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ABSTRACT 
Jet engines operate under demanding conditions, subjecting 
critical components to gradual wear and degradation over 
time. Early identification of incipient faults is essential for 
maintaining performance, safety, and reliability. Detecting 
incipient faults early is essential but remains difficult due to 
two major challenges: the scarcity of faulty data and the 
strong variability in operating conditions that obscure fault 
signatures. Most existing anomaly detection approaches rely 
on simulated datasets or assume the availability of labeled 
faults, limiting their applicability to real-world engine 
monitoring. In this work, we introduce RAVEN, a fully 
unsupervised anomaly detection framework designed for jet 
engine monitoring under real test conditions. RAVEN 
integrates (i) a regression-based residual model to normalize 
sensor responses against varying operating regimes, with (ii) 
a deep LSTM autoencoder that captures subtle deviations in 
time-series behavior without requiring fault labels. By 
explicitly addressing operational variability, sensor noise, 
and label scarcity, RAVEN provides a robust pathway for 
early fault detection. We validate RAVEN on real jet engine 
test data, demonstrating its ability to detect anomalies under 
diverse operating conditions. Results show that our approach 
delivers reliable detection performance in scenarios where 
conventional approaches struggle, offering a practical and 
scalable solution for propulsion system health monitoring. 

1. INTRODUCTION 

Jet engines play a crucial role in modern aviation, powering 
commercial aircraft, military jets, and various aerospace 
applications Talebi et al. (2025). To generate the necessary 
thrust for sustained flight, they operate under extreme 
temperatures, pressures, and rotational speeds, which 

gradually degrade internal components such as turbines, 
compressors, and bearings. Over time, this degradation can 
lead to a drop in performance, increased fuel consumption, 
increased emissions, and reduced flight safety Miao et al. 
(2024). To identify early faults, anomaly detection is 
employed. It refers to the analytical process of detecting 
irregular patterns or events within a dataset and examining 
the conditions under which they occur. Anomaly detection 
significance has increased as the scale of modern data renders 
manual identification impractical, necessitating automated 
solutions. Such methods have been successfully applied in 
cybersecurity intrusion detection (Ahmed, Mahmood, & Hu, 
2016), medical diagnostics such as ECG analysis (Fernando, 
Gammulle, Denman, Sridharan, & Fookes, 2021), predictive 
maintenance in manufacturing (Davari, Veloso, Ribeiro, 
Pereira, & Gama, 2021), financial market risk monitoring 
(Hodge & Austin, 2004), and environmental monitoring 
using sensor data (Hill & Minsker, 2010). One of the core 
challenges lies in the unpredictable nature of anomalies, 
which often limits the use of conventional machine learning 
approaches that require labeled data sets, particularly in time 
series contexts (Bahri, Salutari, Putina, & Sozio, 2022). 

Traditionally, anomaly detection in jet engines has relied on 
statistical and rule-based methods, which monitor sensor 
readings and flag deviations from predefined thresholds or 
expected patterns (Wong, Leckie, & Ramamohanarao, 2002). 
While these conventional approaches are straightforward, 
they often struggle to capture complex, nonlinear 
relationships in high-dimensional data, leading to false 
alarms or missed anomalies. To overcome these limitations, 
AI-based anomaly detection systems have gained increasing 
attention Huang et al. (2025). By learning patterns from 
sensor data during healthy operation, these systems can 
identify subtle deviations indicative of developing faults, 
enabling predictive maintenance, improved reliability, and 
more efficient operation (Kurz et al., 2008). Machine learning 
techniques such as Isolation Forest, One-Class SVM, and 
PCA have been successfully applied for anomaly detection, 
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while deep learning approaches, including autoencoders and 
recurrent neural networks, have shown superior performance 
in capturing complex temporal and spatial patterns in engine 
sensor data (Kucuk & Uysal, 2022). Figure 1 illustrates the 
overview of anomaly detection in jet engines.  

 
Figure 1: Overview of AI-powered anomaly detection in jet 
engines. Multiple sensors monitor engine components, 
feeding data to machine learning systems that detect early 
signs of degradation before critical failures occur. 

A key factor in these AI-based approaches is that the 
underlying data are often time-series measurements 
Zamanzadeh Darban et al. (2024); sequences of readings 
recorded over time, where the temporal order carries critical 
information. In engineering and industrial applications, such 
data is collected from sensors that measure parameters such 
as vibration, temperature, pressure, and rotational speed 
(RPM). These measurements are critical for monitoring 
system performance, diagnosing faults, and enabling 
predictive maintenance in complex machinery such as 
turbines, engines, and manufacturing equipment (Tang, 
Yuan, & Zhu, 2019). The inherent temporal dependencies in 
time-series data allow analysts to detect trends, seasonal 
patterns, and sudden deviations, which can indicate abnormal 
or unsafe operating conditions (Box, 2013). However, 
analyzing sensor-based time-series data poses challenges due 
to noise, high dimensionality, and variability in operating 
conditions, emphasizing the need for advanced analytical 
techniques such as statistical modeling, signal processing, 
and machine learning. 

Time-series data in the context of anomaly detection can be 
either labeled or unlabeled, which determines the type of 
technique applied. Anomaly detection techniques can be 
broadly categorized into supervised, unsupervised, and semi-
supervised approaches, each differing in their reliance on 
labeled data. Supervised anomaly detection requires datasets 
labeled as “normal” or “anomalous” to train a model that can 
classify new instances accurately (Görnitz, Kloft, Rieck, & 
Brefeld, 2013). While this method can achieve high 
precision, it is often limited by the scarcity and high cost of 
obtaining labeled anomaly data. Unsupervised anomaly 
detection, on the other hand, does not require labels and 
instead relies on the assumption that anomalies are rare and 

significantly different from normal patterns (Meng et al., 
2019). This makes it well-suited for real-world scenarios 
where anomalies are diverse and unpredictable. Semi-
supervised anomaly detection serves as a middle ground, 
leveraging a training set consisting primarily or entirely of 
normal data to build a model that flags deviations as potential 
anomalies (Akcay, Atapour-Abarghouei, & Breckon, 2018). 
The choice among these methods depends on factors such as 
data availability, labeling costs, and the variability of normal 
and abnormal patterns in the target domain. 

When applied to time-series sensor data, such as vibration, 
temperature, pressure, or rotational speed measurements, 
anomaly detection presents additional challenges. In 
particular, variability in operating conditions such as changes 
in load, speed, or environmental factors can significantly 
affect sensor readings, making it difficult for conventional 
models to distinguish between normal variations and true 
anomalies. Moreover, the temporal dependencies must be 
preserved to correctly capture evolving patterns and subtle 
deviations. Traditional models often fail to exploit this 
sequential structure effectively. For such cases, models with 
memory capabilities, like the Long Short-Term Memory 
(LSTM) network, are particularly advantageous, as they can 
retain information from earlier time steps, enabling the 
detection of anomalies that emerge gradually or depend on 
long-term temporal context (Du et al., 2017; Malhotra, 2016; 
Park et al., 2018; Zhou et al., 2020). 

In this work, we propose a framework for anomaly detection 
in jet engines that integrates regression residual modeling 
with an autoencoder-based reconstruction stage. Prior studies 
have applied reconstruction methods or prediction models 
directly on raw sensor data, which often struggle to 
distinguish genuine faults from variations in operating 
conditions (Malhotra et al., 2016; Wei et al., 2023; Wang & 
Tong, 2022; Kieu et al., 2022). Our framework addresses this 
by explicitly separating operational condition sensors (e.g., 
fuel flow) from response sensors (e.g., Tt9, Pt3), first using 
an LSTM regression model to predict responses and then 
analyzing the resulting residuals with an LSTM autoencoder. 
This residual–autoencoder design allows anomalies to be 
detected in a way that accounts for operational variability. 
Importantly, we evaluate the framework at the event level on 
real jet engine test data, providing a practical demonstration 
of its effectiveness in contrast to simulation-based or 
component-level studies commonly found in literature. 

1.1. Contributions 

The main contributions are as follows: 

• RAVEN – Robust Anomaly Detection under Variable 
Engine Conditions: A novel residual-based framework 
that employs a two-step residual learning approach, 
combining regression and autoencoding of residuals, 
for unsupervised anomaly detection. 
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• Use of real-world test data: The study employs sensor 
measurements collected from an operational system, 
ensuring that the results are representative of practical 
conditions rather than simulated environments. 

• Consideration of operational variability: The analysis 
incorporates variations in operating parameters to 
reflect realistic system behavior. 

• Healthy-data-only training: The proposed model is 
trained exclusively on healthy time-series data, 
enabling effective unsupervised anomaly detection. 

• Identification of real anomaly indicators: The method 
is capable of extracting meaningful features that serve 
as indicators of actual system anomalies, supporting 
both early fault detection and root cause analysis. 

2. OUR APPROACH  

The proposed framework (Figure 2) consists of two main 
components: an LSTM-based regression model and an 
LSTM-based autoencoder. Unlike conventional anomaly 
detection methods that treat sensor data uniformly, our 
framework explicitly distinguishes between operational 
condition sensors (e.g., fuel flow) and response sensors (e.g., 
Tt9, Pt3). The regression model first predicts response 
sensors from operational conditions, isolating residuals that 
capture deviations from expected engine behavior. These 
residuals are then passed to the autoencoder, which is trained 
to reconstruct only healthy residual patterns. Consequently, 
faulty conditions yield high reconstruction errors that can be 
flagged via a threshold. This residual–autoencoder pipeline 
allows anomalies to be detected in a way that accounts for 
engine operational variability, and our evaluation is 
conducted at the event level on real jet engine test data, 
demonstrating the framework’s practical applicability 
beyond simulation-based studies. 

  
Figure 2. Overview of the proposed anomaly detection 
pipeline. Operational indicator sensors are fed into a 
regression model to predict response sensor behavior. The 
residual between predicted and actual readings is input to an 
LSTM autoencoder, which reconstructs the residual signals 
and detects anomalies when reconstruction error exceeds a 
threshold. 

2.1. Regression model  

The regression model takes the operational indicator sensors 
𝑋!"	 as input and predicts the response sensors. The 
representation of the operational sensors is given in Eq. (1), 
where 𝑚 denotes the number of operational sensors and 𝑇 
the number of time steps in the experiment: 

𝑋!" = #𝑥#(
%)%	j = 1,2,… ,𝑚; 𝑡 = 1,2,… , 𝑇}	 (1)	

The operational data is scaled to [0,1] using MinMax scaling. 
For sensor 𝑗, the transformation is given in Eq. (2): 

𝑥3#
(%) =

𝑥#(%) −𝑚𝑖𝑛(𝑥(%))
𝑚𝑎𝑥(𝑥(%)) −𝑚𝑖𝑛(𝑥(%))

	 (2)	

where 𝑚𝑖𝑛(𝑥(%)) and 𝑚𝑎𝑥8𝑥
(%)
9  denote the minimum and 

maximum values of sensor 𝑗 across the training set. 

 

To capture the sequential nature of the data, we use a sliding 
window with a fixed length 𝑊 = 1000 samples and a stride 
𝑆 = 500. Each windowed input, denoted as 𝑋!"

(%) for window  
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number 𝑖, contains all 𝑚 operational sensors over 𝑊 
consecutive time steps, as defined in Eq. (3): 

𝑋:!"(
') = #𝑥3#(

%)%	j = 1,2,… ,𝑚;	
t = (i − 1)S + 1,… , (i − 1)S +W} 

(3)	

The regression model is trained to learn the mapping function 
𝑓  from the 𝑚  operational indicators to the 𝑛  response 
sensors. For each windowed and scaled input 𝑋1!"

(%), the 
prediction 𝑌𝑝𝑟𝑒𝑑

(𝑖)  is given in Eq. (4): 

𝑌"()*
(') = 𝑓(𝑋:!"

('))	 (4)	

The regressor is trained by minimizing the L1 loss, also 
referred to as Mean Absolute Error (MAE) due to its 
robustness to outliers, defined as: 

𝐿𝑜𝑠𝑠+, =
1
𝑁H|𝑦' − 𝑦K'|

-

'.,

	 (5)	

The residual window 𝑅(%) is then computed as the difference 
between the actual response sensors window and the 
predicted one, as shown in Eq. (6): 

𝑅(') = 𝑌/0#1/2
(') − 𝑌"()*

(') 	 (6)	

These residuals serve as the basis for the anomaly detection 
autoencoder. 

2.2. LSTM-based autoencoder  

The residual windows from the regression model, defined in 
Eq. (6), are fed into an LSTM autoencoder, which is trained 
using the L1 loss defined in Eq. (5) to reconstruct the residual 
windows. The encoder 𝐸 maps a residual window 𝑅(%) into a 
latent space 𝑧, and the decoder 𝐷 reconstructs them: 

𝑧 = 𝐸8𝑅(
')9, 𝑅()0!3

(') = 𝐷(𝑧)	 (7)	

 

The reconstruction error 𝛿 for window 𝑖 is defined element-
wise as: 

𝛿(') = T𝑅
(') − 𝑅()0!3

(')
T	 (8)	

To aggregate overlapping windows back into a continuous 
time series, we use a weighted averaging approach with a 
Hann (cosine) window to reduce edge artifacts. The Hann 
weights 𝜔 ∈ ℝ, defined as: 

𝜔# = 0.5 Y1 − cos ]
2𝜋(𝑡 − 1)
𝑊 − 1 `a , 𝑡 = 1,2, . . . ,𝑊	 (9)	

The aggregated reconstruction error 𝛿- for the original series 
of length 𝑇  is computed by a weighted sum over all 

overlapping windows, normalized by the sum of weights at 
each time step: 

δ# =
∑ 𝜔#4('4,)5 ∙ 𝛿#4('4,)5

(')
'67(#)

∑ 𝜔#4('4,)5'67(#)
, 𝑡 = 1, . , 𝑇	 (10)	

Here, 𝐼(𝑡) is the set of all window indices 𝑖 such that 𝑡 falls 
within the 𝑖-. window [(𝑖 − 1)𝑆 + 1, (𝑖 − 1)𝑆 +𝑊] . This 
weighted aggregation ensures smooth transitions between 
windows and preserves temporal continuity in the 
reconstructed series. 

2.3. Anomaly detection 

The anomaly detection threshold 𝑇(/)  for sensor 𝑗  is 
determined from the distribution of reconstruction errors on 
the validation set, 𝛿012

(/) , using the 99th percentile: 

𝑇(%) = percentile(𝛿8/2(%) , 99%)	 (11)	

A time step 𝑡  is labeled as anomalous for sensor 𝑗  if its 
reconstruction error exceeds this threshold: 

𝐴𝑛𝑜𝑚𝑎𝑙𝑦(%)(𝑡) = n
1, 𝛿#

(%) >	𝑇(%)
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒		

	 (12)	

This method enables per-sensor anomaly detection, 
combining regression residuals with temporal reconstruction 
to reliably identify deviations from normal behavior. 

2.4. Evaluation Approach 

Since the anomaly detection problem is unsupervised and 
explicit labels are not available, evaluation is performed 
using a threshold-based strategy (Figure 3). For each 
response sensor, an anomaly threshold is computed as the 99th 
percentile of the reconstruction errors on healthy validation 
data (Eq. (11)). During testing, residual reconstruction errors 
from the LSTM autoencoder exceeding this threshold are 
flagged as anomalous (Eq. (12)). Anomaly events are formed 
by grouping consecutive anomalous points. If the gap 
anomalous points exceed a predefined minimum, separate 
events are created. Each event is characterized by its duration 
(number of points) and its severity (average reconstruction 
error). This allows short-lived, low-severity events, likely 
caused by noise or prediction artifacts, to be filtered out, 
ensuring that detected anomalies correspond to meaningful 
deviations from normal behavior. 

To assess the validity of the detected anomalies, the flagged 
events are cross-referenced with textual maintenance remarks 
recorded for each test, which indicate the presence of known 
abnormal events. While these remarks are not precise labels, 
they provide qualitative evidence for validating the model's 
predictions. Furthermore, the sensor exhibiting the highest 
frequency of detected anomalies is considered the primary 
indicator of abnormal system behavior. This approach allows 
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both the identification of anomalies and their probable 
locations, despite the lack of labeled faulty data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Evaluation approach algorithm 

3. EXPERIMENT SETUP 

This section describes the dataset specifications, the inherent 
challenges, and the sensors installed in the jet engine. 

3.1. Dataset Description 

The dataset used in this study was collected from a PTE-
1200A2 gas turbine engine, which is capable of producing a 
maximum thrust of 200kgf and is equipped with 16 injectors. 
The dataset encompasses five operational phases, each 
representing a different configuration of replaced and non-
replaced components during scheduled maintenance cycles 
shown in Table 1. These phases capture variations in the 
mechanical condition of the engine, enabling the analysis of 
fault indicators. Unlike commonly used public datasets such 
as C-MAPSS (Saxena & Goebel, 2008) or simulated turbofan 
data, which are generated from high-fidelity simulations or 
scaled-down models , our dataset captures measurements 
from an actual engine operating in a controlled laboratory 
environment. This distinction is critical because real engine 
behavior includes nuanced transient effects, sensor noise, and 
interactions between components that are not fully 
represented in simulations. 

 
For the purposes of this work, Phase 5 was excluded due to 
the absence of experiments with sufficiently long operating 
durations. 

Within each of the remaining phases, multiple experiments 
were conducted under one of two predefined throttle profiles, 
referred to as Spectrum A and Spectrum B shown in Figure 
4. Each experiment lasted approximately one hour, providing 
continuous time-series sensor measurements for parameters 
such as vibration, temperature, pressure, and rotational speed 
(RPM), sampled at approximately 25 measurements per 
second. These recordings capture both steady-state and 
transient operating conditions, providing a realistic 
representation of engine behavior under varying 
configurations and loads. 

 
Figure 4. Spectrum A and Spectrum B throttle settings. 

3.2. Dataset Challenges 

The dataset presents several challenges for anomaly detection 
in the PTE-1200A2 engine experiments. First, there is a 
significant class imbalance, as faulty or anomalous events are 
rare compared to normal operation, making supervised 
learning approaches difficult. Second, sensor readings 
contain noise and occasional small discrepancies, which can 
obscure subtle anomalies. Third, variability in operating 
parameters across different experiments adds complexity, as 
it becomes difficult to distinguish whether observed changes 
are due to normal operational variations or actual anomalies. 
Finally, the dataset lacks labeled faulty data, with only textual 
remarks available for some experiments. This absence of 

Table 1. Operational phases and non-replaced 
components. 

Phase Non-replaced Components 

1 None (clean baseline) 

2 Turbine rotor, casing, shaft 

3 Inlet, compressor impeller, diffuser 
casing, shaft 

4 Inlet, combustion chamber, 
evaporation tube, oil separation ring 

5 Inlet, bearing, casing 
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precise labels necessitates the use of fully unsupervised 
methods for detecting anomalous behavior. 

3.3. Sensors 

The engine dataset includes multiple sensors measuring key 
parameters at various locations to capture the engine’s 
operational state, forming a multivariate time series dataset. 
Table 2 summarizes the sensor types, measurement ranges, 
accuracy, and likely locations. 

Some of the sensors are considered operational indicator 
sensors because they primarily reflect the engine's operating 
conditions. The remaining sensors are response sensors, 
which vary according to changes in the operational 
indicators. In this dataset, the response sensors include Tt9, 
Tt7, Pt3, Pt7, Tt3, and vibration, while all other sensors are 
classified as operational indicators. 

 

4. RESULTS 

In this section three anomalous cases are presented: Oil pump 
air bubbles, Low-speed vibration, and Diffuser crack. The 
model predictions are evaluated against the textual remarks. 
Additionally, in the case of low-speed vibration, the 
evaluation metrics are presented.  

4.1. Oil Pump Air Bubbles 

This case corresponds to the occurrence of air bubbles in the 
oil pump, which prevented the engine from reaching 
maximum speed. We compare the regression model 
predictions and autoencoder reconstruction for multiple 
sensors to evaluate model performance during this anomaly. 

 
Figure 5. Regression and Autoencoder Results. Left column: 
Original vs. predicted sensor signals from the regression 
model. Middle column: Residual signal and autoencoder 
(AE) predictions, highlighting how the AE reconstructs the 
residuals. Right column: Reconstruction error with 99th 
percentile thresholds, where shaded regions indicate detected 
anomalies. 

The Pt7 and Vibration sensors shown in Figure 5 provide 
clear indicators of the bubbles in the oil pump. The Pt7 sensor 
measures the engine airflow pressure, and the presence of air 
bubbles in the pump indirectly affects engine performance, 
causing small deviations in airflow that are captured as 
differences between predicted and measured signals by the 
regression model and as reconstruction errors by the 
autoencoder. The Vibration sensor detects mechanical 
vibrations of the pump and engine, which increase and 
become irregular due to reduced lubrication and cavitation 
caused by the bubbles. Figure 6 highlights the anomalies in 
the Pt7 and Vibration sensors. These sensors show 
anomalous events that are either long-lasting or have high 
magnitude, whereas the other sensors only have single-step 

Table 2. PTE-1200A2 engine sensor summary. 
Param Pts Type Range Acc Location 

n 1×1 Hall 0–300k 
rpm 

±100 
rpm 

Rotor shaft 
(Comp/Turb) 

Fn 1×1 Tension/ 
Comp 

-10–200 
kgf 

±0.0
3% 

Test stand 
(thrust) 

Wf 1×1 Coriolis 0–5000 
g/min 

1% Fuel line to 
combustor 

Tt0 1×1 T-type 
TC 

-40–120 
℃ 

±0.5 
℃ 

Inlet air (free 
stream) 

Hum 1×1 Humidity 0–100% 
RH 

±2% 
RH 

Inlet/free 
stream 

Pt0 1×1 Pressure 0–110 
kPa 

0.5% 
FS 

Ambient 
(total inlet) 

Vib 1×1 Speed 0–20 
mm/s 

0.5% 
FS 

Bearing 
housing 

T9 8×1 K-type 
TC 

-40–1150 
℃ 

±0.5 
℃ 

Nozzle outlet 
(EGT) 

Tt7 4×1 K-type 
TC 

-200–
1300 ℃ 

±0.5 
℃ 

Nozzle inlet 

Pt1 4×3 Press 
scanner 

-10–600 
kPa 

0.05
% FS 

Comp inlet 
(total) 

Pt3 4×1 Press 
scanner 

-10–600 
kPa 

0.05
% FS 

Comp outlet 
(pre-burner) 

Pt7 4×1 Press 
scanner 

-10–600 
kPa 

0.05
% FS 

Nozzle inlet 

Ps1 4×1 Press 
scanner 

-10–600 
kPa 

0.05
% FS 

Comp inlet 
(static) 

Tt1 4×3 T-type 
TC 

-200–500 
℃ 

±0.5 
℃ 

Comp inlet 

Tt3 4×1 K-type 
TC 

-200–
1300 ℃ 

±0.5 
℃ 

Comp outlet 
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events or low-severity values. The behavior of these sensors 
matches the ground truth remark of bubbles in the oil pump, 
confirming the detected anomaly. 

 
Figure 6. Magnitude of the reconstruction error over the 
duration of anomaly events for each sensor. 

4.2. Diffuser Crack 

In this second experiment, the diffuser section is suspected to 
have a crack. Such a crack can disturb the smooth airflow, 
creating turbulence and local pressure fluctuations that 
propagate downstream, which are captured by Pt7 at the 
nozzle inlet. In addition, the structural disturbance generates 
mechanical vibrations, observed in the vibration sensor, 
indicating abnormal loading. 

The anomaly detection results in Figure 7 confirms these 
effects. Slight pressure variations in Pt7, absent in healthy 
experiments, flag anomalies during sudden rotational speed 
changes. Similarly, a large portion of the vibration sensor is 
identified as anomalous, with 15 relatively long events, 
reflecting the mechanical imbalance caused by the crack. 
These observations demonstrate that the pipeline successfully 
detects both aerodynamic and structural anomalies consistent 
with a diffuser crack. The simultaneous detection in pressure 
and vibration channels validates that the anomaly detection 
approach is effective and capable of identifying real faults in 
the system, providing a reliable early warning tool for 
diffuser degradation. 

 
Figure 7. Results of the anomaly detection for the 
experiment with a crack in the diffuser section. 

4.3. Low-Speed Vibration  

The third study case corresponds to abnormal vibration 
within the system occurring at low rotational speeds. 
Specifically, three Phase 3 experiments were annotated in 
which the vibration values exceeded the predefined safety 
limits while the engine’s rotational speed remained below 
22,000 RPM. This scenario represents a low-speed vibration 
anomaly, highlighting the system’s unusual behavior under 
conditions where high vibration is not typically expected. 
Studying such events is critical, as they can indicate 
developing faults that may compromise engine performance 
or reliability if left undetected. 

A threshold analysis was conducted across the three 
experiments, and the average performance results are 
summarized in Table 3. The 99th percentile threshold 
achieved the best performance and was therefore selected for 
subsequent evaluation. 

 
Figure 8 presents the results of our anomaly detection 
framework. The three experiments begin with very low 
starting rotation speeds, a condition that can amplify the 

Table 3. Classification results on the low-speed vibration 
cases using RAVEN for different thresholds. Acc. for 
accuracy, Pre. for precision, Rec. for recall; values are 
displayed in %. 

Threshold 
Sample-level classification 

Acc. Pre. Rec. F1 

99 97.3 31.1 57.4 35.7 

97.5 93.1 19.8 58.9 25.5 

95 88.7 14.9 63.0 20.8 
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effects of mechanical imbalance and excite resonance modes, 
leading to pronounced vibrations in both the system and the 
sensor readings. These anomalies manifest as distinct high 
peaks at the beginning of the vibration signals, features 
largely absent in healthy runs and therefore unlikely to be 
reproduced by the regression model. This discrepancy results 
in large residuals that the healthy-trained autoencoder cannot 
reconstruct, producing high reconstruction errors and 
flagging the corresponding time steps as anomalous. In 
experiment A (first row), a slight drop in rotation speed 
around time step 10,000 caused another vibration spike, 
aligning with the ground truth note on the second slow-speed 
step that pushed vibration values beyond acceptable limits. In 
the C (third row), a final anomaly occurred near the end of 
the run; this was also a true positive, as the original vibration 
readings again exceeded the threshold due to excessively low 
speed, requiring the experiment to be paused and the rotation 
speed readjusted above 20,000. Across all three experiments, 
every low-speed vibration anomaly was correctly detected, 
with no false positives observed.  

 
Figure 8. Low-speed vibration results for three annotated 
experiments (A, B, and C). Column 1: Actual Rotation Speed 
during the experiment. Column 2: Original vs. predicted 
vibration signals from the regression model. Column 3: 
Residual signals and AE reconstructions. Column 4: 
Reconstruction MAEs with thresholds and anomaly events. 

Additionally, these remarks are quantifiable, as they define a 
vibration limit for slow-speed steps (below 22,000 rpm). To 
construct the ground truth classes, we set this limit at 4 mm/s 
and label as anomalous all low-speed time steps exceeding it. 
Consecutive anomalous time steps are grouped into 
anomalous events. This ground truth enables us to evaluate 
the anomaly detection framework in three experiments, both 
at the sample level and the event-based level. At the sample 
level, the classification compares the ground truth label with 
the predicted label for each time step. At the event-based 
level, an event is considered correctly predicted if any of its 
points overlap with a ground truth event, allowing for a small 

temporal window on each side. This matching strategy yields 
the classification metrics shown in Table 4.  

 
At the sample level, accuracy is high due to the severe class 
imbalance between anomalous and healthy samples. 
However, precision, recall, and F1-score remain low, as 
detecting short anomalies at the exact timestep is challenging. 
At the event level, this limitation is mitigated by associating 
nearby events, resulting in the detection of all anomaly events 
except one short occurrence at the end of experiment B. 

4.4. Performance comparison 

In this subsection, the data from the low-speed vibration 
experiments are used to evaluate the performance of our 
proposed model against baseline models. RAVEN is 
compared against simple but widely used unsupervised 
baselines that represent both statistical and neural approaches 
One-Class SVM, a basic autoencoder, and an LSTM-based 
variational autoencoder (LSTMVAE). For the One-Class 
SVM, the model was trained on 1 million randomly selected 
samples, with each sample representing a single timestep 
containing 15 features. For evaluation, the anomaly status of 
each row (timestep) in the three test files was predicted, 
anomalous predictions were grouped into events using a gap 
threshold of 1000, and performance was assessed at both the 
point (sample) level and event level using a window 
acceptance of 500. The results of the OneClassSVM are 
presented in Table 5. 

 

Table 4. Classification results on the low-speed vibration 
cases using RAVEN. Exp. stands for experiment, Acc. for 
accuracy, Pre. for precision, Rec. for recall; values are 
displayed in %. 

Exp. 
Sample-level classification Event-based classification 

Acc. Pre. Rec. F1 Acc. Pre. Rec. F1 

A 98.3 0.0 0.0 0.0 100 100 100 100 

B 99.5 12.8 82.6 22.1 50.0 100 50.0 66.7 

C 94.0 80.7 89.7 85.0 100 100 100 100 

Avg. 97.3 31.1 57.4 35.7 83.3 100 83.3 88.9 

 

 

Table 5. Classification results on the low-speed vibration 
cases using OneClassSVM. Exp. stands for experiment, 
Acc. for accuracy, Pre. for precision, Rec. for recall; 
values are displayed in %. 

Exp. 
Sample-level classification Event-based classification 

Acc. Pre. Rec. F1 Acc. Pre. Rec. F1 

A 99.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

B 99.6 10.6 63.8 18.1 100 100 100 100 

C 85.0 59.0 68.3 63.3 66.7 66.7 100 80.0 

Avg. 94.8 23.2 44.0 27.1 55.6 55.6 66.7 60.0 
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For the basic autoencoder, the healthy samples were split into 
training and validation sets. A fully connected autoencoder 
was implemented with an encoder architecture of [15 → 32 
(ReLU) → 16 (ReLU) → 8], mirrored in reverse for the 
decoder. After training, a reconstruction error threshold was 
computed at the 99th percentile of the healthy validation data, 
and the same anomaly detection and evaluation process was 
applied to the test files. The results of the basic autoencoder 
are shown in Table 6. 

 
For LSTMVAE, The dataset is split into training, validation, 
and testing sets with an 80-10-10 ratio. The training set is 
used to train both the sequence regressor and the LSTMVAE 
model, the validation set is used for hyperparameter tuning 
and threshold selection, and the testing set evaluates 
performance on unseen anomalies. The LSTMVAE consists 
of a two-layer LSTM encoder and decoder, each with 64 
hidden units and a dropout of 0.2, which processes 500-
timestep residual sequences and learns a 32-dimensional 
latent representation. The model is trained using a beta-VAE 
loss that combines mean squared error for reconstruction with 
a KL divergence term (weighted by β=0.5) to regularize the 
latent space, enabling robust anomaly detection based on 
reconstruction error. The results are shown in Table 7. 

 
Finally, the performance of RAVEN is compared with both 
baselines across all evaluation metrics. This comparison 
highlights the relative strengths of each method and 
demonstrates the advantages of RAVEN under varying 
conditions. The consolidated results are summarized in Table 
8. 

 
Overall, the comparison demonstrates that RAVEN achieves 
superior performance relative to all baseline models. At the 
sample level, RAVEN attains the highest accuracy (97.3%) 
and F1-score (35.7%), showing a stronger precision–recall 
balance compared to One-Class SVM, the basic autoencoder, 
and the LSTMVAE. While the LSTMVAE achieves 
relatively high recall (68.2%), its precision remains lower, 
leading to a modest F1-score. At the event level, RAVEN 
further distinguishes itself with perfect precision (100%) and 
the highest F1-score (88.9%), highlighting its reliability in 
detecting true anomalies without false positives. In contrast, 
the basic autoencoder and One-Class SVM show limited 
detection capability, and LSTMVAE, despite achieving full 
recall, suffers from low precision. These results confirm that 
RAVEN provides a more robust and consistent framework 
for anomaly detection under variable engine conditions. 

5. DISCUSSION 

This section discusses the dataset limitations alongside the 
strengths of the proposed approach, including event-level 
analysis, sensor-level analysis, and the trade-offs associated 
with false positive detection. 

5.1. Strengths of the Proposed Framework 

Despite these limitations, the proposed framework 
successfully detects anomaly events that align with domain 
knowledge of the physical system. This allows detected 
anomalies to be interpreted and analyzed to determine their 
likely root causes, as demonstrated in the results section. 
Compared to alternative approaches, the combination of 
regression-based prediction with residual learning via an 
autoencoder offers advantages in capturing both temporal 
dependencies and complex non-linear system behavior. This 
hybrid approach enhances sensitivity to deviations that 
traditional threshold-based or purely statistical models might 
overlook. 

5.2. Event-Level Analysis 

To better understand the detection behaviour, anomaly events 
were categorized into three types: 

• Very short-duration events (< 1 s): These may 
represent genuine anomalies but are also more 

Table 6. Classification results on the low-speed vibration 
cases using BasicAE. Exp. stands for experiment, Acc. 
for accuracy, Pre. for precision, Rec. for recall; values are 
displayed in %. 

Exp. 
Sample-level classification Event-based classification 

Acc. Pre. Rec. F1 Acc. Pre. Rec. F1 

A 99.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

B 99.9 0.0 0.0 0.0 50.0 100 50.0 66.7 

C 80.6 15.2 0.6 1.1 25.0 33.3 50.0 40.0 

Avg. 93.4 5.1 0.2 0.4 25.0 44.4 33.3 35.6 

 

 

Table 7. Classification results on the low-speed vibration 
cases using LSTMVAE. Exp. stands for experiment, Acc. 
for accuracy, Pre. for precision, Rec. for recall; values are 
displayed in %. 

Exp. 
Sample-level classification Event-based classification 

Acc. Pre. Rec. F1 Acc. Pre. Rec. F1 

A 95.9 0.1 4.6 0.3 28.6 28.6 100 44.4 

B 88.6 0.6 100 1.3 22.2 22.2 100 36.4 

C 79.5 47.9 99.9 64.8 66.7 66.7 100 80.0 

Avg. 93.4 5.1 0.2 0.4 25.0 44.4 33.3 35.6 

 

 

Table 8. Comparison of classification results on the low-speed 
vibration cases. Exp. stands for experiment, Acc. for accuracy, 
Pre. for precision, Rec. for recall; values are displayed in %. 

Method 
Sample-level classification Event-based classification 

Acc. Pre. Rec. F1 Acc. Pre. Rec. F1 

RAVEN 97.3 31.1 57.4 35.7 83.3 100 83.3 88.9 

OCSVM 94.8 23.2 44.0 27.1 55.6 55.6 66.7 60.0 

BasicAE 93.4 5.1 0.2 0.4 25.0 44.4 33.3 35.6 

LSTMVAE 88.0 16.3 68.17 22.1 39.2 39.2 100 53.6 
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susceptible to prediction artifacts, sensor glitches, or 
transient noise, increasing the likelihood of false 
positives. 

• Non-severe anomalies (low average severity): These 
events may be caused by measurement noise or subtle 
fluctuations. In the first case, false positives can arise 
due to values being close to the detection threshold. In 
the second case, the events represent true anomalies 
that are inherently difficult to detect, again due to their 
proximity to the threshold. 

• Long and severe anomalies (high magnitude, 
extended duration): These are the most likely true 
positives, as sustained deviations of significant 
magnitude typically correspond to genuine faults or 
abnormal operating conditions. 

By classifying events in this manner, it becomes possible to 
prioritize which anomalies warrant further investigation or 
maintenance action. Long and severe events can be addressed 
with higher urgency, while short or low-severity events may 
require contextual validation before intervention. 

5.3. Sensor-Level Analysis 

At the sensor level, analysis reveals varying degrees of 
importance for anomaly detection. Some sensors are highly 
critical, capturing high-severity, long-duration anomalies and 
thus providing the most valuable signals for fault 
identification. Others are moderately informative, often 
registering many non-severe events that may reflect noise but 
can still detect subtle deviations from normal operation. In 
contrast, some sensors are less reliable, displaying unstable 
readings with short-duration events that increase 
susceptibility to false positives. This variation in reliability 
and informativeness can be effectively visualized using a 
heatmap or scatterplot, as exemplified in Figure 8, which 
maps sensors against event severity and duration to highlight 
their relative contribution to detection performance.  

5.4. False Positive Trade-offs in Safety-Critical 
Applications 

While our unsupervised approach may generate a higher 
number of false positives due to the absence of labeled 
training data, this limitation is acceptable and even preferable 
in the context of jet engine monitoring. In safety-critical 
applications such as aviation, false positives where the 
system flags normal operation as potentially anomalous are 
significantly more tolerable than false negatives, where 
actual developing faults go undetected. A false positive may 
lead to unnecessary but precautionary maintenance 
inspections, whereas a false negative could result in 
catastrophic engine failure with severe consequences for 
flight safety. Therefore, our model's tendency toward 
conservative anomaly detection aligns with the fundamental 

principle that it is better to err on the side of caution when 
human lives and expensive equipment are at stake. 

5.5. Limitations 

A key limitation of this study is the limited availability of 
ground truth anomaly labels, which prevents quantitative 
evaluation of detection accuracy. Additionally, it is possible 
that some anomalies were present in the files labeled as 
healthy; in such cases, the model may have inadvertently 
learned certain abnormal behaviors. This can reduce recall, 
as some true anomaly events remain undetected (false 
negatives). False positives may also occur, arising from 
sensor noise, transient fluctuations, or the model reacting to 
minor deviations near the detection threshold that do not 
correspond to genuine system faults. Furthermore, the choice 
of model assumptions and the threshold selection process can 
influence detection sensitivity. The use of more adaptive or 
dynamically tuned thresholds could potentially improve 
performance. 

6. CONCLUSION 

This study presents a residual-based anomaly detection 
framework (RAVEN) for early-stage jet engine fault 
detection under real-world conditions with scarce faulty 
data. By combining regression-based prediction with LSTM 
autoencoder residual learning, the method detects deviations 
without requiring fault examples and addresses challenges 
such as sensor noise, operational variability, and the absence 
of ground truth labels. Event-level classification further 
distinguishes short/non-severe from long/severe anomalies, 
supporting prioritization of maintenance actions, while 
sensor-level analysis identifies the most informative 
measurements for fault detection. RAVEN achieves 97.3% 
accuracy and an F1-score of 35.7% at the sample level, and 
83.3% accuracy, 100% precision, 83.3% recall, and an F1-
score of 88.9% at the event level. Beyond accuracy and 
robustness, RAVEN shows potential for practical 
deployment in health and usage monitoring systems 
(HUMS). Its ability to provide event-level alerts allows 
integration into maintenance workflows as an early-warning 
system, where detected anomalies can automatically flag 
components for inspection before fault escalation. The 
sensor-level analysis supports fault localization by 
highlighting subsystems most strongly associated with 
anomalies, guiding targeted diagnostics. Furthermore, the 
framework operates on lightweight recurrent architectures 
with manageable computational requirements, enabling near 
real-time inference suitable for on-board or ground-based 
monitoring. Future work should involve collaboration with 
domain experts to refine alert thresholds, validate latency 
under operational constraints, and extend subsystem-level 
fault classification, thereby advancing unsupervised 
anomaly detection toward practical, deployable solutions for 
complex propulsion systems. 
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NOMENCLATURE 

𝑋!"      operational indicator sensors 
𝑚      number of operational sensors 
𝑇      number of time steps 
𝑚𝑖𝑛8𝑥(

%)9    minimum value of sensor 𝑗 
𝑚𝑎𝑥8𝑥

(%)
9   maximum value of sensor 𝑗 

W      window length 
S      window stride 
𝑋!"
(%)      window input 

𝑖      window number 
𝑚      operational sensors 
𝑊      consecutive time steps  
f      mapping function 
m      operational indicators  
𝑛      response sensors 
𝑊      consecutive time steps  
𝑌𝑝𝑟𝑒𝑑
(𝑖)       prediction  

L1      Loss  
𝑅(%)      residual window 
𝑌13-412
(%)       actual response sensors window  
𝑌"567
(%)       predicted response sensors window 

E      encoder  
𝑅(%)      residual window 
z      latent space  
𝐷      decoder 
𝛿      reconstruction error 
𝐼(𝑡)      set of all window indices 
𝑇(/)	      anomaly detection threshold  
𝑗      sensor name 
𝛿012
(/)       distribution of reconstruction errors 
𝑛                 hall sensor 
Fn               tension/comp sensor 
Wf              coriolis sensor 
Tt0             T-type sensor  
Hum           humidity sensor  
Pt0              pressure sensor 
Vib             speed sensor 
T9               K-type sensor 
Tt7              K-type sensor 
Pt1              press scanner 
Pt3              press scanner 
Pt7              press scanner 
Ps1              press scanner  
Tt1              T-type sensor 
Tt3              K-type sensor 
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