—-0.9), gains become dramatic; especially for
BLEU and ROUGE-2. This trend highlights that Gemma
continues to benefit from additional training data and does
not plateau early. The large BLEU improvements at 0.8 and
0.9 suggest that exposure to more diverse corrective actions
enables the model to better reproduce specific maintenance
terminology and phrasing.
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Figure 2: Visualization of Gemma-3-4B model evaluation
results before and after fine-tuning



Table 5: Gemma-3-4B model evaluation results showing baseline (before) and after fine-tuning

Split | ROUGE- | ROU | A% | ROUGE-2 | ROU | A% BLEU | BLE | A% |CosineSim | Cosine | A% | BERTSc | BER | A%

1 (Mean | GE-1 (Mean = | GE-2 (Mean + U (Mean + Sim ore TSco
+ Std) Var Std) Var Std) Var Std) Var (Mean = re
Std) Var

Basel | 0.3573 + |0.066 |- 0.1339+ | 0.047 |- 0.0411+ |0.003 |- 0.5609 = | 0.0438 |- 0.8665+ |0.001 |-

ine 0.2586 9 0.2178 4 0.0585 4 0.2093 0.0344 2

0.1 0.3947+ |0.077 |+10. |0.1551+ |0.070 |+15.7 | 0.0526 = |0.006 |+27.9 |0.5857+ |0.0461 [+4.4 [0.8739+ |0.001 |+0.85
0.2791 9 47% |0.2662 9 9% 0.0798 4 8% 0.2148 3% |0.0368 4 %

0.2 0.4003 £ |0.082 [+12.]0.1669+ |0.079 |+24.6 |0.0681 = |0.016 |+65.6 [0.5974+ |0.0518 |+6.5 [0.8796+ |0.001 |+1.51
0.2874 6 03% | 0.2821 6 6% 0.1264 0 9% 0.2277 1% |0.0417 7 %

0.3 0.4018+ |0.081 [+12.]0.1679+ |0.078 |+25.4 [0.0693 + |0.016 |+68.3 |0.6024+ |0.0526 (+7.4 [0.8819+ |0.001 |+1.77
0.2849 2 47% 10.2795 1 0% 0.1270 1 8% 0.2294 1% |0.0427 8 %

0.4 0.3932+ |0.084 |+10.|0.1734+ | 0.080 |+29.5 |0.0671 £ |0.012 |+63.2 |0.5945+ |0.0526 [+6.0 |0.8787 = |0.001 |+1.41
0.2910 7 06% | 0.2841 7 3% 0.1104 2 6% 0.2294 0% |0.0426 8 %

0.5 0.3978 £ |0.083 |+11.]0.1699+ |0.080 |+26.8 [0.0721+ |0.017 |+75.5 |0.6043+ |0.0531 [+7.7 [0.8833+ |0.001 |+1.94
0.2894 8 34% | 0.2833 3 8% 0.1309 1 5% 0.2304 4% 10.0430 9 %

0.6 0.4065+ |0.086 |+13.]0.1755+ |0.086 |+31.0 [0.0764 = |0.022 |+85.8 |0.6067+ |0.0551 [+8.1 [0.8833+ |0.002 |+1.94
0.2947 8 77% |0.2935 2 9% 0.1492 3 8% 0.2347 6% |0.0442 0 %

0.7 0.3959+ |0.084 |+10. |0.1708 + |0.081 |+27.6 [0.0702+ |0.016 |+70.8 [0.6093 + |0.0550 |+8.6 [0.8857+ |0.001 |+2.21
0.2902 2 80% [0.2858 7 1% 0.1291 7 0% 0.2345 3% 10.0422 8 %

0.8 0.4044+ |0.084 |+13.]0.1744+ |0.082 |+30.2 [0.0754+ |0.021 |+83.7 [0.6127+ |0.0547 |+9.2 [0.8865+ |0.001 |+2.31
0.2908 6 18% | 0.2876 7 4% 0.1480 9 0% 0.2338 4% 10.0433 9 %

0.9 0.4049+ |0.079 |+13.]0.1744+ |0.079 |+30.2 | 0.0776 + |0.019 |+88.8 |0.6155+ |0.0503 [+9.7 [0.8856+ |0.001 |+2.20
0.2823 7 31% | 0.2810 0 4% 0.1402 7 1% 0.2244 3% 10.0425 8 %

4.5.2. Llama-3.2-3B model evaluation results

On the Llama-3.2-3B model (Appendix Table 7), fine-tuning
on progressively larger splits of the dataset produces
consistent and measurable gains across all evaluation metrics.
ROUGE-1 shows steady improvements in the range of 9—
14%, while ROUGE-2 benefits even more strongly, with
increases of 19-30%, underscoring the model’s enhanced
ability to capture overlapping n-grams from the ground-truth
actions. BLEU sees some of the most pronounced jumps,
improving by 26-47% depending on the training split,
reflecting a sharper alignment in surface-level phrasing
between generated and reference actions.

Semantic similarity metrics also improve consistently: cosine
similarity rises by approximately 4.8—7.3% across all splits,
while BERTScore exhibits modest but reliable gains of about
0.8-1.2%. Notably, larger training splits (0.7-0.9) tend to
yield the greatest relative improvements in BLEU and
ROUGE-2, suggesting that the model particularly benefits
from richer supervision when capturing fine-grained lexical
patterns. These results indicate that fine-tuning substantially
improves both lexical overlap and semantic alignment,
though the magnitude of improvement is most striking for
BLEU and ROUGE-2.
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Table 6: Best-performing models across all evaluation settings

Setting Best Model ROUGE-1 | ROUGE-2 | BLEU | Cosine Sim. | BERTScore
Zero-shot (abbr.) Gemma-3-4B 0.3530 0.1357 - - -
Zero-shot (abbr.) GPT-40 - - 0.0513 | 0.5866 0.8710
Zero-shot (expanded) Gemma-3-4B 0.3577 0.1400 - - -
Zero-shot (expanded) GPT-40 - - 0.0547 | 0.5906 0.8717
Few-shot (abbr.) GPT-40 0.3534 0.1423 0.0598 | 0.5949 0.8765
Few-shot (expanded) GPT-40 0.3559 0.1455 0.0615 | 0.5996 0.8763
Few-shot (expanded) Gemma-3-4B - - - - 0.8765
Fine-tuned (best) Gemma-3-4B (0.6) 0.4065 0.1755 - - -
Fine-tuned (best) Gemma-3-4B (0.9) - - 0.0776 | 0.6155 -
Fine-tuned (best) Gemma-3-4B (0.8) - - - - 0.8865

4.5.3. Phi-4-mini model evaluation results

On the Phi-4-mini model (Appendix Table 8), fine-tuning
leads to clear and steady improvements across all data splits.
ROUGE-1 consistently rises by about 7-10%, while
ROUGE-2 shows larger gains in the range of 18-25%,
indicating that the model becomes more capable of
reproducing detailed n-gram overlaps from the reference
actions. BLEU benefits the most dramatically, with increases
between 26% and over 52%, underscoring Phi-4-mini’s

stronger alignment in surface-level phrasing after fine-tuning.

Semantic metrics also improve, though more moderately:
cosine similarity gains remain in the +1.5-3.9% range, and
BERTScore increases are smaller but steady at roughly +0.3—
0.6%. Whether trained on 10% or 90% of the dataset, the
model’s performance curves upward in a stable fashion
without large fluctuations. This suggests that Phi-4-mini
benefits uniformly from exposure to additional data, but its
largest relative improvements are concentrated in BLEU and
ROUGE-2, while semantic similarity metrics rise more
conservatively.

5. DISCUSSION

Normalization vs. semantics: Moving from the raw-
abbreviation corpus (Table 1) to the expanded version (Table
2) consistently boosts lexical overlap for the best ROUGE
model (Gemma-3-4B), while GPT-40 remains strongest on
semantic/mixed measures (BLEU, cosine similarity,
BERTScore). This split suggests two complementary
capabilities: abbreviation expansion helps models reproduce
the exact surface form of corrective actions, whereas
semantic fidelity is less sensitive to token normalization and
benefits from larger, more capable models.

In-context learning vs. fine-tuning: 5-shot prompting changes
the results (Tables 3—4), helping most models and
disproportionately lifting weaker open models (e.g., Phi-3.5-

mini/Phi-4-mini, Llama-3.2-3B), while GPT-40 and Gemma-
3-4B retain leadership on their respective metrics. The largest
relative few-shot gains appear in ROUGE-2/BLEU,
indicating better adoption of domain phrasing through in-
context learning. Supervised fine-tuning delivers the most
durable gains (Tables 5, 7, and 8) across Gemma-3-4B,
Llama-3.2-3B, and Phi-4-mini, ROUGE-2 typically rises
~18-31%, BLEU jumps ~25-90% depending on split, and
cosine similarity/BERTScore improve steadily. Gains scale
with data, i.e., larger training data splits (0.7-0.9) yield the
steepest improvements, while variance across trials remains
moderate and does not obscure the overall upward trend.
Table 6 summarizes the best-performing models across all
evaluation settings with best splits per metric for fine-tuned
models. An example provided in Appendix Table 9 illustrates
how fine-tuning consistently improves alignment between
generated actions and the ground-truth reference.

Cross-domain application: Beyond aviation, the proposed
framework will be extended to additional maintenance
datasets, including automotive and facility management
records. Planned datasets include Avi-Acc, and Avi-Safe
(problem, action, ATA code, flight or safety details), Auto-
Main, Auto-Acc, and Auto-Safe (problem, action, reason,
department, and accident or request reports), and Faci-Main
(problem, action, type, and location) (Akhbardeh et al. 2020).
These domains share similar problem—action text structures,
enabling direct application of the same pipeline for cross-
domain evaluation.

6. CONCLUSION

This study presented a systematic evaluation of both open-
source and proprietary large language models for predicting
maintenance actions from aviation problem logs. We
benchmarked off-the-shelf models in zero-shot and few-shot
settings and further explored the impact of supervised fine-
tuning.
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Our results show that few-shot prompting provides
noticeable improvements across nearly all models, helping
weaker baselines close the gap with stronger ones. Fine-
tuning was even more effective, consistently boosting
performance across different data splits. Notably, the fine-
tuned Gemma-3-4B model outperformed all other candidates,
including GPT-40, underscoring the value of domain-specific
adaptation for this task.

Future work will focus on scaling fine-tuning to larger open-
source models and extending prediction to structured
problem—component—action triples. This direction will allow
deterministic action recommendations tied to specific fault
categories, further enhancing the reliability and practical
utility of LLMs in predictive maintenance. Moreover,
incorporating technician feedback in a human-in-the-loop
setting will help ensure that generated actions remain safe,
interpretable, and aligned with real maintenance practices.
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APPENDIX

Compute and runtime details: All experiments were
conducted on a single RTX 6000 Ada (48 GB) GPU with
bfloat16 precision. Fine-tuning used three epochs per split,
and the times reported here are for full training and per trial
for evaluation, with peak VRAM in parentheses. Phi-4-Mini:
training 30 seconds to 5.25 minutes (42 GB); evaluation 2.25
to 15 minutes (18 GB). Gemma-3-4B: training 50 seconds to
7 minutes (47 GB); evaluation 2 to 30 minutes (19.5 GB).
Llama-3.2-3B: training 30 seconds to 4 minutes (34 GB);
evaluation 8 to 90 minutes (15 GB). These figures indicate
that both full-parameters fine-tuning and evaluation of
compact 3—4B models are practical on a single workstation-
class GPU.

Example of zero-shot prompt: You are an expert in
Aviation maintenance. The aviation maintenance dataset
within MaintNet originates from the University of North
Dakota's Aviation Program and comprises 6,169 anonymized
entries. The dataset includes unstructured text entries
detailing maintenance issues, often written in domain-
specific jargon, abbreviations, and non-standard grammar.
Each entry typically includes a ‘Problem’ field describing the
maintenance issue and an ‘Action’ field detailing the
corrective measures taken. You will be provided with a
problem, and your task is to generate a corresponding action
statement. The action statement should be concise, clear, and
directly related to the problem statement. Please ensure that
the generated action is relevant and appropriate for the given
problem

Example of S5-shot prompt: You are an expert in Aviation
maintenance. The aviation maintenance dataset within
MaintNet originates from the University of North Dakota's
Aviation Program and comprises 6,169 anonymized entries.
The dataset includes unstructured text entries detailing
maintenance issues, often written in domain-specific jargon,
abbreviations, and non-standard grammar. Each entry
typically includes a 'Problem' field describing the
maintenance issue and an 'Action' field detailing the
corrective measures taken. You will be provided with a
problem, and your task is to generate a corresponding action
statement. The action statement should be concise, clear, and
directly related to the problem statement. Please ensure that
the generated action is relevant and appropriate for the given
problem. Some examples have been provided for your
reference.

Input: TOOL LEFT ON CYLINDER #2
Output: REMOVED TOOL FROM CYL #2.

Input: TYRAP AND SCREWDRIVER FOUND NEAR
ENGINE TOE



Output: REMOVED TYRAP AND TOOL FROM ENGINE

AREA.

Input: NO COMPRESSION ON CYL #4 DUE TO VALVE

LEAK

Output: INSTALLED NEW CYLINDER AND PISTON ON

#4.

Input: ZIP TIES FOUND ON ENGINE MOUNTING

BRACKETS

Output: REMOVED ZIP TIES AND SECURED HARNESS

WITH CLIPS.

Table 7: Llama-3.2-3B model evaluation results showing baseline (before) and after fine-tuning
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Input: LACING CORD REPLACED WITH TIES ON
BOTH MOUNTS

Output: SECURED LINES WITH LACING CORD ON
BOTH SIDES.

Input: [TEST PROBLEM]

Output:

Split | ROUGE- | ROU | A% | ROUGE- | ROU | A% BLEU BLE A% | CosineSim | Cosin | A% | BERTSco | BERT | A%
1 (Mean £ | GE-1 2 (Mean £+ | GE-2 (Mean+ | U Var (Mean £+ | eSim re (Mean | Score
Std) Var Std) Var Std) Std) Var + Std) Var
Base | 0.3213+ | 0.055 | - 0.1216 = | 0.036 - 0.0388+ | 0.004 - 0.5362+ | 0.042 - 0.8580+ | 0.0012 -
line | 0.2360 7 0.1913 6 0.0669 5 0.2065 7 0.0342
0.1 (03604« |0.066 |+12.]0.1502+ |0.052 |+23.5 |0.0522+ [0.010 |+34.54 |0.5642 + 0.047 |+5.23 [0.8660+ |[0.0013 |+0.93
0.2569 0 18% | 0.2299 9 3% 0.1028 6 % 0.2175 3 % 0.0366 %
0.2 [0.3567+ |0.065 |+11.|0.1542+ |0.052 |+26.7 |0.0511« [0.008 |+31.70 |0.5648 + 0.044 |+5.33 [0.8657+ |0.0013 |+0.89
0.2562 6 03% |0.2298 8 7% 0.0939 8 % 0.2120 9 % 0.0364 %
0.3 [0.3629+ |0.065 |+12. |0.1560+ |0.051 |+28.2 |0.0552+ [0.009 |+42.27 |0.5714+ 0.046 |+6.56 |0.8669+ |[0.0014 |+1.04
0.2567 9 95% |0.2275 8 6% 0.0982 6 % 0.2161 7 % 0.0375 %
04 [0.3506+ |0.062 |[+9.1 |0.1446+ |0.044 |+18.9 |0.0490+ [0.007 |+26.29 |0.5621 + 0.045 |+4.83 |0.8651+ [0.0014 |+0.83
0.2496 3 2% 10.2106 4 1% 0.0887 9 % 0.2132 5 % 0.0370 %
0.5 [0.3623+ |0.062 |+12. |0.1545+ |0.050 |+26.9 |0.0554+ [0.009 |+42.78 |0.5686 = 0.045 |+6.04 [0.8670+ |0.0014 |+1.05
0.2504 7 76% |0.2255 8 9% 0.0966 3 % 0.2132 5 % 0.0373 %
0.6 [0.3564+ |0.064 |+10. |0.1518+ |0.050 |+24.8 |0.0511« [0.007 |+31.70 |0.5670 = 0.046 |+5.74 |0.8664+ |0.0014 |+0.99
0.2544 7 93% |0.2235 0 1% 0.0878 7 % 0.2149 2 % 0.0375 %
0.7 [0.3654+ |0.066 |+13.|0.1585+ |0.053 |+30.3 |0.0562+ [0.009 |+44.85 |0.5750+ 0.047 |[+7.22 |10.8682+ [0.0015 |+1.19
0.2570 0 72% |0.2309 3 4% 0.0964 3 % 0.2169 0 % 0.0388 %
0.8 [0.3656+ |0.061 |+13.]0.1508+ |0.048 |+24.0 |0.0547+ [0.008 |+40.98 |0.5755+ 0.045 |[+7.33 |0.8676+ |[0.0014 |+1.12
0.2478 4 79% |0.2207 7 1% 0.0919 4 % 0.2140 8 % 0.0380 %
0.9 (03661« |0.064 |+13.]0.1559+ |0.051 |+28.1 |0.0569+ [0.010 |+46.65 |0.5737 0.044 |+7.00 [0.8681+ |0.0015 |+1.18
0.2534 2 94% |0.2262 2 9% 0.1009 2 % 0.2102 2 % 0.0386 %

10



Table 8: Phi-4-mini model evaluation results showing baseline (before) and after fine-tuning

Split | ROUGE- | ROU | A% |ROUGE- |ROUG| A% BLEU | BLE | A% | CosineSi | Cosin | A% | BERTSco | BER | A%
1 (Mean | GE-1 2 (Mean | E-2 (Mean U m (Mean | eSim re (Mean | TSco
+ Std) Var + Std) Var +Std) | Var + Std) Var + Std) re
Var
Basel | 0.3028 + | 0.042 | - 0.0903 = | 0.0199 - 0.0279 = 0.001 - 0.5247+ | 0.039 | - 0.8570 = | 0.001 -
ine 0.2054 2 0.1412 0.0430 8 0.1978 1 0.0317 0
0.1 0.3248 = |0.050 |+7.26 [ 0.1064 + |0.0268 [+17.83 |0.0353 £|0.003 | +26.5 [0.5325+ |0.040 |+1.4 |0.8597+ |0.001 |+0.32
0.2239 1 % 0.1637 % 0.0602 |6 2% 0.2016 6 9% 10.0320 0 %
0.2 0.3279 + |0.050 |+8.29 [0.1089 = |0.0291 [+20.59 |0.0402 +|0.006 |+44.0 | 0.5345+ |0.040 |+1.8 |0.8612+ |0.001 |+0.49
0.2239 1 % 0.1706 % 0.0815 |6 9% 0.2009 4 7% 10.0326 1 %
0.3 0.3282+ |0.049 |+8.38 [0.1096 + |0.0286 [+21.35 |0.0397 +£|0.006 |+42.3 [0.5366+ |0.040 |+2.2 |0.8613+ |0.001 |+0.50
0.2221 3 % 0.1692 % 0.0783 |1 0% 0.2013 5 7% 10.0322 0 %
0.4 0.3328 = |0.049 |+9.91 [0.1103 = |0.0298 [+22.12 |0.0404 +|0.005 | +44.8 [ 0.5389 + |0.041 |+2.7 |0.8615+ |0.001 |+0.52
0.2230 7 % 0.1726 % 0.0768 |9 0% 0.2045 8 1% 10.0328 1 %
0.5 0.3252+ [0.047 |+7.39 |0.1090 £ |0.0284 |+20.69 |0.0374 +|0.005 |+34.0 |0.5388 + [0.039 |+2.6 |0.8610+ |0.001 |+0.47
0.2181 5 % 0.1685 % 0.0721 |2 5% 0.1986 5 9% 10.0313 0 %
0.6 0.3283+ |0.048 |+8.42 [0.1074 + |0.0278 [+18.91 |0.0383 £|0.005 |+37.2 [0.5364 + |0.040 |+2.2 |0.8611+ |0.001 |+0.48
0.2205 6 % 0.1668 % 0.0726 |3 7% 0.2010 4 3% [0.0324 0 %
0.7 0.3299+ [0.049 |+8.95|0.1102+ |0.0273 |+21.99 |0.0384 +|0.005 |+37.6 |0.5406+ |0.040 |+3.0 |0.8621+ |0.001 |-+0.60
0.2217 2 % 0.1651 % 0.0714 |1 3% 0.2017 7 3% 10.0324 0 %
0.8 0.3332+ |0.050 |+10.0 [0.1129+ |0.0303 [+25.07 | 0.0408 £|0.006 |+46.2 [ 0.5427 + |0.040 |+3.4 |0.8616 = |0.001 |+0.54
0.2242 3 3% 0.1742 % 0.0783 |1 4% 0.2007 3 3% 10.0327 1 %
0.9 0.3328+ [0.049 |+9.91 |0.1132+ |0.0312 |+25.39 |0.0424 +|0.006 |+52.0 |0.5450+ [0.041 |+3.8 |0.8617+ |0.001 |+0.55
0.2229 7 % 0.1767 % 0.0831 |9 0% 0.2038 5 6% [0.0325 1 %
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Table 9: Model predictions for the maintenance problem “#1 CYLINDER ROCKER ARM & PUSH ROD GALLED
ON EXHAUST SIDE.” with ground truth “REMOVED & REPLACED ROCKER ARM & PUSH ROD.” showing
CosSim, ROUGE, BLEU, and BERTScore-F1 for models before and after finetuning.

Model Prediction CosSim | ROUGE- | ROUGE- | BLEU | BERTScore-
1 11 21 t F11
GPT-4o0 REPLACED #1 CYLINDER EXHAUST | 0.7430 | 0.6667 0.3077 0.0945 | 0.9030
ROCKER ARM AND PUSH ROD.
Gemma-3-4B # REPLACE CYLINDER ROCKER 0.7753 | 0.7692 0.3636 0.1007 | 0.9229
(Orig.) ARM AND PUSH ROD.
Gemma-3-4B # REPLACED CYLINDER ROCKER 0.8006 | 0.8333 0.6000 0.5411 | 0.9420
(Fine-tuned) ARM & PUSH ROD.
Llama-3.2-3B | #1 CYLINDER ROCKER ARM & 0.6682 | 0.5000 0.3333 0.1645 | 0.8947
(Orig.) PUSH ROD GALLED ON EXHAUST
SIDE. REPLACE WITH NEW PART.
Llama-3.2-3B | REPLACE CYLINDER ROCKER ARM | 0.8376 | 0.8333 0.6000 0.5329 | 0.9029
(Fine-tuned) & PUSH ROD.
Phi-4-mini REPLACE THE DAMAGED 0.6138 | 0.5263 0.2353 0.0490 | 0.8761
(Orig.) CYLINDER ROCKER ARM AND
PUSH ROD ON THE EXHAUST SIDE.
Phi-4-mini REPLACE THE CYLINDER ROCKER | 0.5482 | 0.5556 0.2500 0.0528 | 0.8799
(Fine-tuned) ARM AND PUSH ROD ON THE
EXHAUST SIDE.

Fine tuning analysis: Figure 3 shows percentage of test
cases where the fine-tuned models outperformed, matched, or
underperformed the original baselines across different
training splits (0.1-0.9). Each bar shows the proportion of
problems with higher (blue), equal (orange), or lower (green)
scores for each evaluation metric i.e., cosine similarity,
ROUGE-1, ROUGE-2, BLEU, and BERTScore-F1. Overall,
fine-tuning consistently improved lexical and semantic
alignment with the reference actions, particularly in
BERTScore and Cosine metrics.

Gemma: Fine-tuned vs Original: % Better / Equal / Worse by Split
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Figure 3: Comparison of fine-tuned vs original models
across splits, showing percentage of cases where fine-
tuning improved, matched or reduced performance
across all evaluation metrics for Gemma model
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