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ABSTRACT

Rolling element bearings are critical components in rotat-
ing machinery, where failures can cause severe downtime
and safety risks. Existing fault diagnosis methods are pre-
dominantly supervised, requiring large amounts of labeled
data across multiple operating conditions. However, in re-
alistic industrial scenarios, such labeled datasets are scarce,
and models trained on one regime often fail to generalize
to others. To overcome this cross-domain generalization
challenge, we propose a Siamese Attention Encoder—based
few-shot cross-domain fault diagnosis (SAE-FSC) frame-
work. The key novelty of this work lies in an attention-
augmented Siamese encoder that extracts highly discrimi-
native and transferable time-series features, coupled with a
composite objective function that jointly optimizes super-
vised cross-entropy, pairwise binary cross-entropy, and do-
main adversarial loss. This combination enforces intra-class
domain invariant feature learning across multiple operating
conditions. Extensive experiments on the Case Western Re-
serve University (CWRU) dataset under leave-one-fault-out
(LOFO) and leave-two-fault-out (LTFO) protocols demon-
strate robust generalization across unseen fault types, load
conditions, and fault severities, achieving a prediction accu-
racy of 87% for 5 shot learning.

1. INTRODUCTION

Rolling element bearings are critical components in rotating
machinery, and their premature failures can lead to costly
downtime and severe safety risks. Accurate and reliable
fault diagnosis of bearings is therefore essential for predictive
maintenance and safe operation of industrial systems. Over
the past few decades, data-driven approaches have emerged
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as the dominant paradigm for bearing fault diagnosis (Jardine,
Lin, & Banjevic, 2006; Randall & Antoni, 2011).

Traditional data-driven methods use time-series or image data
for fault diagnosis and prognosis. For time-series data, vibra-
tion and related signals are preprocessed and converted into
engineered features in the time, frequency, or time—frequency
domains, which are then classified using traditional machine
learning algorithms such as support vector machines (SVMs)
(Mishra, Choudhary, Mohanty, & Fatima, 2021), hidden
Markov models (HMMs) (Ocak & Loparo, 2005), or ex-
treme learning machines (ELMs) (Ma, Yu, & Cheng, 2022).
Techniques such as envelope analysis (Yassine, Bengherbia,
Benyezza, & Ould, 2022), spectral kurtosis (Tian, Morillo,
Azarian, & Pecht, 2015), and wavelet-based feature extrac-
tion remain effective for localized defect detection under con-
trolled conditions (Kankar, Sharma, & Harsha, 2011). How-
ever, these pipelines depend heavily on expert feature design
and labeled data from specific operating regimes. When con-
ditions such as load, speed, sensor placement, or background
noise change, their performance often degrades (Zhu, Xu, &
Wang, 2023; Asutkar, Singh, & Tiwari, 2023), which limits
their effectiveness in real industrial environments.

1.1. Shallow and Deep learning-based methods

With the success of deep learning, deep learning—based meth-
ods for bearing fault diagnosis have emerged, reducing re-
liance on manual feature design. Convolutional neural net-
works (CNNs) (Zhang, Li, Ding, & Li, 2019) , recurrent neu-
ral networks (RNNs) (Shao, Jiang, Lin, & Li, 2017), autoen-
coders (Chen, Li, & Sanchez, 2017), and more recently trans-
formers (Chen, Li, & Sanchez, 2020) and graph neural net-
works (Zhang, Li, Ding, & Li, 2022) have achieved state-of-
the-art performance on benchmark datasets like CWRU and
IMS. Transfer learning has also been applied to reuse pre-
trained models across related domains (Lee, Kim, & Park,
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2023). Nevertheless, most deep learning approaches implic-
itly assume that training and deployment data are drawn from
the same distribution and that large amounts of labeled data
are available. In reality, when domain shifts occur—due to
variable speeds, loads, or different test rigs—the accuracy of
these models drops significantly. Collecting extensive labeled
data across all conditions is impractical in most industrial
cases (Zhu et al., 2023).

1.2. Cross-domain adaptation

To address this, researchers have turned to cross-domain fault
diagnosis. Domain adaptation methods reduce the discrep-
ancy between source and target domains by minimizing mea-
sures such as maximum mean discrepancy (MMD) (Long,
Cao, Wang, & Jordan, 2015) or CORAL (Sun & Saenko,
2016), or by using adversarial approaches like gradient rever-
sal networks (Ganin & Lempitsky, 2016). Recent work has
proposed multi-adversarial (Pei, Cao, Long, & Wang, 2018)
and triple-classifier designs to handle complex shifts (Shao,
Xia, Wan, Zhang, & Li, 2021). While these methods enhance
robustness to domain shifts, they typically assume access to
large amounts of unlabeled target-domain data and are limited
to closed-set label spaces. As such, they cannot easily adapt
to unseen fault types or severities, which are common in real-
istic industrial scenarios. Moreover, many existing pipelines
transform signals into 2D time—frequency images (e.g., STFT
scalograms or wavelet spectrograms), which incur computa-
tional overhead and may lose important temporal information
(Wang et al., 2019).

1.3. Few-shot learning in fault diagnosis

In parallel, few-shot learning (FSL) has gained traction as
a strategy for learning from scarce labeled data. Architec-
tures such as Siamese networks (Koch, Zemel, & Salakhutdi-
nov, 2015), prototypical networks (Snell, Swersky, & Zemel,
2017), and meta-learning frameworks (Finn, Abbeel, &
Levine, 2017; Lee et al., 2023) have demonstrated the abil-
ity to generalize to novel classes with only a handful of la-
beled samples. Recent works have applied few-shot methods
to bearing fault diagnosis (Shen, Liu, Zhang, & Zhao, 2023),
showing that unseen fault classes can be recognized with lim-
ited labels. However, most of these studies focus on single-
domain settings or controlled laboratory conditions. Very few
explicitly integrate few-shot learning with domain adaptation,
which is critical for realistic deployment where unseen fault
types occur under varying loads, speeds, and severities.

1.4. Research gap and contributions of this work
From the above review, two main gaps can be seen:
i) Current domain adaptation methods often depend on un-

labeled target data and find it difficult to handle new or
unseen fault types.

ii) Most few-shot learning studies ignore domain shifts and
are tested only within a single domain, which limits their
use in real industrial settings.

Therefore, there is a need for a practical framework that (i)
works across different domains without requiring many tar-
get labels, (ii) can identify unseen fault types from only a
few labeled samples, and (iii) learns directly from raw time-
series data without relying on expensive time—frequency im-
age transformations.

To address this gap, we propose a Siamese Attention En-
coder—based few-shot cross-domain fault diagnosis frame-
work (SAE-FSC). The main contributions are:

* Time-series Siamese Attention Encoder: A novel ar-
chitecture that learns domain-robust embeddings directly
from raw vibration signals, avoiding image conversion
and preserving temporal discriminative structure.

¢ Composite training objective: A loss function com-
bining supervised cross-entropy, pairwise binary cross-
entropy, and domain adversarial loss. This jointly en-
forces discriminative class separation, intra-class com-
pactness, and domain invariance.

* Extensive evaluation under cross-domain settings:
Experiments on the CWRU dataset under leave-one-
fault-out (LOFO) and leave-two-fault-out (LTFO) pro-
tocols demonstrate robust generalization across unseen
fault types, load conditions, and fault severities, achiev-
ing a prediction accuracy of 87% with 5-shot learning.

This work establishes a novel and practical methodology for
time-series few-shot cross-domain fault diagnosis, overcom-
ing the limitations of prior image-based and purely super-
vised approaches, and moving closer to deployable predictive
maintenance solutions in industrial settings.

2. METHODOLOGY

The proposed framework is designed to learn fault-
discriminative and domain-invariant representations directly
from raw vibration signals, enabling few-shot cross-domain
fault diagnosis. The methodology comprises three core com-
ponents: (1) SAE for feature extraction, (2) a composite
training objective for discriminative and domain-robust em-
bedding learning, and (3) a cross-domain few-shot evaluation
protocol.

2.1. Siamese Attention Encoder (SAE)

The encoder is responsible for mapping raw vibration seg-
ments into a low-dimensional embedding space where sam-
ples from the same fault class cluster together, while samples
from different classes remain well separated. Formally, for an
input time-series segment x, the embedding is defined as:
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z = fo(x), 2z e R? D

where fy(-) is the encoder and d is the embedding dimension.

2.2.1 Network Architecture

» The encoder begins with 1-D convolutional layers that
capture local temporal patterns in the vibration signal,
such as periodic impulses caused by bearing defects.

* Residual connections are used to stabilize training and
ensure that both shallow and deep features are preserved.

* The feature maps are then fed into two attention mod-
ules: channel attention and temporal attention.

2.2.2 Attention mechanisms

* Channel attention learns which sensor channels or fea-
ture maps are most informative. For example, drive-end
signals may carry stronger fault signatures than fan-end
signals under certain conditions. This is achieved by ap-
plying global average pooling (GAP) across time, fol-
lowed by a gating function:

ae. = o(W, - GAP(Z) + b.) )

» Temporal attention identifies the most discriminative
time segments within the vibration signal. For instance,
transient impulses from localized faults are more di-
agnostic than stationary noise. This is modeled using
global max pooling (GMP) across channels:

oy = O'(Wt . GMP(Z) + bt) (3)

» The two attention weights are combined to re-weight the
original feature maps:

=0, 00:0Z2 4)

where o(+) denotes the sigmoid function, and ® repre-
sents element-wise multiplication.

2.2. Composite Training Objective

To ensure that that the learned embeddings are simultane-
ously class-discriminative, pairwise-structured, and domain-
invariant, a composite objective function is employed:

L=Lcg+MLece+ X Lpa )]

where Lo enforces class-level discrimination, Lgcg en-
forces intra-class compactness and inter-class separation, and
Lpa promotes domain invariance. This ensures the embed-
dings are aligned with ground-truth fault classes. CE provides
the discriminative structure needed to separate different fault
types in the embedding space. Parameter weights A1, Ay con-
trol the trade-off between discriminative embedding learning,

pairwise similarity preservation and domain invariance. Em-
pirically, grid-search experiments over Aj, A2 indicate that
moderate weighting \; = 0.5, Ay = 0.1 achieves a good bal-
ance between source accuracy and cross-domain generaliza-
tion, demonstrating the robustness of the normalized compos-
ite loss formulation.

* (a) Cross-Entropy Loss (CE) - the cross-entropy term is
applied to source-domain samples with known labels:

N
1 N
Log = N Z; y; log (6)
=

e (b) Binary Cross-Entropy Loss (BCE) - to explicitly
model pairwise relationships, we form siamese pairs of
samples and apply binary cross-entropy on their similar-

ity scores:

Z1 22

§= ——0
Iz (122

)

Lpcp=—[ylogs+ (1 —y)log(1—s)] ()

where y = 1 if samples belong to the same class and
y = 0 otherwise. This helps the model remain robust
when encountering unseen classed with limited support
samples.

¢ (c¢) Domain-Adversarial Loss (DA) - domain invariance
is achieved using a domain discriminator with gradient
reversal:

N
Loa=—5 > dilogd, ©)
i=1
where d; € {0,1} indicates whether a sample belongs
to the source or target domain. The gradient reversal
layer forces the encoder to produce embeddings that con-
fuse the discriminator, i.e., embeddings that cannot re-
veal their domain of origin. This encourages the learned
representations to be independent of operating conditions
and instead focus on fault-specific characteristics.

2.3. Cross-Domain Few-Shot Evaluation Protocol

To validate cross-domain generalization, the framework is
evaluated under leave-one-fault-out (LOFO) and leave-two-
fault-out (LTFO) settings:

e LOFO: the model is trained on all but one fault type and
tested on the held-out fault.

e LTFO: the model is trained on all but two fault types,
with two unseen faults used for testing.

For each evaluation, only a small number of labeled support
samples (k-shot, with k = 5, 7, 10, 20) are provided from the
unseen classes. The encoder must classify query samples by
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leveraging embeddings and the structured space learned via
the composite objective.

3. RESULTS AND DISCUSSION
3.1. Dataset and Preprocessing

The proposed framework is evaluated on the CWRU bear-
ing dataset, a widely used benchmark for fault diagnosis re-
search. The dataset was collected on a 2-hp reliance electric
motor equipped with a torque transducer and dynamometer
as summarized in Table 1. Vibration data were recorded from
accelerometers mounted at the drive end (DE), fan end (FE),
and base (BA) of the motor housing.

»  Fault simulation - Localized defects were introduced on
the inner race, outer race, and rolling element using elec-
trical discharge machining (EDM). Fault diameters of
0.007, 0.014, 0.021, and 0.028 inches were used to rep-
resent different severities.

* Operating conditions - The motor was tested under four
load levels (0, 1, 2, and 3 hp), corresponding to speeds of
1797, 1772, 1750, and 1730 RPM, respectively. Signals
were sampled at 12 kHz depending on the configuration.

* Preprocessing - Raw vibration signals were segmented
into windows of 1024 samples with 50% overlap. Each
segment was normalized to zero mean and unit variance.
Labels were assigned based on fault type, fault severity,
and load condition. To evaluate cross-domain general-
ization, we adopted the leave-one-fault-out (LOFO) and
leave-two-fault-out (LTFO) protocols, where the model
was trained on all but one or two fault types, respectively,
and tested on the held-out faults.

3.2. Cross-Domain Representation Analysis under Dif-
ferent Loss Objectives

The prediction results for cross domain analysis under differ-
ent loss objectives for 5 shots are shown in Fig.1. It is to be
noted that LOFO and LTFO analysis were conducted for all
shot settings (5,7,10 and 20) and across all fault types and loss
objectiveness. For brevity, only the case of inner race faults
is shown in the manuscript as representative example.

The t-SNE embeddings shown in Fig.1 reveal how different
training objectives affect cross-domain generalization when
the model is tested on inner race faults unseen during training.

* CE only - The embeddings show partial clustering of
fault classes, but significant fragmentation remains be-
tween domains. Samples from the same fault type under
different loads are dispersed, indicating that CE alone en-
forces class separation but does not align cross-domain
distributions effectively.

* CE + BCE - The addition of binary cross-entropy tight-
ens intra-class clusters, making same-fault samples more

compact. However, inter-domain misalignment persists,
as smaller fault severities remain closer to the normal
class, and embeddings from different loads are not fully
aligned.

* CE + DA - Incorporating domain-adversarial loss re-
duces the discrepancy between source and target do-
mains. Embeddings from different load conditions over-
lap more closely, showing improved domain alignment.
However, this comes at the expense of class discrimi-
nation—clusters of inner and outer race faults overlap,
making fault types less distinguishable.

* CE + BCE + DA (composite) - The proposed composite
loss produces the most balanced embedding space. Fault
classes form compact and distinct clusters, while domain
effects due to varying loads are minimized. Compared
to single-loss models, the composite approach simulta-
neously preserves fault separability and enforces cross-
domain invariance, which is critical for reliable few-shot
generalization.

3.3. Cross-Domain Representation Analysis under Dif-
ferent Shot Counts

This analysis was carried out for all fault types, but for
brevity, only results for the inner race fault are presented here.
The t-SNE plots illustrate how the learned embeddings evolve
as the number of support shots increases (5, 7, 10, and 20),
providing insight into the effect of data availability on cross-
domain generalization.

* 5-shot - The embeddings form recognizable clusters, but
boundaries between fault classes remain fuzzy as shown
in Figure. 1(d). Some overlap is observed between outer
race and normal samples, especially under varying load
conditions. This reflects the challenge of achieving both
class discrimination and domain alignment with very
limited labeled support data.

e 7-shot - Increasing the number of support examples
strengthens intra-class compactness and improves sep-
aration between fault clusters as shown in Figure. 2(d).
Domain-induced variations (e.g., load effects) are re-
duced compared to the 5-shot case, but smaller fault
severities are still more prone to misalignment.

e [0-shot - Fault classes become more distinctly separated,
and cross-domain discrepancies are further minimized as
shown in Figure. 2(b). The embeddings demonstrate im-
proved robustness, with tighter clustering of minor fault
severities and clearer separation from the normal class.
This indicates that the model benefits significantly from
the additional support samples.

e 20-shot - The embedding space achieves the most stable
and structured form, with compact clusters that are both
well separated across fault types and aligned across do-
mains as shown in Figure. 2(c).
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Figure 1. t-SNE visualizations of cross-domain feature representations under different loss functions for the 5-shot setting. Each
panel shows clustering with respect to predicted vs. true labels, fault diameter, and motor load. Rows correspond to differerg
loss objectives (e.g., CE, CE+BCE, CE+BCE+DA), highlighting how the choice of objective impacts separation, compactness,
and domain invariance.
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Figure 2. t-SNE visualizations of cross-domain feature representations under different shot counts (5, 7, 10, and 20). Each
panel shows clustering with respect to predicted vs. true labels, fault diameter, and motor load. Increasing the number of
shots improves intra-class compactness and inter-class separation, while also reducing domain-induced variations such as load
effects. The comparison highlights how additional labeled support samples enhance both discrimination and domain invariance.
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Load variations exert minimal influence, suggesting that
the model has effectively learned fault-discriminative and
domain-invariant features. Overall, these results show that in-
creasing shot count consistently improves cross-domain rep-
resentation quality. Even though the framework demonstrates
reasonable clustering in extremely low-shot conditions (e.g.,
5-shot), higher support counts (10 and 20) yield more reliable
fault separation and domain invariance, strengthening classi-
fication performance under unseen fault conditions.

3.4. Accuracy Comparison across Shot Counts with
Composite Loss

The prediction accuracy results across different shot counts
as shown in Figure. 3 clearly demonstrate the strength of
the composite loss in enabling robust cross-domain gen-
eralization. While low-shot settings such as 5-shot yield
moderate accuracies (70-82%), the framework shows steady
improvement with increasing shots, consistently surpassing
85% at 20-shot and reaching above 90% in several train—test
fault transfer cases. Importantly, the composite loss bal-
ances fault discrimination and domain alignment, ensuring
that representations remain stable across varying fault sever-
ities and load conditions. Even in the most challenging sce-
nario—generalizing to unseen inner race faults—the model
maintains competitive performance, highlighting its ability to
transfer knowledge effectively across domains. These find-
ings confirm that the composite loss function is particularly
well-suited for cross-domain fault diagnosis with limited la-
beled data, making it a practical choice for real-world indus-
trial applications. The expanded summary of cross-domain
study is listed in Table 1.

4. CONCLUSION

In this work, we proposed a SAE-FSC framework for rolling
element bearings. By integrating a composite training ob-
jective that combines cross-entropy, binary cross-entropy,
and domain-adversarial losses, the framework learns repre-
sentations that are simultaneously fault-discriminative and
domain-invariant. Extensive experiments on the CWRU
dataset under leave-one-fault-out (LOFQO) and leave-two-
fault-out (LTFO) protocols demonstrated that the method
generalizes effectively to unseen fault types, severities, and
load conditions. The t-SNE visualizations confirmed the abil-
ity of the composite loss to achieve compact clustering and
cross-domain alignment, while the accuracy results showed
steady improvements with increasing shot counts, achieving
over 90% prediction accuracy at 20-shot. These findings es-
tablish the composite loss as a robust approach for cross-
domain fault diagnosis, particularly in settings where labeled
target data are scarce.

For future work, several directions are envisioned. First,
the framework can be extended to other rotating machin-
ery datasets (e.g., IMS, PRONOSTIA) to validate generaliza-
tion across different rigs and sensor configurations. Second,
multi-modal sensor fusion (vibration, current, and acous-
tic signals) can be explored to enhance robustness under
noisy industrial environments. Third, incorporating temporal
adaptation strategies such as recurrent or transformer-based
modules could capture evolving degradation patterns beyond
static fault detection. Finally, integration with real-time de-
ployment pipelines will be pursued, ensuring that few-shot
cross-domain learning can be translated into practical predic-
tive maintenance solutions in industrial settings.

Prediction Accuracy by Train—-Test Fault Pairs Across Shots
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Figure 3. Prediction accuracy across different shot settings for train—test fault pairs. Bars represent accuracy values grouped

by the number of shots.
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Table 1. Expanded summary of cross-domain ablation and t-SNE metrics across shot settings.

Shots Loss Train Faults Test Faults Acc(%) F1 Silhouette Coefficient Davies-Bouldin Index
5 CE normal+ball+inner outer 67.396 0.326 0.105 2.127
5 CE normal-+ball+outer inner 78.901 0.211 0.140 1.609
5 CE normal+inner+outer ball 82.755 0.172 0.101 1.790
5 CE+BCE normal-+ball+inner outer 77.305 0.227 0.103 2.199
5 CE+BCE normal+ball+outer inner 69.422 0.306 0.109 1.637
5 CE+BCE normal-+inner+outer ball 92.543 0.075 0.160 1.968
5 CE+Domain normal+ball+inner outer 77.380 0.226 0.101 2.331
5 CE+Domain normal-+ball+outer inner 97.875 0.021 0.130 1.718
5 CE+Domain normal+inner+outer ball 83.192 0.168 0.142 1.738
5 CE+BCE+Domain normal-+ball+outer inner 98.713 0.019 0.163 1.744
5 CE+BCE+Domain normal+ball+inner outer 98.879 0.018 0.158 1.725
5 CE+BCE+Domain normal+inner+outer ball 92.891 0.071 0.162 1.876
7 CE normal+ball+inner inner 78.660 0.213 0.107 1.681
7 CE normal+ball+outer ball 73.494 0.265 0.145 1.806
7 CE normal+ball+outer outer 67.365 0.324 0.101 2.098
7 CE+BCE normal+ball+inner inner 90.322 0.518 0.145 1.734
7 CE+BCE normal+ball+outer outer 67.565 0.326 0.132 2.099
7 CE+BCE normal+inner+ball ball 97.692 0.305 0.161 1.647
7 CE+Domain normal-+ball+inner inner 89.003 0.109 0.141 1.834
7 CE+Domain normal+ball+outer outer 98.812 0.117 0.143 1.944
7 CE+Domain normal-+inner+ball ball 92.566 0.074 0.141 1.797
7 CE+BCE+Domain normal+ball+inner inner 98.824 0.012 0.126 1.767
7 CE+BCE+Domain normal+ball+outer outer 98.683 0.016 0.127 1.776
7 CE+BCE+Domain normal+inner+ball ball 98.611 0.018 0.130 1.779
10 CE normal+ball+inner inner 59.392 0.433 0.423 1.590
10 CE normal+ball+outer outer 66.769 0.333 0.667 2.463
10 CE normal+inner+ball ball 59.324 0.432 0.422 1.580
10 CE+BCE normal-+ball+inner inner 58.719 0.421 0.587 1.741
10 CE+BCE normal+ball+outer outer 58.719 0.421 0.587 1.741
10 CE+BCE normal-+inner+ball ball 57.886 0.429 0.622 1.774
10 CE+Domain normal+ball+inner inner 77.153 0.224 0.775 1.440
10 CE+Domain normal+ball+outer outer 79.122 0.220 0.779 1.463
10 CE+Domain normal+inner+ball ball 92.539 0.176 0.925 1.556
10 CE+BCE+Domain normal+ball+inner inner 92.792 0.228 0.792 1.771
10 CE+BCE+Domain normal+ball+outer outer 92.699 0.227 0.791 1.769
10 CE+BCE+Domain normal+inner+ball ball 92.607 0.229 0.792 1.768
20 CE normal-+ball+inner inner 77.754 0.295 0.775 1.707
20 CE normal+ball+outer outer 78.675 0.274 0.787 1.584
20 CE normal-+inner+ball ball 79.091 0.209 0.742 1.836
20 CE+BCE normal+ball+inner inner 79.045 0.227 0.790 1.443
20 CE+BCE normal+ball+outer outer 79.045 0.227 0.790 1.443
20 CE+BCE normal+inner+ball ball 77.853 0.215 0.743 1.754
20 CE+Domain normal-+ball+inner inner 92.759 0.295 0.933 1.721
20 CE+Domain normal+ball+outer outer 92.568 0.219 0.915 1.765
20 CE+Domain normal+inner+ball ball 92.525 0.219 0.913 1.753
20 CE+BCE+Domain normal+ball+inner inner 83.337 0.198 0.933 1.904
20 CE+BCE+Domain normal+ball+outer outer 83.411 0.212 0.834 1.413
20 CE+BCE+Domain normal+inner+ball ball 93.610 0.064 0.138 1.639
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