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ABSTRACT

Satellites and space systems are crucial to the success of
modern space exploration, particularly as the scale and com-
plexity of missions continue to increase. Given the high in-
vestment costs and the impossibility of physical intervention
once in orbit, designing reliable and fault-tolerant platforms
is crucial for success. Nevertheless, the extreme and unpre-
dictable conditions of the space environment frequently lead
to anomalies that threaten mission success. Telemetry data
is therefore indispensable for real-time and predictive mon-
itoring of system health. However, its complexity, multidi-
mensionality, and the presence of noise pose significant chal-
lenges to traditional analytical techniques.

In this context, fractal analysis provides a robust set of tools
for uncovering hidden patterns in telemetry signals, enabling
the early detection of system degradation and anomalies. Un-
like conventional threshold-based approaches, fractal meth-
ods are sensitive to changes in signal regularity and complex-
ity, making them suitable for pre-failure diagnostics and trend
forecasting.

This work investigates the use of fractal-based techniques for
satellite health monitoring. The methods are applied to the
Mission 1 dataset of the ESA Anomaly Detection Bench-
mark (ESA-ADB) database, enabling performance evaluation
under realistic operational conditions. A comparative analy-
sis is conducted to assess the diagnostic capability, robust-
ness, and computational efficiency of each method, with a fo-
cus on identifying subtle anomalies and facilitating proactive
decision-making.

The results highlight the potential of fractal techniques to en-
hance the interpretability and autonomy of satellite prognos-
tics and health management (PHM) systems. By enabling
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more sensitive and timely diagnostics, this approach con-
tributes to improving the operational resilience and life-cycle
management of future space missions.

1. INTRODUCTION

As satellite missions become more complex and autonomous,
real-time monitoring of spacecraft health is critical to ensure
mission success and system longevity. Since physical inter-
vention is infeasible in orbit, early detection of anomalies us-
ing telemetry data is essential. Traditional rule- or threshold-
based approaches often fail to detect gradual or non-obvious
faults, while machine learning (ML)-based methods may
suffer from high training data requirements, lack of trans-
parency, or overfitting (Hundman, Constantinou, Laporte,
Colwell, & Soderstrom, 2018; Lakey & Schlippe, 2024; Za-
manzadeh Darban, Webb, Pan, Aggarwal, & Salehi, 2024).

In this context, fractal-based signal analysis offers a promis-
ing and interpretable alternative for anomaly detection. Frac-
tal descriptors measure the structural complexity and self-
similarity of time series, properties that often change when
systems begin to degrade. Unlike many ML-based algo-
rithms, fractal measures are nonparametric, lightweight, and
require no labelled data, making them especially well-suited
to the low-resource, safety-critical environment of space mis-
sions (Yuan & Wu, 2022; Zamanzadeh Darban et al., 2024).

This study investigates the potential of four fractal tech-
niques— Katz Fractal Dimension (FD), Kaguchi FD, Pet-
rosian FD, and the Hurst Exponent — for satellite health
monitoring. These techniques are applied to a real teleme-
try channel from Mission 1 of the ESA Anomaly Detec-
tion Benchmark (ESA-ADB) (Kotowski et al., 2024), a high-
quality dataset annotated by spacecraft operations engineers
to support benchmarking of anomaly detection systems in the
space domain.

Each fractal method offers a distinct approach to quanti-
fying signal irregularity. Higuchi FD uses a scale-space
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method to estimate fractal behaviour in time series (Higuchi,
1988); Katz FD captures geometric complexity by consider-
ing the ratio of trajectory length to the furthest point (Katz,
1988); Petrosian FD simplifies computation by counting
zero-crossings (Petrosian, 1995); and the Hurst exponent
reflects long-range correlations and memory effects (Hurst,
1951; Feder, 1988). These methods can detect both abrupt
and slowly evolving anomalies that may be invisible to sim-
ple statistical metrics or traditional classifiers.

Compared to machine learning methods like autoencoders or
recurrent neural networks (Hundman et al., 2018; Zaman-
zadeh Darban et al., 2024), fractal techniques require neither
training nor tuning and offer improved interpretability—a
key factor in mission-critical systems where explainability
and validation are essential (Guidotti et al., 2018; Adadi &
Berrada, 2018; Li, Zhu, & Van Leeuwen, 2023). They are
also resilient to the class imbalance and sparsity that often
plague space telemetry datasets.

By comparing the performance of these fractal estimators un-
der a unified health monitoring framework, this work con-
tributes to the development of interpretable, low-complexity,
and reliable anomaly detection tools for current and future
space missions.

2. METHODOLOGY
2.1. Dataset and Preprocessing

The analysis was conducted on telemetry data from the
ESA-ADB repository (Kotowski et al., 2024), specifically us-
ing Missionl. The dataset comprises 84 months of satel-
lite operations. The data was resampled with a sampling fre-
quency of 0.033 Hz to achieve uniform data on the mission’s
dominant sampling frequency.

2.2. Algorithm

Let + = {x1,22,...,2N} be a univariate time series of
length N. To characterise its complexity, four fractal-based
estimators were computed on each window: Higuchi’s Frac-
tal Dimension (H F' D), Katz’s Fractal Dimension (K F D),
Petrosian’s Fractal Dimension (PF' D), and the Hurst expo-
nent (H).

Higuchi’s method estimates the fractal dimension H F'D by
computing the average curve length L(k) over different scale
factors k € {1,2,..., kmax} (Higuchi, 1988). For each k, k
new time series are constructed:

form=1,2,...,k
(1)
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The average L(k) is obtained by averaging L., (k) over m,
and the slope of log(L(k)) versus log(1/k) gives an estimate
of the fractal dimension H F'D.

Katz’s method quantifies complexity based on signal geome-
try (Katz, 1988):

logyo(L/a)
logyo(d/a)

where L = Zf\; |x; — x;_1| is the total path length of the
time series, d = max; |z; — x1] is the diameter (maximum
distance to the first point), a = L/(N — 1) is the average step
length between successive points.

KFD = 3)

Petrosian’s method uses the number of sign changes in the
derivative to assess signal complexity (Petrosian, 1995):

log, (N)

PFD = ~
logy(IV) + logyg (m)

“4)

where N is the length of the time series, while Na is the
number of sign changes in the first derivative of x, indicating
the number of local extrema.

The Hurst exponent estimates long-term memory in time se-
ries (Hurst, 1951; Feder, 1988):
log(R/S
log(NV)
where R is the range of cumulative deviations from the mean
and S is the standard deviation. The ratio R/S is known as
the rescaled range. N is the length of the time series.

To detect deviations in complexity, a two-sided cumulative
sum (CUSUM) algorithm (Page, 1954) is applied indepen-
dently to each score stream. For a given method, scores are
standardised using z-scores:

St — [t
—_— 6
p (6)

Zt =

where s; is the complexity score at time ¢, u; and o; are the
running mean and standard deviation of all previous scores
(i.e.,up tot).
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Then, the CUSUM statistics are updated as:

Spos(t) = max(0, Spos(t — 1) + z¢ — 0)
Sneg(t) = min(0, Speq(t — 1) + 2¢ +0)

)
®

where ¢ is a drift factor (typically 6 = 0.5) that controls sen-
sitivity.
An anomaly is triggered if either:

Spos(t) > h or  Speq(t) < —h

where h is a threshold (e.g., h = 5), chosen as a multiple of
the score standard deviation.

Anomaly predictions are evaluated using timestamp-aware
binary classification metrics. Each prediction is compared
against the ground truth anomaly labels within a tolerance
window. The following standard metrics are computed:

* True Positives (TP): The number of correctly identified
anomaly windows.

e False Positives (FP): The number of normal windows in-
correctly marked as anomalies.

» False Negatives (FN): The number of anomaly windows
that were not detected.

From these, the following metrics are computed sepa-
rately for each fractal method by comparing the predicted
anomaly labels (window_preds) against the ground truth
(window_labels):

TP
Precision = —— 9
recision TP + FP )
TP
Recall = ——— 10
T TP I EN (10)
Fl-score — 2 - Precision - Recall an

Precision + Recall

Eventually, the Receiver Operating Characteristic (ROC)
curves are computed for each method, along with the estima-
tion of the respective Area Under the Curve (AUC), which
will be used as an additional metric.

The threshold £ is selected separately for each method with a
grid search based on the maximisation of the F1-score. The
choice of this metric rather than Precision or Recall is because
the latter are used in the computation of the F1-score.
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Algorithm 1: Fractal-based anomaly detection frame-
work.
Input: Time series © = {1, ...,z N}, window size
cur_size, stride s1ide, threshold i
Output: Anomaly labels and evaluation metrics for each
method
Initialize score lists HFD, KFD,PFD, H;
Initialize anomaly prediction lists Yygp, Vkrp, VrrD, Vi
Initialize cumulative sums sy, = 0, sy, = 0 for each
method m;
fort =0to cur_size slide do
Tapin < [t 1 t + cur_sizel;
Compute SCOI€S: SHFD, SKFD; SPFD; SH 5
Append to HFD,KFD,PFD,H;
foreach method m € {HFD,KFD,PFD,H} do
Let 53" be the current score;
Compute ™, 0™ from previous scores in m;

z" —
Spos < max(0, spe. + 2" — 0.5);
Speg < min(0, Speg T2+ 0.5);

if sp, > hor sy, < —h then
Append 1 to V,, (anomaly);
sg}m <~ 0, snmeg <+~ 0;
else
| Append 0 to YV, (normal);

end

end

end

foreach method m € {HFD,KFD, PFD, H} do

Load window_labels (ground truth for method
m);

Load window_preds = YVp;

Compute Precision, Recall, and F1-score

end

3. RESULTS AND DISCUSSION

The four fractal-based approaches presented in the previous
section are tested on Channel41 of Missionl data of the
ESA-ADB database. The results presented focus on data from
two three-month time windows: one spanning from March
01, 2000, to May 31, 2000 and the other does the same but
for the year 2001.

To simulate real-time operations, where data is analysed as
soon as it arrives, a sliding window approach was adopted.
A window size of 720 samples (approximately 3 hours) was
used as the time series length N for the computation of
fractal-based estimators for anomaly detection, with a stride
of 60 samples (about 30 minutes). This allowed for tempo-
rally dense estimation of signal complexity while maintaining
reasonable processing intervals.

Figures 1 and 2 show the value of Channel41 data and the
four fractal-based estimators adopted, on the upper and lower
subplots, respectively, over time. Figure 1 refers to the time
window going from 2000-03-01 to 2000-05-31, while Figure
2 refers to the time window from 2001-03-01 to 2001-05-31.
From the figure, it can be observed that not all the metrics are
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sensitive to anomalies.

The Higuchi FD shows pronounced drops or shifts within
anomaly windows, and its response appears well-aligned
temporally with the anomalies. It maintains relatively stable
behaviour outside anomalies (low false positives). It is sus-
ceptible to structural or complexity changes in the time series.
Therefore, it can be an effective anomaly detector, showing
a good balance of sensitivity and specificity, particularly for
abrupt changes in frequency or self-similarity.

The Katz FD exhibits a strong, distinct response to anoma-
lies, which is larger than that of the other metrics, as it spikes
sharply and consistently. The amplitude and sharpness of re-
sponse suggest high signal-to-anomaly contrast. However,
this metric is highly sensitive to changes in signal regularity,
as observed during the second anomaly of Figure 1, for exam-
ple, where the consistency of the signal during the anomaly
results in a KFD value close to that of the healthy signal. In
addition, it may be prone to overreacting to minor fluctua-
tions if not smoothed or normalised, meaning that this metric
is excellent for detecting clear structural changes, but caution
is advised for noise-sensitive data.

The Petrosian FD exhibits minimal variation throughout the
entire time series, and there is no consistent reaction to
anomalies, as shown in Figures 1 and 2. This may be due
to the type of complexity changes induced by the anomaly
in the dataset, to which this metric may not be significantly
sensitive. The Petrosian FD is based on path length and max-
imum distance, so it may not capture fine-grained irregular-
ities. Thus, this metric shows poor anomaly detection capa-
bility in this context and is not recommended as a primary
metric.

Finally, the Hurst Exponent responds to anomalies with rela-
tively modest yet consistent changes. Its behaviour is similar
to what is described for the Higuchi FD, as it clearly detects
the beginning and end of the anomaly. During the anomaly,
its value becomes similar to that associated with the healthy
signal if the analysed signal is consistent during the anomaly.

After evaluating the metrics, the optimal anomaly detection
threshold for each method was determined based on max-
imising the Fl-score using a grid search within the thresh-
old range [1, 20]. Table 1 shows the threshold, Precision, Re-
call, and F1-score for each fractal-based metric. The Katz
FD achieves the best balance between detecting true anoma-
lies and minimising false positives. Likely, it benefits from a
narrow value range that exaggerates subtle changes in its sta-
tistical behaviour.

The Hurst Exponent exhibits good performance, nearly as
good as the Katz FD. This suggests that, despite more sub-
tle and smooth temporal changes in the curve, the underlying
memory properties captured by the Hurst Exponent are strong
indicators of anomalies. Its high precision and recall indicate
low noise sensitivity and consistent true detections.

The Higuchi FD exhibits high recall but low precision, as it

tends to detect most anomalies while also yielding many false
positives (it is prone to over-detection).

Eventually, the Petrosian FD exhibits moderate recall and low
precision, suggesting somewhat unreliable performance.

Table 1. Optimal threshold and respective performance met-
rics for the four methods implemented.

Method [ h | Precision | Recall [ Fl-score ]
HFD 19 1041 0.73 0.53
KFD 14 10.71 0.82 0.76
PFD 9 1044 0.64 0.52
H 8 [0.71 0.78 0.74

4. CONCLUSION

This study evaluated the effectiveness of four fractal-based
complexity estimators—Higuchi Fractal Dimension (HFD),
Katz Fractal Dimension (KFD), Petrosian Fractal Dimen-
sion (PFD), and the Hurst Exponent (H)—as unsupervised
anomaly detectors in spacecraft telemetry data. The meth-
ods were tested on a subset of the ESA-ADB dataset, using a
sliding window framework to simulate real-time monitoring
conditions.

The experimental results demonstrate that Katz FD and the
Hurst Exponent outperform the other metrics in terms of both
detection accuracy and robustness. Specifically, the Katz FD
achieved the highest Fl-score (0.76), indicating its strong
ability to detect true anomalies while maintaining a low false
positive rate. The Hurst Exponent also performed well (F1-
score of 0.74), suggesting that metrics capturing long-term
memory properties are particularly useful in identifying sub-
tle temporal deviations in complex signals.

The Higuchi FD, although sensitive to structural changes, ex-
hibited lower precision (0.41), resulting in a higher rate of
false positives. Its high recall, however, suggests it could be
helpful in scenarios where missing anomalies are more criti-
cal than over-detection. In contrast, the Petrosian FD showed
the weakest performance across all metrics, likely due to its
insensitivity to the specific type of signal irregularities present
in the data.

Overall, the study shows that not all fractal-based measures
are equally effective for anomaly detection, and that care-
ful selection and tuning of the metric and its threshold are
crucial for reliable deployment in real-world monitoring sys-
tems. Among the tested approaches, the Katz FD and Hurst
Exponent stand out as promising candidates for anomaly de-
tection in space mission telemetry, with potential applica-
bility to other domains involving complex, high-dimensional
time series.
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Figure 1. Channel41 time series from 2000-03-01 to 2000-05-31 (top), and corresponding fractal-based metrics (bottom):
Higuchi FD (orange), Katz FD (purple), Petrosian FD (brown), and Hurst exponent (blue). Anomalies are shaded to illustrate
deviations and evaluate the responsiveness of the metric.
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Figure 2. Channel41 time series from 2001-03-01 to 2001-05-31 (top), and corresponding fractal-based metrics (bottom):
Higuchi FD (orange), Katz FD (purple), Petrosian FD (brown), and Hurst exponent (blue). Anomalies are shaded to illustrate
deviations and evaluate the responsiveness of the metric.
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