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ABSTRACT 

Maintenance logs of complex specialized equipment capture 
problem–action records that are essential for building 
predictive maintenance solutions but remain difficult to 
utilize due to their terse, abbreviation-heavy style. This work 
provides the first systematic benchmark and domain-
adaptation study of large language models (LLMs) for 
predicting maintenance actions from free-text problem 
descriptions in the MaintNet aviation dataset. We evaluate a 
range of proprietary and open-source LLMs under zero-shot 
and few-shot prompting and additionally fine-tune selected 
open models for supervised evaluation. Experiments are 
conducted on both raw-abbreviation and expanded datasets, 
using both lexical (ROUGE, BLEU) and semantic (cosine 
similarity, BERTScore) metrics. Results show that GPT-4o 
achieves the strongest semantic alignment, while the instruct 
version of Gemma-3-4B leads in lexical overlap. Few-shot 
prompting boosts weaker models disproportionately, 
narrowing the gap with stronger baselines. Fine-tuning 
delivers the most significant gains, with instruct versions of 
Gemma-3-4B, LLaMA-3.2-3B, and Phi-4-mini, improving 
BLEU by up to 90% and ROUGE-2 by 30%. Notably, the 
fine-tuned Gemma-3-4B surpasses GPT-4o across multiple 
metrics, demonstrating the effectiveness of domain-specific 
adaptation. These findings highlight the potential of fine-
tuned LLMs to utilize unstructured aviation logs for building 
reliable maintenance systems. 

1. INTRODUCTION 
As digital technologies advance, engineering systems 
generate vast volumes of data increasingly leveraged to 
enhance performance and reliability. Among these sources, 
maintenance logs are particularly significant, especially in 
aviation, where safety and efficiency are paramount (Tanguy 
et al., 2016; Altuncu et al., 2018). Such logs, often kept as 
event records, capture valuable problem–action information 
that can enable predictive maintenance, helping 
organizations anticipate failures, mitigate risks, and reduce 
costs (Jarry et al., 2020; Meunier-Pion et al., 2024). 
 

Maintenance logs of complex specialized equipment (e.g., 
aviation), however, present unique challenges: they are 
written in terse, domain-specific language, laden with 
abbreviations and non-standard spellings. Each entry 
typically pairs a problem description with the corrective 
action taken, providing a natural but underutilized basis for 
building predictive models. Automatically predicting likely 
corrective actions from such problem descriptions could 
support technicians, improve turnaround times, and enhance 
decision-making in safety-critical contexts. 
 
Early research applied traditional NLP tools to this domain, 
focusing on preprocessing and classification. Akhbardeh et al. 
(2020) introduced the MaintNet toolkit with domain-specific 
spell-checkers and part-of-speech taggers, significantly 
outperforming general-purpose tools like NLTK or CoreNLP. 
Other studies classified log entries into problem or fault 
categories (Tanguy et al., 2016) but faced severe class 
imbalance where a few common classes dominated. To 
address this, Akhbardeh et al. (2021) proposed specialized 
resampling strategies adapted from computer vision, 
improving accuracy on rare issue types. These efforts 
underscore the difficulty of applying standard supervised 
learning to sparse, noisy maintenance data. 
 
Beyond classification, unsupervised and retrieval methods 
have sought to uncover latent structure in logs and support 
technicians with past examples. MaintNet researchers 
showed that clustering techniques like DBSCAN and k-
means could reveal recurring issue groups such as engine-
related clusters. Payette et al. (2025) and Vidyaratne et al. 
(2024) combined text mining with Failure Modes and Effects 
Analysis (FMEA), mapping free-text to structured failure 
modes and improving extraction of affected components and 
causes. More recently, retrieval-based systems using 
sentence embeddings have been applied: Sundaram et al. 
(2024) and Naqvi et al. (2024) demonstrated semantic search 
that retrieves similar historical cases and suggests candidate 
corrective actions, illustrating the value of domain-trained 
embedding models for maintenance decision support. 
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In addition to retrieval-based approaches, researchers have 
explored transfer learning and, more recently, large language 
models (LLMs). Akhbardeh et al. (2022) and Naqvi et al. 
(2021) showed that intra-domain transfer (e.g., between 
aviation datasets) yields consistent gains, while cross-domain 
transfer (e.g., from automotive to aviation) often degrades 
performance. These findings emphasize the importance of 
domain-specific adaptation, as logbooks across industries 
diverge sharply in vocabulary and style. Parallel to these 
advances, LLMs have emerged as powerful tools for handling 
unstructured technical text (Lukens et al. 2024). Kelma et al. 
(2025), for instance, demonstrated that GPT-4-based models 
can automatically generate structured assembly instructions 
for cognitive assistance systems, achieving expert-level 
quality when evaluated with BLEU and METEOR. 
 
Despite these advances, current methods still struggle with 
rare or unseen issues; the very cases where decision support 
is most critical. Retrieval systems depend on close historical 
matches, while classifiers often fail on long-tail categories. 
LLMs offer strong potential, but their ability to predict 
corrective actions from maintenance logs has not been 
systematically studied. This work presents the first 
comprehensive benchmark of LLMs and develops domain-
specific language models for aviation maintenance action 
prediction. Our contributions are twofold: (1) We compare 
proprietary and open-source LLMs under zero-shot and few-
shot prompting to assess baseline capabilities, (2) We fine-
tune selected open models on progressively larger training 
splits, analyzing how domain adaptation scales and whether 
compact models can surpass GPT-4o. We evaluate 
performance with both lexical (ROUGE-1, ROUGE-2, 
BLEU) and semantic (cosine similarity, BERTScore) metrics, 
providing a comprehensive assessment of LLM-generated 
maintenance actions in this safety-critical settings. 
 
The remainder of this paper is structured as follows. Section 
2 introduces the dataset and problem formulation. Section 3 
details the experimental setup, including model selection, 
fine-tuning objectives, and evaluation metrics. Section 4 
presents results across zero-shot, few-shot, and fine-tuned 
settings. Section 5 provides a discussion of key findings, and 
Section 6 concludes with implications and future directions. 

2. DATA AND PROBLEM FORMULATION 
In this work, we focus on the Aircraft Historical Maintenance 
Dataset (2012–2017) from the University of North Dakota’s 
aviation program, a corpus of 6,169 maintenance logbook 
entries released via the MaintNet repository (Akhbardeh et al. 
2020). Each entry has free-text “Problem” and “Action” 
fields describing maintenance issues and the corrective 
actions taken. These log entries are typically short, domain-
specific texts written by mechanics or pilots, often containing 
technical jargon and abbreviations.  

 
Figure 1: Overview of workflow for generating 
maintenance actions from historical logs. 
 
Of the 6,169 entries, 5,122 are unique problem-action pairs, 
and within these, 3,595 are unique problems. Since our 
objective is a prediction task where the model must generate 
an action given a problem, we restricted the dataset to entries 
where each problem maps to exactly one action. This filtering 
yielded 2,859 entries with a one-to-one mapping, while the 
remaining 736 entries contained multiple actions (ranging 
from 2 to 19 per problem). Consequently, our experiments 
were conducted on the 2,859 single-action samples. 

The textual data is domain-specific (aircraft parts and 
maintenance actions), often abbreviated, and relatively brief 
(primarily a single sentence). The task is to learn a mapping 
from a problem description P (input) to an action description 
A (output). We treat this as a sequence-to-sequence prediction 
problem: given the text of a problem, generate the text of the 
likely maintenance action.  

We also prepared two dataset versions: abbreviated and 
expanded. In the abbreviated version, an entry might read “#2 
& #4 cyl rocker cover gasket are leaking” which requires 
domain knowledge to interpret (“cyl” meaning cylinder). The 
expanded version replaces abbreviations with their full forms, 
e.g., “#2 & #4 cylinder rocker cover gasket are leaking”. To 
construct the expanded version, we used the standardized 
abbreviation dictionary released with MaintNet, which 
defines 65 aviation-specific terms. For example, “cyl” was 
expanded to “cylinder” and “batt” to “battery.” 

3. EXPERIMENTS 
We designed our experiments to fine-tune and evaluate 
different LLMs to predict the action given a problem. In this 
section, we explain the different models, experimental setup, 
and evaluation metrics used. 

3.1. Models and Baselines 
We evaluated a mix of proprietary and open-source models. 
The proprietary baseline included GPT-4o, while open-
source candidates included instruct versions of Meta’s 
Llama-3.2-3B (Grattafiori et al. 2024), Google’s Gemma-3-
4B (Team et al. 2025), Microsoft’s Phi-3.5-mini and Phi-4-
mini (Abouelenin et al. 2025), NVIDIA’s Nemotron-Mini-
4B (Adler et al. 2024), and Alibaba’s Qwen2.5-3B (Team et 
al. 2024). We selected open-source models of 3-4B parameter 
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range for fair comparison, balancing availability and fine-
tuning feasibility. For each model, we tested two conditions: 

• Zero-shot: Models were evaluated on the filtered single-
action subset by prompting the model to generate the 
action given a problem. 

• Few-shot (5-shot): Models were evaluated on the filtered 
single-action subset by prompting the model to generate 
the action given a problem along with 5 examples of 
problem-action pairs. This experiment was conducted to 
examine whether in-context learning could supplement 
model performance. 

In addition, we performed supervised full-parameter fine-
tuning on three candidate models: Llama-3.2-3B, Gemma-3-
4B, and Phi-4-mini based on the preliminary baseline results 
and feasibility of fine-tuning. Fine-tuning was performed 
using subsets of the MaintNet aviation dataset, with ratio-
based splits (10%–90%), and models were evaluated with 
zero-shot prompting on held-out test sets. 

3.2. Fine-Tuning Objective 
Each problem-action pair was reformatted into a dialogue-
like instruction format using special tokens, inspired by 
Alpaca-style instruction tuning. The fine-tuning objective 
was causal language modeling (CLM), with the model trained 
to maximize the likelihood of the target tokens in the action 
sequence conditioned on the problem. The cross-entropy loss 
was applied at the token level across the generated output. 

The fine-tuning pipeline was implemented using the 
HuggingFace Transformers framework (Wolf et al. 2020). 
Each model employed its native tokenizer, with input 
sequences truncated or padded to a maximum length of 512 
tokens. The training data were split into ratio-based subsets 
(10%–90%), with each subset further divided into a fixed 
90/10 train/validation split. Optimization was carried out 
with the AdamW optimizer, using a learning rate of 5e-6, 
weight decay of 0.01, and 50 warm-up steps. Training was 
performed with an effective batch size of 8, achieved through 
a per-device batch size of 1 and gradient accumulation over 
8 steps. All experiments used BF16 precision for 
computational efficiency. Each model was fine-tuned for 
three epochs per split, retaining the best-performing model 
based on validation performance. The compute and runtime 
details are provided in the Appendix. 

3.3. Evaluation Metrics 
We used a combination of lexical overlap and semantic 
similarity metrics to assess prediction quality: 

• ROUGE-1 / ROUGE-2: Measures n-gram overlap 
between generated and reference actions. 

• BLEU: Captures precision of n-gram matches, useful for 
structured technical text. 

• Cosine Similarity: Based on sentence embeddings, 
capturing semantic relatedness. 

• BERTScore: Uses contextual embeddings from 
Bidirectional Encoder Representations from 
Transformers (BERT) to evaluate semantic alignment. 

Each score was reported as the mean ± standard deviation 
across three trials. To reduce prompt drift and standardize 
outputs at test time, we prepend a fixed domain pre-prompt 
describing the MaintNet aviation dataset and the expected 
style of the action statement; the model is then given Input: 
{problem} and asked to complete the Output. Decoding uses 
stochastic sampling with parameters max_new_tokens=100, 
do_sample=True, top_p=0.9, and temperature=0.5. The full 
prompts for zero-shot and few-shot settings are provided in 
the Appendix. 

4. RESULTS 
4.1. Evaluation of LLMs on Aviation raw-

abbreviation dataset 
As presented in Table 1, on the raw-abbreviation version of 
the dataset, Google’s Gemma-3-4B consistently performs the 
best on ROUGE-based measures, achieving 9.4–43.1% 
higher ROUGE-1 and 18.3–147.2% higher ROUGE-2 scores 
compared to the next best and weakest models. At the same 
time, GPT-4o establishes itself as the strongest performer on 
semantic alignment benchmarks, obtaining the highest BLEU, 
cosine similarity, and BERTScore. Specifically, GPT-4o 
leads by 15.0–144.3% in BLEU, 4.4–14.0% in cosine 
similarity, and 0.6–2.2% in BERTScore over the next best 
and weakest models. These results suggest that while Gemma 
is better at capturing lexical overlap with reference actions, 
GPT-4o demonstrates greater consistency in producing 
semantically faithful responses.  

4.2. Evaluation of LLMs on expanded dataset 
On the expanded dataset, Google’s Gemma-3-4B performs 
the best on lexical overlap metrics, achieving ROUGE-1 of 
0.3577 and ROUGE-2 of 0.1400. Compared to other models, 
Gemma is ahead by 5.5–41.0% on ROUGE-1 and 16.9–133.0% 
on ROUGE-2, showing that abbreviation expansion 
marginally amplifies its advantage in capturing precise 
problem-action correspondences. On the other hand, GPT-4o 
continues to lead on semantic and mixed measures, recording 
the highest BLEU (0.0547), cosine similarity (0.5906), and 
BERTScore (0.8717). Relative to the next-best models, GPT-
4o achieves improvements of 1.8–147.5% in BLEU, 4.2–13.5% 
in cosine similarity, and 0.6–2.1% in BERTScore. These 
results, presented in Table 2, indicate that while Gemma 
remains the strongest at reproducing lexical matches with 
reference actions, GPT-4o leads in semantic alignment, with 
its margin of improvement widening in some cases once the 
dataset is normalized and expanded. 
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Table 1: Evaluation of different LLMs on Aviation raw-
abbreviation dataset showing ROUGE-1, ROUGE-2, 
BLEU, Cosine Similarity and BERTScore metrics. 

Model ROUG
E-1 

ROUG
E-2 

BLEU Cosine
Sim. 

BERT
Score 

GPT-4o 0.3226 
± 
0.0014  

0.1136 
± 
0.0001  

0.0513 
± 
0.0003  

0.5866 
± 
0.0009  

0.8710 
± 
0.0002  

Qwen2.5-
3B 

0.2859 
± 
0.0004  

0.0871 
± 
0.0013  

0.0290 
± 
0.0006  

0.5237 
± 
0.0009  

0.8530 
± 
0.0002  

Gemma-
3-4B 

0.3530 
± 
0.0004  

0.1357 
± 
0.0009  

0.0446 
± 
0.0001  

0.5620 
± 
0.0006  

0.8655 
± 
0.0000  

Llama-
3.2-3B 

0.3156 
± 
0.0021  

0.1122 
± 
0.0014  

0.0394 
± 
0.0008  

0.5346 
± 
0.0010  

0.8589 
± 
0.0004  

Phi-3.5-
mini 

0.2467 
± 
0.0006  

0.0549 
± 
0.0005  

0.0210 
± 
0.0000  

0.5148 
± 
0.0018  

0.8527 
± 
0.0001  

Phi-4-
mini 

0.2900 
± 
0.0017  

0.0801 
± 
0.0018  

0.0282 
± 
0.0007  

0.5182 
± 
0.0012  

0.8555 
± 
0.0002  

Nemotron
-Mini-4B 

0.3192 
± 
0.0011  

0.1147 
± 
0.0011  

0.0419 
± 
0.0005  

0.5320 
± 
0.0008  

0.8593 
± 
0.0002  

 
Table 2: Evaluation of different LLMs on Aviation 
expanded dataset showing ROUGE-1, ROUGE-2, BLEU, 
Cosine Similarity and BERTScore metrics. 

Model ROU
GE-1 

ROUG
E-2 

BLEU Cosine
Sim. 

BERT
Score 

GPT-4o 0.3295 
± 
0.0013 

0.1210 
± 
0.0007 

0.0547 
± 
0.0007 

0.5906 
± 
0.0011 

0.8717 
± 
0.0002 

Qwen2.5-
3B 

0.2923 
± 
0.0015 

0.0901 
± 
0.0013 

0.0297 
± 
0.0004 

0.5272 
± 
0.0007 

0.8534 
± 
0.0001 

Gemma-3-
4B 

0.3577 
± 
0.0002 

0.1400 
± 
0.0003 

0.0466 
± 
0.0001 

0.5669 
± 
0.0012 

0.8662 
± 
0.0001 

Llama-3.2-
3B 

0.3189 
± 
0.0008 

0.1166 
± 
0.0014 

0.0408 
± 
0.0007 

0.5382 
± 
0.0019 

0.8587 
± 
0.0001 

Phi-3.5-
mini 

0.2537 
± 
0.0005 

0.0601 
± 
0.0009 

0.0221 
± 
0.0004 

0.5205 
± 
0.0008 

0.8535 
± 
0.0001 

Phi-4-mini 0.3020 
± 
0.0019 

0.0855 
± 
0.0003 

0.0310 
± 
0.0006 

0.5256 
± 
0.0013 

0.8568 
± 
0.0003 

Nemotron-
Mini-4B 

0.3252 
± 
0.0003 

0.1190 
± 
0.0009 

0.0435 
± 
0.0002 

0.5377 
± 
0.0005 

0.8595 
± 
0.0001 

4.3. Few-shot evaluation of LLMs on Aviation 
raw-abbreviation dataset 

Few-shot prompting noticeably alters model performance, 
amplifying gains for certain models while modestly helping 
others, as presented in Table 3. GPT-4o not only retains its 
position as the top model but also records meaningful gains, 
especially in ROUGE-2 (+25.3%) and BLEU (+16.6%). 
Interestingly, weaker models benefit disproportionately: Phi-
3.5 nearly doubles its BLEU and ROUGE-2 scores, while 
Phi-4-mini also more than doubles BLEU and improves 
ROUGE-2 by nearly 60%. Llama-3.2-3B achieves consistent 
gains across all metrics, most notably a 28% boost in BLEU. 
By contrast, Gemma and Nemotron experience small drops 
in ROUGE, though both improve on semantic measures like 
cosine similarity and BERTScore. Qwen shows a similar 
pattern, losing ground in ROUGE while gaining in BLEU and 
BERTScore. Overall, few-shot prompting emerges as 
particularly advantageous for underperforming models, 
helping them narrow the gap with stronger baselines. 

Table 3: 5-shot evaluation of different LLMs on Aviation 
raw-abbreviation dataset 

Model ROUG
E-1 

ROU
GE-2 

BLEU Cosine
Sim. 

BERT
Score 

GPT-4o 0.3534 
± 
0.0010 

0.1423 
± 
0.0007 

0.0598 
± 
0.0010 

0.5949 
± 
0.0008 

0.8765 
± 
0.0001 

Qwen2.5-
3B 

0.2737 
± 
0.0026 

0.0836 
± 
0.0021 

0.0354 
± 
0.0010 

0.5257 
± 
0.0006 

0.8668 
± 
0.0002 

Gemma-3-
4B 

0.3385 
± 
0.0014 

0.1304 
± 
0.0015 

0.0530 
± 
0.0005 

0.5777 
± 
0.0007 

0.8760 
± 
0.0001 

Llama-3.2-
3B 

0.3224 
± 
0.0006 

0.1184 
± 
0.0008 

0.0504 
± 
0.0005 

0.5577 
± 
0.0006 

0.8741 
± 
0.0001 

Phi-3.5-
mini 

0.3280 
± 
0.0006 

0.1032 
± 
0.0006 

0.0425 
± 
0.0008 

0.5711 
± 
0.0005 

0.8744 
± 
0.0001 

Phi-4-mini 0.3454 
± 
0.0004 

0.1279 
± 
0.0004 

0.0571 
± 
0.0009 

0.5711 
± 
0.0014 

0.8758 
± 
0.0003 

Nemotron-
Mini-4B 

0.2943 
± 
0.0033 

0.1105 
± 
0.0021 

0.0458 
± 
0.0019 

0.5465 
± 
0.0013 

0.8721 
± 
0.0004 

4.4. Few-shot evaluation of LLMs on expanded 
dataset 

On the expanded dataset under 5-shot prompting, GPT-4o 
once again emerges as the overall best-performing model, 
achieving the highest scores across ROUGE-1, ROUGE-2, 
BLEU, and cosine similarity, while maintaining essential 
parity with Gemma on BERTScore, as shown in Table 4. 
Specifically, GPT-4o attains a ROUGE-1 of 0.3559, 
outperforming Gemma by 3.8% and the weakest baseline 
(Qwen) by 29.1%. On ROUGE-2, GPT-4o records 0.1455, 
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which is 8.1% stronger than Gemma and nearly 74.0% higher 
than Qwen. For BLEU, GPT-4o’s score of 0.0615 exceeds 
the second-best (Phi-4-mini) by 10.2% and Qwen by 75.7%. 
Its cosine similarity of 0.5996 is 3.1% higher than Gemma 
and 14.0% higher than Qwen, underscoring its ability to 
generate semantically aligned actions. 

Table 4: 5-shot evaluation of different LLMs on Aviation 
expanded dataset 

Model ROUG
E-1 

ROU
GE-2 

BLEU Cosine
Sim. 

BERT
Score 

GPT-4o 0.3559 
± 
0.0011 

0.1455 
± 
0.0004 

0.0615 
± 
0.0004 

0.5996 
± 
0.0012 

0.8763 
± 
0.0002 

Qwen2.5-
3B 

0.2754 
± 
0.0015 

0.0837 
± 
0.0016 

0.0350 
± 
0.0010 

0.5259 
± 
0.0011 

0.8669 
± 
0.0002 

Gemma-3-
4B 

0.3429 
± 
0.0002 

0.1346 
± 
0.0004 

0.0548 
± 
0.0003 

0.5814 
± 
0.0008 

0.8765 
± 
0.0001 

Llama-3.2-
3B 

0.3261 
± 
0.0028 

0.1197 
± 
0.0022 

0.0507 
± 
0.0010 

0.5636 
± 
0.0016 

0.8740 
± 
0.0004 

Phi-3.5-
mini 

0.3267 
± 
0.0014 

0.1007 
± 
0.0009 

0.0422 
± 
0.0004 

0.5722 
± 
0.0008 

0.8741 
± 
0.0001 

Phi-4-mini 0.3454 
± 
0.0007 

0.1268 
± 
0.0012 

0.0558 
± 
0.0013 

0.5744 
± 
0.0001 

0.8755 
± 
0.0002 

Nemotron-
Mini-4B 

0.2973 
± 
0.0019 

0.1115 
± 
0.0020 

0.0459 
± 
0.0005 

0.5507 
± 
0.0012 

0.8720 
± 
0.0003 

 

Interestingly, Gemma-3-4B performs very competitively in 
BERTScore, achieving 0.8765, which is marginally higher 
than GPT-4o’s 0.8763 (by 0.02%), while outperforming the 
weakest baseline (Nemotron) by 0.5%. These results suggest 
that on the expanded dataset, GPT-4o leads most dimensions 
of evaluation, but Gemma demonstrates resilience in 
maintaining lexical-semantic fidelity as captured by 
BERTScore. Overall, these results indicate that few-shot 
prompting on the expanded dataset offers broader and more 
consistent performance benefits than its raw-abbreviation 
counterpart, though the magnitude of gains varies across 
models, with some (e.g., GPT-4o and Gemma) improving 
more substantially than others. 

4.5. Evaluation results after Fine-tuning LLMs  

4.5.1. Gemma-3-4B model evaluation results 
The evaluation of Google’s Gemma-3-4B model before and 
after supervised fine-tuning on different splits of the 
MaintNet aviation dataset is shown in Table 5. The splits 
range from 10% to 90% of the available training data, with 

the remaining portion reserved for evaluation. This design 
allows us to assess how model performance scales with 
increasing amounts of fine-tuning data and to compare 
improvements over the zero-shot baseline. 

Across all splits, fine-tuning leads to consistent and 
substantial gains in nearly every evaluation metric, as shown 
in Figure 2. ROUGE-1 improves by 10–14%, with the largest 
increase observed at the 0.6 split (+13.77%). Similarly, 
ROUGE-2 shows remarkable improvements, ranging from 
15% to over 31%, indicating that fine-tuning greatly 
enhances the model’s ability to capture bigram-level overlaps 
between generated and reference actions. BLEU scores 
benefit the most, with improvements ranging from +28% (at 
0.1 split) up to a striking +88.8% at 0.9 split, demonstrating 
that fine-tuning dramatically strengthens the model’s 
precision in reproducing exact phrasing of corrective actions. 

In addition to lexical overlap, fine-tuning also improves 
semantic alignment. Cosine similarity increases steadily, 
with relative gains between +4.4% and +9.7%, showing that 
the model produces predictions more semantically consistent 
with references. Likewise, BERTScore sees incremental 
gains of +0.8% to +2.3%, confirming that fine-tuning 
preserves and even slightly enhances lexical-semantic 
fidelity. These smaller but steady increases suggest that while 
Gemma already had strong semantic representations, fine-
tuning sharpened its alignment to domain-specific action 
phrasing.  

The magnitude of improvement correlates with the size of the 
fine-tuning split. For example, at lower data fractions (0.1–
0.3), improvements are noticeable but moderate, whereas at 
higher splits (0.6–0.9), gains become dramatic; especially for 
BLEU and ROUGE-2. This trend highlights that Gemma 
continues to benefit from additional training data and does 
not plateau early. The large BLEU improvements at 0.8 and 
0.9 suggest that exposure to more diverse corrective actions 
enables the model to better reproduce specific maintenance 
terminology and phrasing.  

 
Figure 2: Visualization of Gemma-3-4B model evaluation 
results before and after fine-tuning 
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Table 5: Gemma-3-4B model evaluation results showing baseline (before) and after fine-tuning 
Split ROUGE-

1 (Mean 
± Std) 

ROU
GE-1 
Var 

Δ% ROUGE-2 
(Mean ± 

Std) 

ROU
GE-2 
Var 

Δ% BLEU 
(Mean ± 

Std) 

BLE
U 

Var 

Δ% CosineSim 
(Mean ± 

Std) 

Cosine
Sim 
Var 

Δ% BERTSc
ore 

(Mean ± 
Std) 

BER
TSco

re 
Var 

Δ% 

Basel
ine  

0.3573 ± 
0.2586 

0.066
9 

- 0.1339 ± 
0.2178 

0.047
4 

- 0.0411 ± 
0.0585 

0.003
4 

- 0.5609 ± 
0.2093 

0.0438 - 0.8665 ± 
0.0344 

0.001
2 

- 

0.1 0.3947 ± 
0.2791 

0.077
9 

+10.
47% 

0.1551 ± 
0.2662 

0.070
9 

+15.7
9% 

0.0526 ± 
0.0798 

0.006
4 

+27.9
8% 

0.5857 ± 
0.2148 

0.0461 +4.4
3% 

0.8739 ± 
0.0368 

0.001
4 

+0.85
% 

0.2 0.4003 ± 
0.2874 

0.082
6 

+12.
03% 

0.1669 ± 
0.2821 

0.079
6 

+24.6
6% 

0.0681 ± 
0.1264 

0.016
0 

+65.6
9% 

0.5974 ± 
0.2277 

0.0518 +6.5
1% 

0.8796 ± 
0.0417 

0.001
7 

+1.51
% 

0.3 0.4018 ± 
0.2849 

0.081
2 

+12.
47% 

0.1679 ± 
0.2795 

0.078
1 

+25.4
0% 

0.0693 ± 
0.1270 

0.016
1 

+68.3
8% 

0.6024 ± 
0.2294 

0.0526 +7.4
1% 

0.8819 ± 
0.0427 

0.001
8 

+1.77
% 

0.4 0.3932 ± 
0.2910 

0.084
7 

+10.
06% 

0.1734 ± 
0.2841 

0.080
7 

+29.5
3% 

0.0671 ± 
0.1104 

0.012
2 

+63.2
6% 

0.5945 ± 
0.2294 

0.0526 +6.0
0% 

0.8787 ± 
0.0426 

0.001
8 

+1.41
% 

0.5 0.3978 ± 
0.2894 

0.083
8 

+11.
34% 

0.1699 ± 
0.2833 

0.080
3 

+26.8
8% 

0.0721 ± 
0.1309 

0.017
1 

+75.5
5% 

0.6043 ± 
0.2304 

0.0531 +7.7
4% 

0.8833 ± 
0.0430 

0.001
9 

+1.94
% 

0.6 0.4065 ± 
0.2947 

0.086
8 

+13.
77% 

0.1755 ± 
0.2935 

0.086
2 

+31.0
9% 

0.0764 ± 
0.1492 

0.022
3 

+85.8
8% 

0.6067 ± 
0.2347 

0.0551 +8.1
6% 

0.8833 ± 
0.0442 

0.002
0 

+1.94
% 

0.7 0.3959 ± 
0.2902 

0.084
2 

+10.
80% 

0.1708 ± 
0.2858 

0.081
7 

+27.6
1% 

0.0702 ± 
0.1291 

0.016
7 

+70.8
0% 

0.6093 ± 
0.2345 

0.0550 +8.6
3% 

0.8857 ± 
0.0422 

0.001
8 

+2.21
% 

0.8 0.4044 ± 
0.2908 

0.084
6 

+13.
18% 

0.1744 ± 
0.2876 

0.082
7 

+30.2
4% 

0.0754 ± 
0.1480 

0.021
9 

+83.7
0% 

0.6127 ± 
0.2338 

0.0547 +9.2
4% 

0.8865 ± 
0.0433 

0.001
9 

+2.31
% 

0.9 0.4049 ± 
0.2823 

0.079
7 

+13.
31% 

0.1744 ± 
0.2810 

0.079
0 

+30.2
4% 

0.0776 ± 
0.1402 

0.019
7 

+88.8
1% 

0.6155 ± 
0.2244 

0.0503 +9.7
3% 

0.8856 ± 
0.0425 

0.001
8 

+2.20
% 

4.5.2. Llama-3.2-3B model evaluation results 
On the Llama-3.2-3B model (Appendix Table 7), fine-tuning 
on progressively larger splits of the dataset produces 
consistent and measurable gains across all evaluation metrics. 
ROUGE-1 shows steady improvements in the range of 9–
14%, while ROUGE-2 benefits even more strongly, with 
increases of 19–30%, underscoring the model’s enhanced 
ability to capture overlapping n-grams from the ground-truth 
actions. BLEU sees some of the most pronounced jumps, 
improving by 26–47% depending on the training split, 
reflecting a sharper alignment in surface-level phrasing 
between generated and reference actions. 
 

Semantic similarity metrics also improve consistently: cosine 
similarity rises by approximately 4.8–7.3% across all splits, 
while BERTScore exhibits modest but reliable gains of about 
0.8–1.2%. Notably, larger training splits (0.7–0.9) tend to 
yield the greatest relative improvements in BLEU and 
ROUGE-2, suggesting that the model particularly benefits 
from richer supervision when capturing fine-grained lexical 
patterns. These results indicate that fine-tuning substantially 
improves both lexical overlap and semantic alignment, 
though the magnitude of improvement is most striking for 
BLEU and ROUGE-2. 
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Table 6: Best-performing models across all evaluation settings  
Setting Best Model ROUGE-1 ROUGE-2 BLEU Cosine Sim. BERTScore 

Zero-shot (abbr.) Gemma-3-4B 0.3530 0.1357 – – – 
Zero-shot (abbr.) GPT-4o – – 0.0513 0.5866 0.8710 
Zero-shot (expanded) Gemma-3-4B 0.3577 0.1400 – – – 
Zero-shot (expanded) GPT-4o – – 0.0547 0.5906 0.8717 
Few-shot (abbr.) GPT-4o 0.3534 0.1423 0.0598 0.5949 0.8765 
Few-shot (expanded) GPT-4o 0.3559 0.1455 0.0615 0.5996 0.8763 
Few-shot (expanded) Gemma-3-4B – – – – 0.8765 
Fine-tuned (best) Gemma-3-4B (0.6) 0.4065 0.1755 – – – 
Fine-tuned (best) Gemma-3-4B (0.9) – – 0.0776 0.6155 – 
Fine-tuned (best) Gemma-3-4B (0.8) – – – – 0.8865 

4.5.3. Phi-4-mini model evaluation results 
On the Phi-4-mini model (Appendix Table 8), fine-tuning 
leads to clear and steady improvements across all data splits. 
ROUGE-1 consistently rises by about 7–10%, while 
ROUGE-2 shows larger gains in the range of 18–25%, 
indicating that the model becomes more capable of 
reproducing detailed n-gram overlaps from the reference 
actions. BLEU benefits the most dramatically, with increases 
between 26% and over 52%, underscoring Phi-4-mini’s 
stronger alignment in surface-level phrasing after fine-tuning.   
 
Semantic metrics also improve, though more moderately: 
cosine similarity gains remain in the +1.5–3.9% range, and 
BERTScore increases are smaller but steady at roughly +0.3–
0.6%. Whether trained on 10% or 90% of the dataset, the 
model’s performance curves upward in a stable fashion 
without large fluctuations. This suggests that Phi-4-mini 
benefits uniformly from exposure to additional data, but its 
largest relative improvements are concentrated in BLEU and 
ROUGE-2, while semantic similarity metrics rise more 
conservatively.  

5. DISCUSSION  
Normalization vs. semantics: Moving from the raw-
abbreviation corpus (Table 1) to the expanded version (Table 
2) consistently boosts lexical overlap for the best ROUGE 
model (Gemma-3-4B), while GPT-4o remains strongest on 
semantic/mixed measures (BLEU, cosine similarity, 
BERTScore). This split suggests two complementary 
capabilities: abbreviation expansion helps models reproduce 
the exact surface form of corrective actions, whereas 
semantic fidelity is less sensitive to token normalization and 
benefits from larger, more capable models. 
 
In-context learning vs. fine-tuning: 5-shot prompting changes 
the results (Tables 3–4), helping most models and 
disproportionately lifting weaker open models (e.g., Phi-3.5-

mini/Phi-4-mini, Llama-3.2-3B), while GPT-4o and Gemma-
3-4B retain leadership on their respective metrics. The largest 
relative few-shot gains appear in ROUGE-2/BLEU, 
indicating better adoption of domain phrasing through in-
context learning. Supervised fine-tuning delivers the most 
durable gains (Tables 5, 7, and 8) across Gemma-3-4B, 
Llama-3.2-3B, and Phi-4-mini, ROUGE-2 typically rises 
~18–31%, BLEU jumps ~25–90% depending on split, and 
cosine similarity/BERTScore improve steadily. Gains scale 
with data, i.e., larger training data splits (0.7–0.9) yield the 
steepest improvements, while variance across trials remains 
moderate and does not obscure the overall upward trend. 
Table 6 summarizes the best-performing models across all 
evaluation settings with best splits per metric for fine-tuned 
models. An example provided in Appendix Table 9 illustrates 
how fine-tuning consistently improves alignment between 
generated actions and the ground-truth reference.  
 
Cross-domain application: Beyond aviation, the proposed 
framework will be extended to additional maintenance 
datasets, including automotive and facility management 
records. Planned datasets include Avi-Acc, and Avi-Safe 
(problem, action, ATA code, flight or safety details), Auto-
Main, Auto-Acc, and Auto-Safe (problem, action, reason, 
department, and accident or request reports), and Faci-Main 
(problem, action, type, and location) (Akhbardeh et al. 2020). 
These domains share similar problem–action text structures, 
enabling direct application of the same pipeline for cross-
domain evaluation. 

6. CONCLUSION 
This study presented a systematic evaluation of both open-
source and proprietary large language models for predicting 
maintenance actions from aviation problem logs. We 
benchmarked off-the-shelf models in zero-shot and few-shot 
settings and further explored the impact of supervised fine-
tuning. 
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Our results show that few-shot prompting provides 
noticeable improvements across nearly all models, helping 
weaker baselines close the gap with stronger ones. Fine-
tuning was even more effective, consistently boosting 
performance across different data splits. Notably, the fine-
tuned Gemma-3-4B model outperformed all other candidates, 
including GPT-4o, underscoring the value of domain-specific 
adaptation for this task.  

Future work will focus on scaling fine-tuning to larger open-
source models and extending prediction to structured 
problem–component–action triples. This direction will allow 
deterministic action recommendations tied to specific fault 
categories, further enhancing the reliability and practical 
utility of LLMs in predictive maintenance. Moreover, 
incorporating technician feedback in a human-in-the-loop 
setting will help ensure that generated actions remain safe, 
interpretable, and aligned with real maintenance practices. 
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APPENDIX 
Compute and runtime details: All experiments were 
conducted on a single RTX 6000 Ada (48 GB) GPU with 
bfloat16 precision. Fine-tuning used three epochs per split, 
and the times reported here are for full training and per trial 
for evaluation, with peak VRAM in parentheses. Phi-4-Mini: 
training 30 seconds to 5.25 minutes (42 GB); evaluation 2.25 
to 15 minutes (18 GB). Gemma-3-4B: training 50 seconds to 
7 minutes (47 GB); evaluation 2 to 30 minutes (19.5 GB). 
Llama-3.2-3B: training 30 seconds to 4 minutes (34 GB); 
evaluation 8 to 90 minutes (15 GB). These figures indicate 
that both full-parameters fine-tuning and evaluation of 
compact 3–4B models are practical on a single workstation-
class GPU. 

Example of zero-shot prompt: You are an expert in 
Aviation maintenance. The aviation maintenance dataset 
within MaintNet originates from the University of North 
Dakota's Aviation Program and comprises 6,169 anonymized 
entries. The dataset includes unstructured text entries 
detailing maintenance issues, often written in domain-
specific jargon, abbreviations, and non-standard grammar. 
Each entry typically includes a ‘Problem’ field describing the 
maintenance issue and an ‘Action’ field detailing the 
corrective measures taken. You will be provided with a 
problem, and your task is to generate a corresponding action 
statement. The action statement should be concise, clear, and 
directly related to the problem statement. Please ensure that 
the generated action is relevant and appropriate for the given 
problem 

Example of 5-shot prompt:  You are an expert in Aviation 
maintenance. The aviation maintenance dataset within 
MaintNet originates from the University of North Dakota's 
Aviation Program and comprises 6,169 anonymized entries. 
The dataset includes unstructured text entries detailing 
maintenance issues, often written in domain-specific jargon, 
abbreviations, and non-standard grammar. Each entry 
typically includes a 'Problem' field describing the 
maintenance issue and an 'Action' field detailing the 
corrective measures taken. You will be provided with a 
problem, and your task is to generate a corresponding action 
statement. The action statement should be concise, clear, and 
directly related to the problem statement. Please ensure that 
the generated action is relevant and appropriate for the given 
problem. Some examples have been provided for your 
reference. 

Input: TOOL LEFT ON CYLINDER #2 

Output: REMOVED TOOL FROM CYL #2. 

Input: TYRAP AND SCREWDRIVER FOUND NEAR 
ENGINE TOE 
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Output: REMOVED TYRAP AND TOOL FROM ENGINE 
AREA. 

Input: NO COMPRESSION ON CYL #4 DUE TO VALVE 
LEAK 

Output: INSTALLED NEW CYLINDER AND PISTON ON 
#4. 

Input: ZIP TIES FOUND ON ENGINE MOUNTING 
BRACKETS 

Output: REMOVED ZIP TIES AND SECURED HARNESS 
WITH CLIPS. 

Input: LACING CORD REPLACED WITH TIES ON 
BOTH MOUNTS 

Output: SECURED LINES WITH LACING CORD ON 
BOTH SIDES. 

Input: [TEST PROBLEM] 

Output:  

 

 

 
Table 7: Llama-3.2-3B model evaluation results showing baseline (before) and after fine-tuning 
 
Split ROUGE-

1 (Mean ± 
Std) 

ROU
GE-1 
Var 

Δ% ROUGE-
2 (Mean ± 

Std) 

ROU
GE-2 
Var 

Δ% BLEU 
(Mean ± 

Std) 

BLE
U Var 

Δ% CosineSim 
(Mean ± 

Std) 

Cosin
eSim 
Var 

Δ% BERTSco
re (Mean 

± Std) 

BERT
Score 
Var 

Δ% 

Base
line 

0.3213 ± 
0.2360 

0.055
7 

– 0.1216 ± 
0.1913 

0.036
6 

– 0.0388 ± 
0.0669 

0.004
5 

– 0.5362 ± 
0.2065 

0.042
7 

– 0.8580 ± 
0.0342 

0.0012 – 

0.1 0.3604 ± 
0.2569 

0.066
0 

+12.
18% 

0.1502 ± 
0.2299 

0.052
9 

+23.5
3% 

0.0522 ± 
0.1028 

0.010
6 

+34.54
% 

0.5642 ± 
0.2175 

0.047
3 

+5.23
% 

0.8660 ± 
0.0366 

0.0013 +0.93
% 

0.2 0.3567 ± 
0.2562 

0.065
6 

+11.
03% 

0.1542 ± 
0.2298 

0.052
8 

+26.7
7% 

0.0511 ± 
0.0939 

0.008
8 

+31.70
% 

0.5648 ± 
0.2120 

0.044
9 

+5.33
% 

0.8657 ± 
0.0364 

0.0013 +0.89
% 

0.3 0.3629 ± 
0.2567 

0.065
9 

+12.
95% 

0.1560 ± 
0.2275 

0.051
8 

+28.2
6% 

0.0552 ± 
0.0982 

0.009
6 

+42.27
% 

0.5714 ± 
0.2161 

0.046
7 

+6.56
% 

0.8669 ± 
0.0375 

0.0014 +1.04
% 

0.4 0.3506 ± 
0.2496 

0.062
3 

+9.1
2% 

0.1446 ± 
0.2106 

0.044
4 

+18.9
1% 

0.0490 ± 
0.0887 

0.007
9 

+26.29
% 

0.5621 ± 
0.2132 

0.045
5 

+4.83
% 

0.8651 ± 
0.0370 

0.0014 +0.83
% 

0.5 0.3623 ± 
0.2504 

0.062
7 

+12.
76% 

0.1545 ± 
0.2255 

0.050
8 

+26.9
9% 

0.0554 ± 
0.0966 

0.009
3 

+42.78
% 

0.5686 ± 
0.2132 

0.045
5 

+6.04
% 

0.8670 ± 
0.0373 

0.0014 +1.05
% 

0.6 0.3564 ± 
0.2544 

0.064
7 

+10.
93% 

0.1518 ± 
0.2235 

0.050
0 

+24.8
1% 

0.0511 ± 
0.0878 

0.007
7 

+31.70
% 

0.5670 ± 
0.2149 

0.046
2 

+5.74
% 

0.8664 ± 
0.0375 

0.0014 +0.99
% 

0.7 0.3654 ± 
0.2570 

0.066
0 

+13.
72% 

0.1585 ± 
0.2309 

0.053
3 

+30.3
4% 

0.0562 ± 
0.0964 

0.009
3 

+44.85
% 

0.5750 ± 
0.2169 

0.047
0 

+7.22
% 

0.8682 ± 
0.0388 

0.0015 +1.19
% 

0.8 0.3656 ± 
0.2478 

0.061
4 

+13.
79% 

0.1508 ± 
0.2207 

0.048
7 

+24.0
1% 

0.0547 ± 
0.0919 

0.008
4 

+40.98
% 

0.5755 ± 
0.2140 

0.045
8 

+7.33
% 

0.8676 ± 
0.0380 

0.0014 +1.12
% 

0.9 0.3661 ± 
0.2534 

0.064
2 

+13.
94% 

0.1559 ± 
0.2262 

0.051
2 

+28.1
9% 

0.0569 ± 
0.1009 

0.010
2 

+46.65
% 

0.5737 ± 
0.2102 

0.044
2 

+7.00
% 

0.8681 ± 
0.0386 

0.0015 +1.18
% 
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Table 8: Phi-4-mini model evaluation results showing baseline (before) and after fine-tuning 
 

Split ROUGE-
1 (Mean 
± Std) 

ROU
GE-1 
Var 

Δ% ROUGE-
2 (Mean 
± Std) 

ROUG
E-2 
Var 

Δ% BLEU 
(Mean 
± Std) 

BLE
U 

Var 

Δ% CosineSi
m (Mean 

± Std) 

Cosin
eSim 
Var 

Δ% BERTSco
re (Mean 

± Std) 

BER
TSco

re 
Var 

Δ% 

Basel
ine  

0.3028 ± 
0.2054 

0.042
2 

– 0.0903 ± 
0.1412 

0.0199 – 0.0279 ± 
0.0430 

0.001
8 

– 0.5247 ± 
0.1978 

0.039
1 

– 0.8570 ± 
0.0317 

0.001
0 

– 

0.1 0.3248 ± 
0.2239 

0.050
1 

+7.26
% 

0.1064 ± 
0.1637 

0.0268 +17.83
% 

0.0353 ± 
0.0602 

0.003
6 

+26.5
2% 

0.5325 ± 
0.2016 

0.040
6 

+1.4
9% 

0.8597 ± 
0.0320 

0.001
0 

+0.32
% 

0.2 0.3279 ± 
0.2239 

0.050
1 

+8.29
% 

0.1089 ± 
0.1706 

0.0291 +20.59
% 

0.0402 ± 
0.0815 

0.006
6 

+44.0
9% 

0.5345 ± 
0.2009 

0.040
4 

+1.8
7% 

0.8612 ± 
0.0326 

0.001
1 

+0.49
% 

0.3 0.3282 ± 
0.2221 

0.049
3 

+8.38
% 

0.1096 ± 
0.1692 

0.0286 +21.35
% 

0.0397 ± 
0.0783 

0.006
1 

+42.3
0% 

0.5366 ± 
0.2013 

0.040
5 

+2.2
7% 

0.8613 ± 
0.0322 

0.001
0 

+0.50
% 

0.4 0.3328 ± 
0.2230 

0.049
7 

+9.91
% 

0.1103 ± 
0.1726 

0.0298 +22.12
% 

0.0404 ± 
0.0768 

0.005
9 

+44.8
0% 

0.5389 ± 
0.2045 

0.041
8 

+2.7
1% 

0.8615 ± 
0.0328 

0.001
1 

+0.52
% 

0.5 0.3252 ± 
0.2181 

0.047
5 

+7.39
% 

0.1090 ± 
0.1685 

0.0284 +20.69
% 

0.0374 ± 
0.0721 

0.005
2 

+34.0
5% 

0.5388 ± 
0.1986 

0.039
5 

+2.6
9% 

0.8610 ± 
0.0313 

0.001
0 

+0.47
% 

0.6 0.3283 ± 
0.2205 

0.048
6 

+8.42
% 

0.1074 ± 
0.1668 

0.0278 +18.91
% 

0.0383 ± 
0.0726 

0.005
3 

+37.2
7% 

0.5364 ± 
0.2010 

0.040
4 

+2.2
3% 

0.8611 ± 
0.0324 

0.001
0 

+0.48
% 

0.7 0.3299 ± 
0.2217 

0.049
2 

+8.95
% 

0.1102 ± 
0.1651 

0.0273 +21.99
% 

0.0384 ± 
0.0714 

0.005
1 

+37.6
3% 

0.5406 ± 
0.2017 

0.040
7 

+3.0
3% 

0.8621 ± 
0.0324 

0.001
0 

+0.60
% 

0.8 0.3332 ± 
0.2242 

0.050
3 

+10.0
3% 

0.1129 ± 
0.1742 

0.0303 +25.07
% 

0.0408 ± 
0.0783 

0.006
1 

+46.2
4% 

0.5427 ± 
0.2007 

0.040
3 

+3.4
3% 

0.8616 ± 
0.0327 

0.001
1 

+0.54
% 

0.9 0.3328 ± 
0.2229 

0.049
7 

+9.91
% 

0.1132 ± 
0.1767 

0.0312 +25.39
% 

0.0424 ± 
0.0831 

0.006
9 

+52.0
0% 

0.5450 ± 
0.2038 

0.041
5 

+3.8
6% 

0.8617 ± 
0.0325 

0.001
1 

+0.55
% 
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Table 9: Model predictions for the maintenance problem “#1 CYLINDER ROCKER ARM & PUSH ROD GALLED 
ON EXHAUST SIDE.” with ground truth “REMOVED & REPLACED ROCKER ARM & PUSH ROD.” showing 
CosSim, ROUGE, BLEU, and BERTScore-F1 for models before and after finetuning. 
 

Model Prediction CosSim 
↑ 

ROUGE-
1 ↑ 

ROUGE-
2 ↑ 

BLEU 
↑ 

BERTScore-
F1 ↑ 

GPT-4o REPLACED #1 CYLINDER EXHAUST 
ROCKER ARM AND PUSH ROD. 

0.7430 0.6667 0.3077 0.0945 0.9030 

Gemma-3-4B 
(Orig.) 

# REPLACE CYLINDER ROCKER 
ARM AND PUSH ROD. 

0.7753 0.7692 0.3636 0.1007 0.9229 

Gemma-3-4B 
(Fine-tuned) 

# REPLACED CYLINDER ROCKER 
ARM & PUSH ROD. 

0.8006 0.8333 0.6000 0.5411 0.9420 

 Llama-3.2-3B 
(Orig.) 

#1 CYLINDER ROCKER ARM & 
PUSH ROD GALLED ON EXHAUST 
SIDE. REPLACE WITH NEW PART. 

0.6682 0.5000 0.3333 0.1645 0.8947 

 Llama-3.2-3B 
(Fine-tuned) 

REPLACE CYLINDER ROCKER ARM 
& PUSH ROD. 

0.8376 0.8333 0.6000 0.5329 0.9029 

Phi-4-mini 
(Orig.) 

REPLACE THE DAMAGED 
CYLINDER ROCKER ARM AND 
PUSH ROD ON THE EXHAUST SIDE. 

0.6138 0.5263 0.2353 0.0490 0.8761 

Phi-4-mini 
(Fine-tuned) 

REPLACE THE CYLINDER ROCKER 
ARM AND PUSH ROD ON THE 
EXHAUST SIDE. 

0.5482 0.5556 0.2500 0.0528 0.8799 

Fine tuning analysis: Figure 3 shows percentage of test 
cases where the fine-tuned models outperformed, matched, or 
underperformed the original baselines across different 
training splits (0.1–0.9). Each bar shows the proportion of 
problems with higher (blue), equal (orange), or lower (green) 
scores for each evaluation metric i.e., cosine similarity, 
ROUGE-1, ROUGE-2, BLEU, and BERTScore-F1. Overall, 
fine-tuning consistently improved lexical and semantic 
alignment with the reference actions, particularly in 
BERTScore and Cosine metrics. 

 
Figure 3: Comparison of fine-tuned vs original models 
across splits, showing percentage of cases where fine-
tuning improved, matched or reduced performance 
across all evaluation metrics for Gemma model 
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