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ABSTRACT

Power electronic devices vary in lifetime due to intrinsic de-
vice characteristics and extrinsic operational environments,
which pose significant challenges in lifetime prediction. Tra-
ditional Deep Learning methods often directly map precursor
signals to the Remaining Useful Lifetime (RUL), lacking the
health state information needed to adapt dynamically to de-
vice characteristics. To address this limitation, we propose
a stateful, self-adaptive RUL prediction method for package
failure of power diodes. It utilizes junction temperature sig-
nals as inputs, representing thermal-mechanical fatigue influ-
enced by external operational environments, to adjust the al-
gorithm states, which contain the device characteristics and
health state information. The proposed method combines two
models, a stateful-LESIT (SLESIT) model and a Kalman Fil-
ter (KF). The SLESIT model dynamically adjusts its state us-
ing current junction temperature signals to estimate the RUL.
The produced estimation is then used to rectify the predic-
tions from an intuitive RUL propagation model in KF, pro-
viding a statistically optimal RUL estimation at each cycle.
Validated through online simulation with accelerated aging
data from power diodes that exhibit significant lifetime vari-
ability (68.1%), our approach reduces Mean Absolute Error
(MAE) from 44.17% to 84.52% compared to popular Deep
Learning methods.

1. INTRODUCTION

Power electronic devices are critical components in mod-
ern energy systems, including electric vehicles and indus-
trial plants. Accurate prediction of their Remaining Useful
Life (RUL) is essential for ensuring system reliability and
reducing maintenance costs. However, the lifetime of these
devices exhibits substantial variability (Kardan, Shekhar, &
Bauer, 2025) due to intrinsic device characteristics (e.g., pro-
cess variation) and extrinsic operational dynamics (e.g., load
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current variation and temperature change). This variabil-
ity poses a challenge to traditional RUL prediction methods,
which typically lack adaptability to device-specific degrada-
tion processes.

Existing approaches, particularly Neural Network (NN)-
based methods, such as self-attention-based networks (Xiao
et al., 2022), Long short-term memory (LSTM) (W. Li, Wang,
Liu, Zhang, & Wang, 2020), and Recurrent Neural Network
(RNN) (Cai & Lu, 2024), prefer using precursor signals or
their derived features to predict RUL directly. This implies
that each precursor signal sequence is labeled with an RUL
value in training and inference. However, this technique suf-
fers from a critical many-to-one mapping problem: identi-
cal precursor sequences from different devices with divergent
lifetimes can map to inconsistent RUL labels due to varying
device characteristics and operational environments. It forces
models to converge to averages of these conditions, incurring
significant prediction bias. In addition, the model parameters
are static after training, thus they cannot dynamically adapt
to variations in devices and operation environments.

Instead of relying only on the current input sequence to pre-
dict RUL, we propose a stateful, self-adaptive RUL prediction
framework that makes predictions incorporating the health
states. It preserves device characteristics and health condi-
tion information, allowing the proposed algorithm to adapt to
devices with variations through state propagation. The pro-
posed method integrates a stateful-LESIT (SLESIT) model
and a Kalman Filter (KF). The SLESIT model transitions its
state based on junction temperature signals, which directly
relate to thermal-mechanical fatigue, and produces RUL esti-
mations based on the state. The output of the SLESIT model
is used as the observation to rectify the RUL propagation
model in the KF. We employ the standard KF rather than its
variants, such as the Extended Kalman Filter and Particle Fil-
ter, because it suits the linear RUL descending scenario and
is capable of producing optimal estimations. In this study,
we focus on the package-related wire-bond failure in power
diodes.
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We summarize our contributions as follows:

• We introduce a stateful framework for RUL prediction
that combines SLESIT and KF, both capable of contin-
uously updating their internal states, to adapt dynami-
cally to variations in device characteristics and opera-
tional conditions.

• We integrate a modified lifetime model, the SLESIT
model, to enhance the model interpretability. It utilizes
the average junction temperature values, which are re-
lated to thermal-mechanical fatigue causing wire-bond
failure, as the model states.

• To validate the effectiveness, we implement experiments
against an accelerated aging dataset with variations in de-
vice characteristics and operational environments. The
results show that our method outperforms the popular
NN-based networks in RUL prediction, including a state-
of-the-art self-attention-based network, an LSTM, and a
vanilla RNN.

The remainder of this paper is structured as follows: Section
2 reviews related work; Section 3 formalizes the challenge
of RUL prediction; Section 4 presents the proposed method;
Section 5 evaluates the proposed method; and Section 6 con-
cludes the work.

2. RELATED WORKS

2.1. Common failure precursors

Failure precursor signals change with the device degra-
dation. Common failure precursors include emitter volt-
age VCE (Haque, Choi, & Baek, 2018) and gate-emitter
threshold voltage VGE(th) for Insulated-gate bipolar Tran-
sistors (IGBTs), on-state resistance Ron (R. Celaya, Sax-
ena, Saha, & F. Goebel, 2011; Z. Li, Zheng, & Out-
bib, 2018), on-state voltage VDS,on (Vaccaro, Biadene,
& Magnone, 2023), and threshold voltage Vth (Saha,
Celaya, Vashchenko, Mahiuddin, & Goebel, 2011) for
power Metal–Oxide–Semiconductor Field-Effect Transis-
tors (MOSFETs), and forward voltage drop Vf (Lu & Otto,
2024) for power diodes. Those precursor signals are sensi-
tive to different failure modes, thus the appropriate failure
precursor should be selected for and lifetime prediction.

Forward-voltage-related signals such as VCE in IGBT and
Vf in power diodes are sensitive to wire-bond degradation
(Hanif, Yu, DeVoto, & Khan, 2019; Smet et al., 2011; Smet,
Forest, Huselstein, Rashed, & Richardeau, 2013). This is
because VCE increases are primarily driven by heel cracks
and lift-offs in aluminum wire-bonds (Smet et al., 2013).
Those failures can disconnect wire segments, reduce con-
ductive cross-sectional area, and elevate on-state resistance
and thus VCE . As a result, these signals are popular in di-
agnosing wire-bond failure. For example, the work (Zhang
et al., 2021) has linked VCE drift to wire-bond shedding in

IGBTs to predict the RUL based on Least Squares Support
Vector Machines and Particle Filter. In SiC MOSFETs, the
on-state voltage VDS,on has been used for training a bidirec-
tional LSTM for RUL prediction (Vaccaro et al., 2023). For
power diodes, a 5% rise in forward voltage drop Vf has been
used as the end-of-life failure criterion for health condition
prediction (Lu & Otto, 2024).

2.2. Data-driven methods

Deep learning models are popular in RUL prediction as they
can capture nonlinear degradation patterns in precursor sig-
nals. Bidirectional LSTMs have been implemented to esti-
mate the RUL of IGBTs encapsulated in TO-247 (Vaccaro
et al., 2023). The model can leverage temporal dependen-
cies in voltage degradation profiles, yet it demands exten-
sive training data for accurate predictions. A self-attention
(SA)-based network (Xiao et al., 2022) has been proposed
for RUL prediction of IGBTs. The positional embedding
and self-attention mechanism are the core structures that ex-
tract the degradation pattern for accurate prediction, with a
relatively small training sample size. The LSTM has been
combined with Particle Filters for IGBT failure prediction
(Yang, Zhang, Li, & Miao, 2022). A data-driven approach
has been proposed that employs degradation phase durations
of VCE as inputs to NNs and Adaptive Neuro-Fuzzy Infer-
ence System models for IGBT RUL prediction (Ahsan, Stoy-
anov, & Bailey, 2016). These models are limited to op-
erate on a sequence of local failure precursors, denoted as
RULt = f(xt−n, ..., xt−1), ignoring the variations in device
characteristics and operational environments. As a result, the
model outputs are biased. We propose a stateful framework
that incorporates lifetime state to adapt to these variables.

2.3. Lifetime models

The Coffin-Manson law (Coffin, 1954) describes the relation-
ship between plastic strain and fatigue, which is suitable for
devices under accelerated power cycling tests. The classic
lifetime model, named the LESIT model (Held, Jacob, Nico-
letti, Scacco, & Poech, 1997), further combines the Coffin-
Manson law with an Arrhenius term to model the wire-bond
failure. It utilizes the junction temperature Tj to model the
relation between lifetime and thermal fatigue. Subsequent re-
search has enhanced the LESIT model by incorporating criti-
cal operational parameters, including conduction time ton and
load current density IA for varying load conditions (Otto &
Rzepka, 2019). Furthermore, a model that incorporates more
device parameters, such as the diameter of bond wires, has
been proposed for different types of devices (Bayerer, Her-
rmann, Licht, Lutz, & Feller, 2008). In this study, we focus
on diagnosing a single type of device under constant loads,
thus we select the traditional LESIT model. However, the
critical limitation of this model lies in its static form, inher-
ently limiting its applicability in dynamic RUL prediction. A
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dynamic LESIT model (Lu, Shi, Otto, & Albrecht, 2023) has
been introduced to compute the dynamic RUL by including
time. We further introduce a state mechanism, evolving the
model to an SLESIT model that can dynamically update its
state to predict RULs during the degradation process.

3. THE RUL PREDICTION CHALLENGE UNDER VAR-
IED LIFETIMES

3.1. The device under test and aging dataset

The diode aging dataset is sourced from paper (Lu & Otto,
2024). The power diodes are encapsulated in the power
package TO-220, as shown in Figure 1. The chip size is
2.8mm × 2.8mm and the wire-bonds have a diameter of
350µm. The failure mode of the dataset is wire-bond lift-off
failure.

Figure 1. TO-220 power package appearance (Lu & Otto,
2024).

3.2. Lifetime variation of power electronic devices

There are 6 devices in the dataset. The tested devices were re-
peatedly powered on/off to simulate and accelerate the degra-
dation process. The load parameters are listed in Table 1.
They have slight differences across devices: the load current
Iload is 27-28 A, the average junction temperature swing ∆Tj

is 105.1-111.5 K (6.1% variation), and the average maximum
junction temperature Tj,max is 143.4-155.0 ◦C (8.1% vari-
ation). However, the result lifetime Nf ranges from 10392
to 17567 cycles, with a variation of 68.1%. The highly dis-
proportionate results imply that not only the external envi-
ronment but also the intrinsic characteristics of devices can
influence the lifetime. It can be further validated through
a counterexample of the external environment effects. Dur-
ing accelerated aging testing, temperature rises when power
is on (due to electrical heating) and falls when power is off.
This temperature fluctuation can cause thermal-mechanical
stress at the interface of wire-bonds and chips due to the
mismatch in coefficients of thermal expansion. In princi-
ple, when the temperature swing and the absolute temperature
change are higher, the lifetime should be shorter because of
the higher thermal-mechanical stress. Nevertheless, consider
the devices 2 and 5: Device 5 has both higher ∆Tj (111.5
K compared to 108.9 K) and Tj,max (155.0 ◦C compared to
151.0 ◦C), while it has a longer lifetime (11431 compared to
10392). Taking both factors into account is essential for ac-
curate lifetime prediction and for further reducing the bias in
RUL prediction.

Table 1. Aging test load summary

Device Iload ∆Tj Tj,m Tj,min Tj,max Nf

No. [A] [K] [◦C] [◦C] [◦C] [cycle]
1 28 106.8 90.0 36.6 143.4 11616
2 28 108.9 96.6 42.1 151.0 10392
3 28 106.6 91.9 38.6 145.2 13265
4 28 105.1 93.9 41.4 146.5 17467
5 28 111.5 99.3 43.5 155.0 11431
6 27 107.1 92.9 39.3 146.4 13507

3.3. Limitations of RUL reference curve mapping

The forward voltage drop Vf is the commonly used precur-
sor signal as it is most sensitive to the degradation process of
wire-bonds in power diodes (Hanif et al., 2019). The critical
technique of data preprocessing for NN models is mapping
the precursor signal with RUL labels. Figure 2 illustrates
the projection of the precursor signals in the aging dataset
to the reference RUL curves. The Vf curves increase slowly
at first, then significantly near the end-of-life. It reflects the
degradation pattern of the wire-bonds, corresponding to wire-
bond crack initiation and accelerated growth. In some state-
of-the-art works, they divide the whole lifetime into healthy
and sub-healthy stages accordingly (Xiao et al., 2022; Lu
& Otto, 2024). Each RUL reference curve is a normalized
monotonic decreasing curve from 1 to 0. The x-axis inter-
cept and the slope are dependent on the lifetime length. Each
sample point on the Vf curve aligns vertically with a corre-
sponding point on the RUL curve, ensuring that both curves
are of equal length. In data preparation, the precursor signal
samples or the extracted feature samples are labeled with the
corresponding RUL value at the same timestamp. For exam-
ple, when the Vf signal of Device 6 is around 1.677 V, it is
mapped to a RUL of around 0.95.

Figure 2. Vf precursor signal in the aging dataset and the
corresponding RUL reference curve.

However, a significant limitation is the many-to-one map-
ping problem. Due to the factors introduced in the previ-
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ous subsection, the Vf signals exhibit varied initial values and
lengths, as depicted in Figure 2. As a result, in different de-
vices, the same Vf input signal can map to different RUL
values. For instance, the black solid horizontal line has the
y-intercept of 1.677 V, and the intersections with Vf curves
locate the samples in each device. The vertical dashed lines
map the Vf signal with RUL values. It intersects with all 6
Vf curves at distinct parts, resulting in 6 diverse RUL labels:
0.94, 0.75, 0.66, 0.02, 0.01, and 0.01. If the NN models are
trained using the multi-labeled input value of 1.677, the op-
timal result achieved by minimizing prediction error is the
mean of the labels, which is 0.398. This limitation introduces
significant prediction bias in traditional NN models that rely
exclusively on a local input sequence. Some data preprocess-
ing techniques can mitigate this issue, such as input normal-
ization, i.e., normalizing the Vf signal or the extracted fea-
tures, and the health stages separation technique mentioned
above. Nonetheless, they cannot solve the core issue, the life-
time variation. As long as the lifetime varies, the many-to-
one mapping RUL problem persists. Consequently, we need a
model that can circumvent the RUL reference curve mapping
and gather device degradation information simultaneously.

3.4. Limitations of non-adaptive models

The degradation trajectory of power electronic devices is in-
trinsically governed by device characteristics and operational
conditions. Crucially, the fatigue accumulated per opera-
tional cycle is dynamically determined by both the applied
thermal stresses and the current health state of the device.
To achieve accurate RUL predictions, models must therefore
continuously adapt to these evolving fatigue dynamics at each
cycle. However, the parameters of non-adaptive NN mod-
els for RUL prediction remain static after training, preventing
dynamic adjustments. Furthermore, those models inherently
lack mechanisms to track and propagate degradation state in-
formation across cycles. These constraints can induce predic-
tion bias, as non-adaptive models cannot capture the interplay
between device-specific degradation and operational loads.
Consequently, a stateful and adaptive estimation framework
capable of dynamically adapting to varied device characteris-
tics and operational conditions is essential to mitigate predic-
tion bias.

4. THE SELF-ADAPTIVE RUL PREDICTION METHOD

4.1. Overview

The proposed method adapts to the device characteristics
and current health status by combining two dynamic mod-
els, the SLESIT model and KF. Conventional NN models pre-
dict failure directly from the local precursor signal sequence
f(xt−n, ..., xt−1) (Figure 3a), which is indirectly related to
the physics-of-failure. In contrast, the proposed model dy-
namically rectifies its predictions using the junction temper-

ature signal (Figure 3b). This signal is fundamental to the
wire-bond failure mechanism, indicating the health status and
the fatigue endured per operational cycle. The output of SLE-
SIT model is first corrected using the junction temperature
signal and subsequently used to update the prior state estimate
of the RUL propagation model via KF. The functionality and
mechanism of each block will be detailed in the following.

(a) The conventional prediction framework of NN models.

(b) The self-adaptive prediction framework of the proposed method.

Figure 3. Framework comparison of NN model and proposed
model.

4.2. The inherent degradation information in the junc-
tion temperature signal

The fundamental mechanism of the failure mode under study,
wire-bond failure, is the thermal-mechanical stress caused by
the temperature change. The difference in coefficient of ther-
mal expansion between the Al wire-bond (2.4 × 10−5K−1

and the Si chip (3.0× 10−6K−1) causes plastic deformation
or even fracture in thermal cycles. Consequently, the vec-
tor [∆Tj , Tj,max]t contains the thermal fatigue information at
cycle t. It results from a combination of internal device char-
acteristics and external operational environment. When the
load current is higher, the electrical thermal effect becomes
more pronounced, leading to a greater temperature change.
Similarly, a longer crack in the wire-bond increases its re-
sistance, also intensifying the electrical thermal effect. Fig-
ure 4 illustrates the Tj,max signal. Most of the devices show
a rising trend under a constant load due to device degrada-
tion. This makes the signal suitable for monitoring internal
device characteristics and external operational conditions to
make dynamic adjustments.

In the proposed method, vector [∆Tj , Tj,max]t trans-
mits the endured fatigue at cycle t, and the mean vector
[∆Tj , Tj,max]t stores the health status information. In each
cycle, [∆Tj , Tj,max]t adjusts the output of the SLESIT
model, the Assessed RUL at cycle t (ARULt). The mean
vector [∆Tj , Tj,max]t is calculated and reserved for the
prediction of the next cycle t+ 1.
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Figure 4. The Tj,max signal of the accelerated test.

4.3. Stateful-LESIT lifetime model

4.3.1. The original and dynamic LESIT model

The LESIT model (Held et al., 1997) is an empirical model
that relates junction temperature and lifetime Nf . It combines
the Coffin-Manson equation and the Arrhenius term,

Nf = a ·∆Tj
α · e

Ea
kB ·Tj,x , (1)

where kB is the Boltzmann constant, and Tj,x is the absolute
junction temperature. We use Tj,max to represent the absolute
junction temperature in this work. The rest parameters, a,
α, and Ea, can be fitted using historical data. The dynamic
LESIT model (Lu et al., 2023) includes the time t to enable
dynamic calculation of RUL:

RUL(t) = a ·∆Tj,t
α · e

Ea
kB ·Tj,x,t − t. (2)

4.3.2. The Stateful-LESIT model

The original LESIT model is restricted to post-lifecycle val-
idation of the aforementioned relationship, rather than pre-
dictive analysis. The variables ∆Tj and Tj,x in the original
LESIT model represent the average values of corresponding
signals measured throughout the lifetime. When the accurate
measurements of the variables are obtained, the end-of-life
occurs. Consequently, the model must be modified to facili-
tate dynamic estimation and state propagation, ensuring com-
patibility with our stateful prediction framework. Based on
the dynamic LESIT model, we introduce an SLESIT model
that can calculate the RUL based on the previous state and the
current input:

ARULt = a · (∆Tj,t−1 · (t− 1) + ∆Tj,t

t
)α·

e

Ea

kB ·
Tj,max,t−1·(t−1)+Tj,max,t

t − t. (3)

The input [∆Tj , Tj,max]t carries the recent thermal fatigue
information of cycle t to rectify the state [∆Tj , Tj,max]t−1.

The rectified state representing the new degradation level at
current state t is

[∆Tj , Tj,max]t =
1

t
((t−1)·[∆Tj , Tj,max]t−1+[∆Tj , Tj,max]t).

(4)

The ARULt is calculated based on Nf estimation of the cur-
rent state minus the past cycles t.

4.4. The Kalman Filter for self-adaptive prediction

4.4.1. The common Kalman Filter equations

KF is a recursive estimation algorithm renowned for its abil-
ity to optimally combine uncertain predictions with noisy ob-
servations to produce statistically optimal state estimates in
dynamic systems. This characteristic makes it suitable for
our application scenario. The basic KF equations include the
state transition equation and the observation equation:

Xt =f(Xt−1) +Qt, (5)
Yt =h(Xt) +Rt, (6)

where X is the state variable, Y is the observation variable,
f(·) and h(·) are state transition function and observation
function, and Q and R are zero-mean process and observation
noise variables respectively. Each variable is a random vari-
able subject to a Gaussian distribution, which can be uniquely
represented by its mean and variance. The recursive algo-
rithm employs a predict-update loop to make estimations and
rectify them iteratively. We employ this iteration in rectifying
the estimation of an RUL propagation model with ARULt.

4.4.2. The Kalman Filter combined with SLESIT model

Figure 5. The KF predict-update iteration framework in self-
adaptive RUL prediction.

The predict-update iteration in self-adaptive prediction is
shown in Figure 5. It continuously propagates the state esti-
mate (prior) in the predict stage, then rectifies this estimation
(updating to the posterior) by incorporating the observation
via the Bayesian equation. The Bayesian equation for recti-
fying the prior can be expressed as:
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posterior =
likelihood× prior

normalization factor
. (7)

We denote the prior and posterior with − and +, respectively.
In our implementation, the state and observation variables are
RUL and ARUL. We utilize an intuitive RUL propagation
model as the state transition equation:

RULt = RULt−1 − δ(1). (8)

The RUL distribution subtracts a Gaussian approximation of
delta function with a mean of 1. It indicates that the RUL
variable continuously decreases by 1 in each predict stage.
The observation function is h(x) = x, as ARUL directly
rectifies RUL.

Since the Gaussian distribution calculation can be separated
into mean and variance calculations, the RUL in the predict-
update loop is propagated as:

• Predict:

RUL−
t =RUL+

t−1 − 1, (9)

V ar−t =V ar+t−1 +Qv,t, (10)

where V ar−t is the RUL prior variance at cycle t, and
Qv,t is the variance of the process noise.

• Update:

Kt =
V ar−t

V ar−t +Rv,t

, (11)

RUL+
t =RUL−

t +Kt(ARULt −RUL−
t ), (12)

V ar+t =(1−Kt)V ar−t , (13)

where Kt is the Kalman gain at cycle t, and Rv,t is the
variance of the observation noise.

In the experiments, Qv,t is set to 10−4 and Rv,t is set to 108.

5. EVALUATION

5.1. Experiment

We evaluate the real-time prediction performance with offline
accelerated aging data. The experiment flow is illustrated
in Figure 6. The model parameters are fitted first. At each
timestamp, only the current signal value is input to the model,
while all others are masked. Then it predicts the current RUL
based on the state and the current input. The prediction per-
formance is evaluated using Mean Absolute Error (MAE).

5.2. Result of proposed prediction method

The model parameters [a, α, Ea

kb
] after fitting is [2.82 ×

1040,−14.10,−7463.76]. The RUL prediction result of the
proposed self-adaptive method is shown in Figure 8. To
demonstrate the effectiveness of the KF, the SLESIT model

Figure 6. Evaluation experiment process.

prediction result is also illustrated for comparison. The aver-
age MAE of 6 devices is presented in Table 2. Comparing the
two methods:

1. The proposed method outperforms the SLESIT model,
achieving an MAE of 500.82 compared to 621.75. It
shows a 19.45% improvement in MAE, validating the
contribution of KF.

2. The predictions of the two methods are deviated from
the truth at the beginning, then converge to the true RUL
reference curve. The reason is that the input samples
are insufficient to get accurate estimations. When the
state is initialized far from the true state, the state of the
model gradually converges to the RUL reference curve.
It demonstrates the adaptability of the proposed model
and the SLESIT model.

3. Empirically, this convergence occurs within the first 1%
of the data length. The initial state for both models is set
using the first cycle measurements of junction temper-
ature, as determined by Equation 3. Excluding the first
1% samples, the two methods against the remaining 99%
prediction samples achieve MAE of 488.45 and 617.19,
respectively.

4. The incorporation of KF enables the calculation of 95%
confidence interval (95% CI), as illustrated in Figure 8.
As the state propagates, the CI narrows and converges,
exhibiting the adaptability of the proposed model.

5.3. Comparison with benchmark methods

To present the limitations of non-adaptive models under var-
ied device characteristics and operation conditions, we imple-
mented several NN-based methods, including a state-of-the-
art method using a self-attention-based (SA) network (Xiao
et al., 2022), an LSTM-based method, and an RNN-based
method. The algorithm flow chart is shown in Figure 7. The
red dense arrows represent the SA algorithm process flow,
while the blue dashed arrows represent the LSTM/RNN al-
gorithm flow. They utilize the most commonly used forward
voltage drop precursor signal Vf for prediction. In NNs that
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Figure 7. The flow chart of benchmark NN methods.

Figure 8. The prediction results of the self-adaptive prediction method and the SLESIT model.

Figure 9. Prediction results of benchmark methods and the proposed method.

Table 2. Model Comparison by MAE (cycle)

Metric Our method SLESIT SA (Xiao et al., 2022) LSTM RNN
All 99% All 99% Train Test Train Test Train Test

RUL MAE 500.82 488.45 621.75 617.19 874.88 1849.28 1431.62 2196.59 1299.76 3154.59
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Table 3. Network parameters of benchmark models

Parameter SA LSTM RNN
Input features 9 time-domain features of Vf

Learning rate 0.001

Input (window × feature) 20 × 9
+ Positional encoding 20 × 9 20 × 9

Network layers
Multi-head self-attention:
dimension = 24 LSTM: 64 units RNN: 64 units

Fully-connected:
[128, 64, 32, 1]

Fully-connected:
[16, 4, 1]

Fully-connected:
[16, 4, 1]

Table 4. Train-test device split for 6-fold experiment

Case Train device No. Test device No.
1 1,2,3,4,5 6
2 2,3,4,5,6 1
3 1,3,4,5,6 2
4 1,2,4,5,6 3
5 1,2,3,5,6 4
6 1,2,3,4,6 5

Figure 10. Model Comparison by MAE.

depend on time series signals with strong degradation patterns
for prediction, the Vf signal (Figure 2) is more effective than
the junction temperature signal (Figure 4) as the Vf signal
has a more significant degradation trend. They both apply the
fundamental RUL reference curve mapping to label the input
sequence. The SA network tries to address the aforemen-
tioned lifetime variation problem and the RUL many-to-one
mapping problem using a health stages separation and sample
normalization technique. To mitigate the many-to-one map-
ping problem, the degradation state from the second half of
the lifecycle is isolated for prediction. Then the length of the
degradation state data is normalized to 10000 cycles by down-
sampling or interpolation, which avoids the lifetime variation
problem. Nine time-domain features are extracted and are in-
put to the networks for training and testing. The predicted

RULs are converted to real RULs for evaluation and compar-
ison.

We implemented a 6-fold cross-validation technique to com-
prehensively evaluate the NN benchmark models, using 5 de-
vices for training and 1 device for testing in each fold. The
train-test device grouping is listed in Table 4. The result of
Case 1 (Device 6 for testing) is illustrated in Figure 9, and the
average training and testing loss of 6 cases are concluded in
Table 2 and Figure 10.

The results show that:

1. Our method achieves MAE reductions of 386.43, 943.16,
and 811.30 (44.17%, 65.88%, 62.42%) and 1360.82,
1708.13, and 2666.14 (73.59%, 77.76%, 84.52%)
against benchmark method (SA, LSTM, and RNN) train-
ing and testing performance, demonstrating substantial
improvements across both sets.

2. The health stages separation and sample normalization
technique used in the SA model improves the prediction
performance. However, the health stages separation tech-
nique limits the RUL prediction range to the sub-healthy
stage. In addition, normalizing the sample size to a con-
stant needs information about the true lifetime, which is
not applicable in real online prediction.

3. By incorporating the health state information, the pro-
posed method and SLESIT generate smoother and more
realistic RUL prediction curves than benchmark modes.

6. CONCLUSION

This study proposes a self-adaptive framework for predicting
the RUL of power diodes, mitigating prediction bias induced
by intrinsic device characteristics and extrinsic operating con-
ditions. Building on the established LESIT and dynamic
LESIT model, we introduce a stateful variant, the SLESIT
model. It incorporates a state mechanism that enables it to
dynamically adjust its state and estimate RUL based on junc-
tion temperature signals, which are directly linked to package
failure and wire-bond fatigue. This RUL estimate is used to
rectify the prior state in an RUL propagation model via a KF,
yielding statistically optimal prediction results. By integrat-
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ing two stateful models, the proposed method adapts dynam-
ically to diverse device parameters and operational environ-
ments. Validation on diode aging data shows that the frame-
work reduces MAE by 44.17% to 84.52% compared to pop-
ular NN models, including the self-attention-based model,
LSTM, and RNN.

In future work, we will extend our approach to other failure
modes and devices by integrating suitable physics-of-failure
models, while also benchmarking against more recent data-
driven and hybrid RUL methods, such as Transformer-based
architectures and physics-informed neural networks.
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