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ABSTRACT

Jet engines operate under demanding conditions, subjecting
critical components to gradual wear and degradation over
time. Early identification of incipient faults is essential for
maintaining performance, safety, and reliability. Detecting
incipient faults early is essential but remains difficult due to
two major challenges: the scarcity of faulty data and the
strong variability in operating conditions that obscure fault
signatures. Most existing anomaly detection approaches rely
on simulated datasets or assume the availability of labeled
faults, limiting their applicability to real-world engine
monitoring. In this work, we introduce RAVEN, a fully
unsupervised anomaly detection framework designed for jet
engine monitoring under real test conditions. RAVEN
integrates (i) a regression-based residual model to normalize
sensor responses against varying operating regimes, with (ii)
a deep LSTM autoencoder that captures subtle deviations in
time-series behavior without requiring fault labels. By
explicitly addressing operational variability, sensor noise,
and label scarcity, RAVEN provides a robust pathway for
early fault detection. We validate RAVEN on real jet engine
test data, demonstrating its ability to detect anomalies under
diverse operating conditions. Results show that our approach
delivers reliable detection performance in scenarios where
conventional approaches struggle, offering a practical and
scalable solution for propulsion system health monitoring.

1. INTRODUCTION

Jet engines play a crucial role in modern aviation, powering
commercial aircraft, military jets, and various aerospace
applications Talebi et al. (2025). To generate the necessary
thrust for sustained flight, they operate under extreme
temperatures, pressures, and rotational speeds, which
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gradually degrade internal components such as turbines,
compressors, and bearings. Over time, this degradation can
lead to a drop in performance, increased fuel consumption,
increased emissions, and reduced flight safety Miao et al.
(2024). To identify early faults, anomaly detection is
employed. It refers to the analytical process of detecting
irregular patterns or events within a dataset and examining
the conditions under which they occur. Anomaly detection
significance has increased as the scale of modern data renders
manual identification impractical, necessitating automated
solutions. Such methods have been successfully applied in
cybersecurity intrusion detection (Ahmed, Mahmood, & Hu,
2016), medical diagnostics such as ECG analysis (Fernando,
Gammulle, Denman, Sridharan, & Fookes, 2021), predictive
maintenance in manufacturing (Davari, Veloso, Ribeiro,
Pereira, & Gama, 2021), financial market risk monitoring
(Hodge & Austin, 2004), and environmental monitoring
using sensor data (Hill & Minsker, 2010). One of the core
challenges lies in the unpredictable nature of anomalies,
which often limits the use of conventional machine learning
approaches that require labeled data sets, particularly in time
series contexts (Bahri, Salutari, Putina, & Sozio, 2022).

Traditionally, anomaly detection in jet engines has relied on
statistical and rule-based methods, which monitor sensor
readings and flag deviations from predefined thresholds or
expected patterns (Wong, Leckie, & Ramamohanarao, 2002).
While these conventional approaches are straightforward,
they often struggle to capture complex, nonlinear
relationships in high-dimensional data, leading to false
alarms or missed anomalies. To overcome these limitations,
Al-based anomaly detection systems have gained increasing
attention Huang et al. (2025). By learning patterns from
sensor data during healthy operation, these systems can
identify subtle deviations indicative of developing faults,
enabling predictive maintenance, improved reliability, and
more efficient operation (Kurz et al., 2008). Machine learning
techniques such as Isolation Forest, One-Class SVM, and
PCA have been successfully applied for anomaly detection,
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while deep learning approaches, including autoencoders and
recurrent neural networks, have shown superior performance
in capturing complex temporal and spatial patterns in engine
sensor data (Kucuk & Uysal, 2022). Figure 1 illustrates the
overview of anomaly detection in jet engines.

o—
Al
Detection

| Time

Figure 1: Overview of Al-powered anomaly detection in jet
engines. Multiple sensors monitor engine components,
feeding data to machine learning systems that detect early
signs of degradation before critical failures occur.

A key factor in these Al-based approaches is that the
underlying data are often time-series measurements
Zamanzadeh Darban et al. (2024); sequences of readings
recorded over time, where the temporal order carries critical
information. In engineering and industrial applications, such
data is collected from sensors that measure parameters such
as vibration, temperature, pressure, and rotational speed
(RPM). These measurements are critical for monitoring
system performance, diagnosing faults, and enabling
predictive maintenance in complex machinery such as
turbines, engines, and manufacturing equipment (Tang,
Yuan, & Zhu, 2019). The inherent temporal dependencies in
time-series data allow analysts to detect trends, seasonal
patterns, and sudden deviations, which can indicate abnormal
or unsafe operating conditions (Box, 2013). However,
analyzing sensor-based time-series data poses challenges due
to noise, high dimensionality, and variability in operating
conditions, emphasizing the need for advanced analytical
techniques such as statistical modeling, signal processing,
and machine learning.

Time-series data in the context of anomaly detection can be
either labeled or unlabeled, which determines the type of
technique applied. Anomaly detection techniques can be
broadly categorized into supervised, unsupervised, and semi-
supervised approaches, each differing in their reliance on
labeled data. Supervised anomaly detection requires datasets
labeled as “normal” or “anomalous” to train a model that can
classify new instances accurately (Gornitz, Kloft, Rieck, &
Brefeld, 2013). While this method can achieve high
precision, it is often limited by the scarcity and high cost of
obtaining labeled anomaly data. Unsupervised anomaly
detection, on the other hand, does not require labels and
instead relies on the assumption that anomalies are rare and

significantly different from normal patterns (Meng et al.,
2019). This makes it well-suited for real-world scenarios
where anomalies are diverse and unpredictable. Semi-
supervised anomaly detection serves as a middle ground,
leveraging a training set consisting primarily or entirely of
normal data to build a model that flags deviations as potential
anomalies (Akcay, Atapour-Abarghouei, & Breckon, 2018).
The choice among these methods depends on factors such as
data availability, labeling costs, and the variability of normal
and abnormal patterns in the target domain.

When applied to time-series sensor data, such as vibration,
temperature, pressure, or rotational speed measurements,
anomaly detection presents additional challenges. In
particular, variability in operating conditions such as changes
in load, speed, or environmental factors can significantly
affect sensor readings, making it difficult for conventional
models to distinguish between normal variations and true
anomalies. Moreover, the temporal dependencies must be
preserved to correctly capture evolving patterns and subtle
deviations. Traditional models often fail to exploit this
sequential structure effectively. For such cases, models with
memory capabilities, like the Long Short-Term Memory
(LSTM) network, are particularly advantageous, as they can
retain information from earlier time steps, enabling the
detection of anomalies that emerge gradually or depend on
long-term temporal context (Du et al., 2017; Malhotra, 2016;
Park et al., 2018; Zhou et al., 2020).|

In this work, we propose a framework for anomaly detection
in jet engines that integrates regression residual modeling
with an autoencoder-based reconstruction stage. Prior studies
have applied reconstruction methods or prediction models
directly on raw sensor data, which often struggle to
distinguish genuine faults from variations in operating
conditions (Malhotra et al., 2016; Wei et al., 2023; Wang &
Tong, 2022; Kieu et al., 2022). Our framework addresses this
by explicitly separating operational condition sensors (e.g.,
fuel flow) from response sensors (e.g., Tt9, Pt3), first using
an LSTM regression model to predict responses and then
analyzing the resulting residuals with an LSTM autoencoder.
This residual-autoencoder design allows anomalies to be
detected in a way that accounts for operational variability.
Importantly, we evaluate the framework at the event level on
real jet engine test data, providing a practical demonstration
of its effectiveness in contrast to simulation-based or
component-level studies commonly found in literature.

1.1. Contributions
The main contributions are as follows:

e RAVEN — Robust Anomaly Detection under Variable
Engine Conditions: A novel residual-based framework
that employs a two-step residual learning approach,
combining regression and autoencoding of residuals,
for unsupervised anomaly detection.
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e  Use of real-world test data: The study employs sensor
measurements collected from an operational system,
ensuring that the results are representative of practical
conditions rather than simulated environments.

e  Consideration of operational variability: The analysis
incorporates variations in operating parameters to
reflect realistic system behavior.

e  Healthy-data-only training: The proposed model is
trained exclusively on healthy time-series data,
enabling effective unsupervised anomaly detection.

e Identification of real anomaly indicators: The method
is capable of extracting meaningful features that serve
as indicators of actual system anomalies, supporting
both early fault detection and root cause analysis.

2. OUR APPROACH

The proposed framework (Figure 2) consists of two main
components: an LSTM-based regression model and an
LSTM-based autoencoder. Unlike conventional anomaly
detection methods that treat sensor data uniformly, our
framework explicitly distinguishes between operational
condition sensors (e.g., fuel flow) and response sensors (e.g.,
Tt9, Pt3). The regression model first predicts response
sensors from operational conditions, isolating residuals that
capture deviations from expected engine behavior. These
residuals are then passed to the autoencoder, which is trained
to reconstruct only healthy residual patterns. Consequently,
faulty conditions yield high reconstruction errors that can be
flagged via a threshold. This residual-autoencoder pipeline
allows anomalies to be detected in a way that accounts for
engine operational variability, and our evaluation is
conducted at the event level on real jet engine test data,
demonstrating the framework’s practical applicability
beyond simulation-based studies.
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Figure 2. Overview of the proposed anomaly detection
pipeline. Operational indicator sensors are fed into a
regression model to predict response sensor behavior. The
residual between predicted and actual readings is input to an
LSTM autoencoder, which reconstructs the residual signals
and detects anomalies when reconstruction error exceeds a
threshold.

2.1. Regression model

The regression model takes the operational indicator sensors
Xop as input and predicts the response sensors. The
representation of the operational sensors is given in Eq. (1),
where m denotes the number of operational sensors and T
the number of time steps in the experiment:

Xop = eD|i =12 mit =12,..,T} @

The operational data is scaled to [0,1] using MinMax scaling.
For sensor j, the transformation 1s given in Eq. (2):
9 — min(x®)

20 =

L S e A @)
max(x()y —min(x®)

where min(x()) and max(x¥)y denote the minimum and
maximum values of sensor j across the training set.

To capture the sequential nature of the data, we use a sliding
window with a fixed length W = 1000 samples and a stride

S = 500. Each windowed input, denoted as X, (Elp) for window
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number i, contains all m operational sensors over W
consecutive time steps, as defined in Eq. (3):
G = x, D)= ;
. XUIZJ X | ]. 1,2,..,m; 3)
t= (171)S+1,...,(171)S+W}
The regression model is trained to learn the mapping function
f from the m operational indicators to the m response

sensors. For each windowed and scaled input Xé;,), the
prediction Yl(,?gd is given in Eq. (4):
Virea = FXD) @

The regressor is trained by minimizing the L1 loss, also
referred to as Mean Absolute Error (MAE) due to its
robustness to outliers, defined as:

N
1
Loss;y = NZ lyi = il ®)

The residual window R® is then computed as the difference
between the actual response sensors window and the
predicted one, as shown in Eq. (6):

RO =0t = Yorea ®)

These residuals serve as the basis for the anomaly detection
autoencoder.

2.2. LSTM-based autoencoder

The residual windows from the regression model, defined in
Eq. (6), are fed into an LSTM autoencoder, which is trained
using the L1 loss defined in Eq. (5) to reconstruct the residual
windows. The encoder E maps a residual window R® into a
latent space z, and the decoder D reconstructs them:

z= E(R(i)), RY = D(z) @)

The reconstruction error § for window i is defined element-
wise as:

80 = RO — Rieon ©)

To aggregate overlapping windows back into a continuous
time series, we use a weighted averaging approach with a
Hann (cosine) window to reduce edge artifacts. The Hann
weights w € RY defined as:

2t —1
W = 0.5[1fcos<—7;(/_—1)>],t =12,...,W )

The aggregated reconstruction error 8, for the original series
of length T is computed by a weighted sum over all

overlapping windows, normalized by the sum of weights at
each time step:

o)
_ el @e-(i=1)s "S- i—1ys

5, ,t=1,.,T (10)

Piel(t) Pe—(i-1)s

Here, I(t) is the set of all window indices i such that ¢ falls
within the i*" window [G=1DS+1,3(—-1)S+W). This
weighted aggregation ensures smooth transitions between
windows and preserves temporal continuity in the
reconstructed series.

2.3. Anomaly detection

The anomaly detection threshold T for sensor j is
determined from the distribution of reconstruction errors on
the validation set, 515{1)1, using the 99th percentile:

TO) = percentile(é(j)

vat 99%) an
A time step t is labeled as anomalous for sensor j if its
reconstruction error exceeds this threshold:

1, §P>T1®
0, otherwise

Anomaly D (t) = { (12)

This method enables per-sensor anomaly detection,
combining regression residuals with temporal reconstruction
to reliably identify deviations from normal behavior.

2.4. Evaluation Approach

Since the anomaly detection problem is unsupervised and
explicit labels are not available, evaluation is performed
using a threshold-based strategy (Figure 3). For each
response sensor, an anomaly threshold is computed as the 99™
percentile of the reconstruction errors on healthy validation
data (Eq. (11)). During testing, residual reconstruction errors
from the LSTM autoencoder exceeding this threshold are
flagged as anomalous (Eq. (12)). Anomaly events are formed
by grouping consecutive anomalous points. If the gap
anomalous points exceed a predefined minimum, separate
events are created. Each event is characterized by its duration
(number of points) and its severity (average reconstruction
error). This allows short-lived, low-severity events, likely
caused by noise or prediction artifacts, to be filtered out,
ensuring that detected anomalies correspond to meaningful
deviations from normal behavior.

To assess the validity of the detected anomalies, the flagged
events are cross-referenced with textual maintenance remarks
recorded for each test, which indicate the presence of known
abnormal events. While these remarks are not precise labels,
they provide qualitative evidence for validating the model's
predictions. Furthermore, the sensor exhibiting the highest
frequency of detected anomalies is considered the primary
indicator of abnormal system behavior. This approach allows
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both the identification of anomalies and their probable

locations, despite the lack of labeled faulty data.|

Algorithm 1: Evaluation Approach with Per-Sensor
Threshold

Input: Reconstruction errors 651 ) for each sensor jat

time t, test remarks R
Output: Identified sensor responsible for anomaly
detection
for each sensor j do
Compute threshold 7T, « 99™ percentile of

validation errors (51(:1,;

Flag an anomaly at time ¢ if Et(” > Ty

Merge consecutive anomalies into events;
Remove minor events (short duration or low
severity);

Count anomaly events C; for sensor j;

j* < argmax; Cj ; // Sensor with the most
anomaly events
if anomaly periods of j* overlap with remarks R then
L Confirm j* as primary anomaly detector;
else
No confirmed match between detected anomalies
L and remarks;

Figure 3. Evaluation approach algorithm

3. [EXPERIMENT SETUP|

This section describes the dataset specifications, the inherent
challenges, and the sensors installed in the jet engine.

3.1. Dataset Description

The dataset used in this study was collected from a PTE-
1200A2 gas turbine engine, which is capable of producing a
maximum thrust of 200kgf and is equipped with 16 injectors.
The dataset encompasses five operational phases, each
representing a different configuration of replaced and non-
replaced components during scheduled maintenance cycles
shown in Table 1. These phases capture variations in the
mechanical condition of the engine, enabling the analysis of
fault indicators. Unlike commonly used public datasets such
as C-MAPSS (Saxena & Goebel, 2008) or simulated turbofan
data, which are generated from high-fidelity simulations or
scaled-down models , our dataset captures measurements
from an actual engine operating in a controlled laboratory
environment. This distinction is critical because real engine
behavior includes nuanced transient effects, sensor noise, and
interactions between components that are not fully
represented in simulations.

Table 1. Operational phases and non-replaced
components.

Phase Non-replaced Components

1 None (clean baseline)

2 Turbine rotor, casing, shaft

3 Inlet, compressor impeller, diffuser
casing, shaft

4 Inlet, combustion chamber,
evaporation tube, oil separation ring

5 Inlet, bearing, casing

For the purposes of this work, Phase 5 was excluded due to
the absence of experiments with sufficiently long operating
durations.

Within each of the remaining phases, multiple experiments
were conducted under one of two predefined throttle profiles,
referred to as Spectrum A and Spectrum B shown in Figure
4. Each experiment lasted approximately one hour, providing
continuous time-series sensor measurements for parameters
such as vibration, temperature, pressure, and rotational speed
(RPM), sampled at approximately 25 measurements per
second. These recordings capture both steady-state and
transient operating conditions, providing a realistic
representation of engine behavior under varying
configurations and loads.

L gL

Percent speed

Percent speed

s
SPECTRUM A

MAX ROTATION:
15s+15s

s
SPECTRUM B

MAX ROTATION:
15s

Figure 4. Spectrum A and Spectrum B throttle settings.

3.2. Dataset Challenges

The dataset presents several challenges for anomaly detection
in the PTE-1200A2 engine experiments. First, there is a
significant class imbalance, as faulty or anomalous events are
rare compared to normal operation, making supervised
learning approaches difficult. Second, sensor readings
contain noise and occasional small discrepancies, which can
obscure subtle anomalies. Third, variability in operating
parameters across different experiments adds complexity, as
it becomes difficult to distinguish whether observed changes
are due to normal operational variations or actual anomalies.
Finally, the dataset lacks labeled faulty data, with only textual
remarks available for some experiments. This absence of
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precise labels necessitates the use of fully unsupervised
methods for detecting anomalous behavior.

3.3. Sensors

The engine dataset includes multiple sensors measuring key
parameters at various locations to capture the engine’s
operational state, forming a multivariate time series dataset.
Table 2 summarizes the sensor types, measurement ranges,
accuracy, and likely locations.

Some of the sensors are considered operational indicator
sensors because they primarily reflect the engine's operating
conditions. The remaining sensors are response Sensors,
which vary according to changes in the operational
indicators. In this dataset, the response sensors include Tt9,
Tt7, Pt3, Pt7, Tt3, and vibration, while all other sensors are
classified as operational indicators.

Table 2. PTE-1200A2 engine sensor summary.

Param | Pts | Type Range Acc Location
n 1x1 | Hall 0-300k +100 | Rotor  shaft
rpm rpm (Comp/Turb)
Fn 1x1 | Tension/ | -10-200 +0.0 | Test stand
Comp kef 3% (thrust)
Wi 1x1 | Coriolis 0-5000 1% Fuel line to
g/min combustor
TtO 1x1 | T-type -40-120 +0.5 Inlet air (free
TC °C °C stream)
Hum 1x1 | Humidity | 0-100% +2% | Inlet/free
RH RH stream
Pt0 1x1 | Pressure 0-110 0.5% | Ambient
kPa FS (total inlet)
Vib 1x1 | Speed 0-20 0.5% | Bearing
mm/s FS housing
T9 8x1 | K-type -40-1150 | £0.5 | Nozzle outlet
TC °C °C (EGT)
Tt7 4x1 | K-type -200- +0.5 Nozzle inlet
TC 1300 °C °C
Ptl 4x3 | Press -10-600 0.05 Comp inlet
scanner kPa % FS | (total)
Pt3 4x1 | Press -10-600 0.05 Comp outlet
scanner kPa % FS | (pre-burner)
Pt7 4x1 | Press -10-600 0.05 Nozzle inlet
scanner kPa % FS
Psl 4x1 | Press -10-600 0.05 Comp inlet
scanner kPa % FS | (static)
Ttl 4x3 | T-type -200-500 | 0.5 Comp inlet
TC °C °C
Tt3 4x1 | K-type -200- +0.5 Comp outlet
TC 1300 °C °C

4. RESULTS

In this section three anomalous cases are presented: Oil pump
air bubbles, Low-speed vibration, and Diffuser crack. The
model predictions are evaluated against the textual remarks.
Additionally, in the case of low-speed vibration, the
evaluation metrics are presented.

4.1. Oil Pump Air Bubbles

This case corresponds to the occurrence of air bubbles in the
oil pump, which prevented the engine from reaching
maximum speed. We compare the regression model
predictions and autoencoder reconstruction for multiple
sensors to evaluate model performance during this anomaly.

Experiment — PTE-1200A2-0211 B Spectrum Platform 8 2024-11-11 9 18 34
Oil system anomaly — air bubbles in oil pump prevented engine speed from reaching maximum

Regression Results Autoencoder Results .

T

Vibration(mmis) »

Time Step

Time Step Time Step

Figure 5. Regression and Autoencoder Results. Left column:
Original vs. predicted sensor signals from the regression
model. Middle column: Residual signal and autoencoder
(AE) predictions, highlighting how the AE reconstructs the
residuals. Right column: Reconstruction error with 99th
percentile thresholds, where shaded regions indicate detected
anomalies.

The Pt7 and Vibration sensors shown in Figure 5 provide
clear indicators of the bubbles in the oil pump. The Pt7 sensor
measures the engine airflow pressure, and the presence of air
bubbles in the pump indirectly affects engine performance,
causing small deviations in airflow that are captured as
differences between predicted and measured signals by the
regression model and as reconstruction errors by the
autoencoder. The Vibration sensor detects mechanical
vibrations of the pump and engine, which increase and
become irregular due to reduced lubrication and cavitation
caused by the bubbles. Figure 6 highlights the anomalies in
the Pt7 and Vibration sensors. These sensors show
anomalous events that are either long-lasting or have high
magnitude, whereas the other sensors only have single-step
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events or low-severity values. The behavior of these sensors
matches the ground truth remark of bubbles in the oil pump,
confirming the detected anomaly.

Severity vs Duration of Anomaly Events
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Figure 6. Magnitude of the reconstruction error over the
duration of anomaly events for each sensor.

4.2. Diffuser Crack

In this second experiment, the diffuser section is suspected to
have a crack. Such a crack can disturb the smooth airflow,
creating turbulence and local pressure fluctuations that
propagate downstream, which are captured by Pt7 at the
nozzle inlet. In addition, the structural disturbance generates
mechanical vibrations, observed in the vibration sensor,
indicating abnormal loading.

The anomaly detection results in Figure 7 confirms these
effects. Slight pressure variations in Pt7, absent in healthy
experiments, flag anomalies during sudden rotational speed
changes. Similarly, a large portion of the vibration sensor is
identified as anomalous, with 15 relatively long events,
reflecting the mechanical imbalance caused by the crack.
These observations demonstrate that the pipeline successfully
detects both aerodynamic and structural anomalies consistent
with a diffuser crack. The simultaneous detection in pressure
and vibration channels validates that the anomaly detection
approach is effective and capable of identifying real faults in
the system, providing a reliable early warning tool for
diffuser degradation.

Experiment — PTE-1200A2-0211 A Spectrum Platform 8 2024-12-17 9 11 40
Pre-test finding — suspected long crack in diffuser section, risk of material detachment.
Regression Results

Autoencoder Results Reconstruction Error

3

orignal ezt

™ o7 T =)

Vibration(mm/s)

" Time Step

Figure 7. Results of the anomaly detection for the
experiment with a crack in the diffuser section.

4.3. Low-Speed Vibration

The third study case corresponds to abnormal vibration
within the system occurring at low rotational speeds.
Specifically, three Phase 3 experiments were annotated in
which the vibration values exceeded the predefined safety
limits while the engine’s rotational speed remained below
22,000 RPM. This scenario represents a low-speed vibration
anomaly, highlighting the system’s unusual behavior under
conditions where high vibration is not typically expected.
Studying such events is critical, as they can indicate
developing faults that may compromise engine performance
or reliability if left undetected.

A threshold analysis was conducted across the three
experiments, and the average performance results are
summarized in Table 3. The 99th percentile threshold
achieved the best performance and was therefore selected for
subsequent evaluation.

Table 3. Classification results on the low-speed vibration
cases using RAVEN for different thresholds. Acc. for
accuracy, Pre. for precision, Rec. for recall; values are
displayed in %.

Sample-level classification
Threshold
Ace. | Pre. | Rec. | F1
99 97.3 | 31.1 | 574 | 35.7
97.5 93.1 | 19.8 | 589 | 255
95 88.7 | 149 | 63.0 | 20.8

Figure 8 presents the results of our anomaly detection
framework. The three experiments begin with very low
starting rotation speeds, a condition that can amplify the
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effects of mechanical imbalance and excite resonance modes,
leading to pronounced vibrations in both the system and the
sensor readings. These anomalies manifest as distinct high
peaks at the beginning of the vibration signals, features
largely absent in healthy runs and therefore unlikely to be
reproduced by the regression model. This discrepancy results
in large residuals that the healthy-trained autoencoder cannot
reconstruct, producing high reconstruction errors and
flagging the corresponding time steps as anomalous. In
experiment A (first row), a slight drop in rotation speed
around time step 10,000 caused another vibration spike,
aligning with the ground truth note on the second slow-speed
step that pushed vibration values beyond acceptable limits. In
the C (third row), a final anomaly occurred near the end of
the run; this was also a true positive, as the original vibration
readings again exceeded the threshold due to excessively low
speed, requiring the experiment to be paused and the rotation
speed readjusted above 20,000. Across all three experiments,
every low-speed vibration anomaly was correctly detected,
with no false positives observed.

Experiment A — PTE-1200A2.0211 B Spectrum 3 Platform © 2024-11-15 15 00 31
Vibration anomaly — first slow-speed step at 18,000 RPM n
bt next sk S5 o0k of et oF 18,000 APv: RPW ncreased to 22,000 to stabilze

Actual Rotation Speed Regr esults Autoencoder Results Reco

Time Step Time Step Time Step
Experiment 8 — PTE120042.0211 8 Spectrum 3 Platfom 8 2024-11-18.15 5543
Vibration limit exceeded during startug
peak 17 mms at slow-specd: reduced after RPM adjusted to 22,000,

Experiment C — PTE-120042.0211 B Spectrum Platform 8 2024-11-15 9 01 58
ibration limit exceeded
slow-speed vibration reached 8 mmie; RPM Sajusted to 22,000 and test continued.

Time Step e Step

Figure 8. Low-speed vibration results for three annotated
experiments (A, B, and C). Column 1: Actual Rotation Speed
during the experiment. Column 2: Original vs. predicted
vibration signals from the regression model. Column 3:
Residual signals and AE reconstructions. Column 4:
Reconstruction MAEs with thresholds and anomaly events.

Additionally, these remarks are quantifiable, as they define a
vibration limit for slow-speed steps (below 22,000 rpm). To
construct the ground truth classes, we set this limit at 4 mm/s
and label as anomalous all low-speed time steps exceeding it.
Consecutive anomalous time steps are grouped into
anomalous events. This ground truth enables us to evaluate
the anomaly detection framework in three experiments, both
at the sample level and the event-based level. At the sample
level, the classification compares the ground truth label with
the predicted label for each time step. At the event-based
level, an event is considered correctly predicted if any of its
points overlap with a ground truth event, allowing for a small

temporal window on leach side. This matching strategy yields
the classification metrics shown in Table 4. |

Table 4. Classification results on the low-speed vibration
cases using RAVEN. Exp. stands for experiment, Acc. for
accuracy, Pre. for precision, Rec. for recall; values are
displayed in %.

Sample-level classification | Event-based classification
Acc. | Pre. | Rec. F1 Acc. | Pre. | Rec. F1
983 | 0.0 0.0 0.0 100 | 100 [ 100 | 100
B 99.5 | 12.8 | 82.6 | 22.1 | 50.0 | 100 | 50.0 | 66.7
C 94.0 | 80.7 | 89.7 | 85.0 | 100 | 100 | 100 | 100

Avg. | 973 | 31.1 | 574 | 357 | 833 | 100 | 83.3 | 889

Exp.

At the sample level, accuracy is high due to the severe class
imbalance between anomalous and healthy samples.
However, precision, recall, and Fl-score remain low, as
detecting short anomalies at the exact timestep is challenging.
At the event level, this limitation is mitigated by associating
nearby events, resulting in the detection of all anomaly events
except one short occurrence at the end of experiment B.

4.4. Performance comparison

In this subsection, the data from the low-speed vibration
experiments are used to evaluate the performance of our
proposed model against baseline models. RAVEN is
compared against simple but widely used unsupervised
baselines that represent both statistical and neural approaches
One-Class SVM, a basic autoencoder, and an LSTM-based
variational autoencoder (LSTMVAE). For the One-Class
SVM, the model was trained on 1 million randomly selected
samples, with each sample representing a single timestep
containing 15 features. For evaluation, the anomaly status of
each row (timestep) in the three test files was predicted,
anomalous predictions were grouped into events using a gap
threshold of 1000, and performance was assessed at both the
point (sample) level and event level using a window
acceptance of 500. The results of the OneClassSVM are
presented in Table 5.

Table 5. Classification results on the low-speed vibration
cases using OneClassSVM. Exp. stands for experiment,
Acc. for accuracy, Pre. for precision, Rec. for recall;
values are displayed in %.

S le-level classification | Event-b:

d classification

Exp.
Acc. | Pre. | Rec. F1 Ace. | Pre. | Rec. F1

99.8 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0
B 99.6 | 10.6 | 63.8 | 18.1 | 100 | 100 | 100 | 100
C 85.0 | 59.0 | 68.3 | 63.3 | 66.7 | 66.7 | 100 | 80.0

Avg. | 94.8 | 232 | 44.0 | 27.1 | 55.6 | 55.6 | 66.7 | 60.0
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For the basic autoencoder, the healthy samples were split into
training and validation sets. A fully connected autoencoder
was implemented with an encoder architecture of [15 — 32
(ReLU) — 16 (ReLU) — 8], mirrored in reverse for the
decoder. After training, a reconstruction error threshold was
computed at the 99th percentile of the healthy validation data,
and the same anomaly detection and evaluation process was
applied to the test files. The results of the basic autoencoder
are shown in Table 6.

Table 6. Classification results on the low-speed vibration
cases using BasicAE. Exp. stands for experiment, Acc.
for accuracy, Pre. for precision, Rec. for recall; values are
displayed in %.

Sample-level classification | Event-based classification
Acc. | Pre. | Rec. | F1 | Ace. | Pre. | Rec. | F1

99.8 | 0.0 0.0 | 00| 00 0.0 0.0 0.0
B 99.9 | 0.0 0.0 | 0.0 | 50.0 | 100 | 50.0 | 66.7
C 80.6 | 152 | 0.6 1.1 | 250 | 33.3 | 50.0 | 40.0

Avg. | 934 | 51 0.2 0.4 | 25.0 | 444 | 333 | 35.6

Exp.

For LSTMVAE, The dataset is split into training, validation,
and testing sets with an 80-10-10 ratio. The training set is
used to train both the sequence regressor and the LSTMVAE
model, the validation set is used for hyperparameter tuning
and threshold selection, and the testing set evaluates
performance on unseen anomalies. The LSTMVAE consists
of a two-layer LSTM encoder and decoder, each with 64
hidden units and a dropout of 0.2, which processes 500-
timestep residual sequences and learns a 32-dimensional
latent representation. The model is trained using a beta-VAE
loss that combines mean squared error for reconstruction with
a KL divergence term (weighted by f=0.5) to regularize the
latent space, enabling robust anomaly detection based on
reconstruction error. The results are shown in Table 7.

Table 7. Classification results on the low-speed vibration
cases using LSTMVAE. Exp. stands for experiment, Acc.
for accuracy, Pre. for precision, Rec. for recall; values are
displayed in %.

Sample-level classification | Event-based classification
Acc. | Pre. | Rec. | F1 | Acc. | Pre. | Rec. | F1
A 95.9 0.1 4.6 0.3 28.6 | 28.6 100 | 44.4
B 838.6 | 0.6 100 1.3 | 222 | 222 | 100 | 36.4
C 79.5 | 479 | 999 | 64.8 | 66.7 | 66.7 100 | 80.0

Avg. | 934 | 5.1 0.2 04 | 250 | 444 | 333 | 356

Exp.

Finally, the performance of RAVEN is compared with both
baselines across all evaluation metrics. This comparison
highlights the relative strengths of each method and
demonstrates the advantages of RAVEN under varying
conditions. The consolidated results are summarized in Table
8.

Table 8. Comparison of classification results on the low-speed
vibration cases. Exp. stands for experiment, Acc. for accuracy,
Pre. for precision, Rec. for recall; values are displayed in %.

Sample-level classification Event-based classification

Method
Acc. | Pre. | Rec. F1 Acc. | Pre. | Rec. F1

RAVEN 97.3 | 31.1 574 | 357 | 833 | 100 | 83.3 | 88.9

OCSVM 94.8 | 232 | 44.0 | 27.1 | 55.6 | 55.6 | 66.7 | 60.0

BasicAE 93.4 5.1 0.2 0.4 250 | 444 | 333 | 356

LSTMVAE | 88.0 | 16.3 | 68.17 | 22.1 | 39.2 | 39.2 | 100 | 53.6

Overall, the comparison demonstrates that RAVEN achieves
superior performance relative to all baseline models. At the
sample level, RAVEN attains the highest accuracy (97.3%)
and Fl-score (35.7%), showing a stronger precision—recall
balance compared to One-Class SVM, the basic autoencoder,
and the LSTMVAE. While the LSTMVAE achieves
relatively high recall (68.2%), its precision remains lower,
leading to a modest Fl-score. At the event level, RAVEN
further distinguishes itself with perfect precision (100%) and
the highest F1-score (88.9%), highlighting its reliability in
detecting true anomalies without false positives. In contrast,
the basic autoencoder and One-Class SVM show limited
detection capability, and LSTMVAE, despite achieving full
recall, suffers from low precision. These results confirm that
RAVEN provides a more robust and consistent framework
for anomaly detection under variable engine conditions.

5. DISCUSSION

This section discusses the dataset limitations alongside the
strengths of the proposed approach, including event-level
analysis, sensor-level analysis, and the trade-offs associated
with false positive detection.

5.1. Strengths of the Proposed Framework

Despite these limitations, the proposed framework
successfully detects anomaly events that align with domain
knowledge of the physical system. This allows detected
anomalies to be interpreted and analyzed to determine their
likely root causes, as demonstrated in the results section.
Compared to alternative approaches, the combination of
regression-based prediction with residual learning via an
autoencoder offers advantages in capturing both temporal
dependencies and complex non-linear system behavior. This
hybrid approach enhances sensitivity to deviations that
traditional threshold-based or purely statistical models might
overlook.

5.2. Event-Level Analysis

To better understand the detection behaviour, anomaly events
were categorized into three types:

e Very short-duration events (< 1 s): These may
represent genuine anomalies but are also more
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susceptible to prediction artifacts, sensor glitches, or
transient noise, increasing the likelihood of false
positives.

e Non-severe anomalies (low average severity): These
events may be caused by measurement noise or subtle
fluctuations. In the first case, false positives can arise
due to values being close to the detection threshold. In
the second case, the events represent true anomalies
that are inherently difficult to detect, again due to their
proximity to the threshold.

e Long and severe anomalies (high magnitude,
extended duration): These are the most likely true
positives, as sustained deviations of significant
magnitude typically correspond to genuine faults or
abnormal operating conditions.

By classifying events in this manner, it becomes possible to
prioritize which anomalies warrant further investigation or
maintenance action. Long and severe events can be addressed
with higher urgency, while short or low-severity events may
require contextual validation before intervention.

5.3. Sensor-Level Analysis

At the sensor level, analysis reveals varying degrees of
importance for anomaly detection. Some sensors are highly
critical, capturing high-severity, long-duration anomalies and
thus providing the most valuable signals for fault
identification. Others are moderately informative, often
registering many non-severe events that may reflect noise but
can still detect subtle deviations from normal operation. In
contrast, some sensors are less reliable, displaying unstable
readings with short-duration events that increase
susceptibility to false positives. This variation in reliability
and informativeness can be effectively visualized using a
heatmap or scatterplot, as exemplified in Figure 8, which
maps sensors against event severity and duration to highlight
their relative contribution to detection performance.

5.4. False Positive Trade-offs in Safety-Critical
Applications

While our unsupervised approach may generate a higher
number of false positives due to the absence of labeled
training data, this limitation is acceptable and even preferable
in the context of jet engine monitoring. In safety-critical
applications such as aviation, false positives where the
system flags normal operation as potentially anomalous are
significantly more tolerable than false negatives, where
actual developing faults go undetected. A false positive may
lead to unnecessary but precautionary maintenance
inspections, whereas a false negative could result in
catastrophic engine failure with severe consequences for
flight safety. Therefore, our model's tendency toward
conservative anomaly detection aligns with the fundamental

principle that it is better to err on the side of caution when
human lives and expensive equipment are at stake.

5.5. Limitations

|A key limitation of this study is the limited availability of
ground truth anomaly labels, which prevents quantitative
evaluation of detection accuracy. Additionally, it is possible
that some anomalies were present in the files labeled as
healthy; in such cases, the model may have inadvertently
learned certain abnormal behaviors. This can reduce recall,
as some true anomaly events remain undetected (false
negatives). False positives may also occur, arising from
sensor noise, transient fluctuations, or the model reacting to
minor deviations near the detection threshold that do not
correspond to genuine system faults. Furthermore, the choice
of model assumptions and the threshold selection process can
influence detection sensitivity. The use of more adaptive or
dynamically tuned thresholds could potentially improve
performance|

6. CONCLUSION

This study presents a residual-based anomaly detection
framework (RAVEN) for early-stage jet engine fault
detection under real-world conditions with scarce faulty
data. By combining regression-based prediction with LSTM
autoencoder residual learning, the method detects deviations
without requiring fault examples and addresses challenges
such as sensor noise, operational variability, and the absence
of ground truth labels. Event-level classification further
distinguishes short/non-severe from long/severe anomalies,
supporting prioritization of maintenance actions, while
sensor-level analysis identifies the most informative
measurements for fault detection. RAVEN achieves 97.3%
accuracy and an F1-score of 35.7% at the sample level, and
83.3% accuracy, 100% precision, 83.3% recall, and an F1-
score of 88.9% at the event level. Beyond accuracy and
robustness, RAVEN shows potential for practical
deployment in health and usage monitoring systems
(HUMS). Its ability to provide event-level alerts allows
integration into maintenance workflows as an early-warning
system, where detected anomalies can automatically flag
components for inspection before fault escalation. The
sensor-level analysis supports fault localization by
highlighting subsystems most strongly associated with
anomalies, guiding targeted diagnostics. Furthermore, the
framework operates on lightweight recurrent architectures
with manageable computational requirements, enabling near
real-time inference suitable for on-board or ground-based
monitoring. Future work should involve collaboration with
domain experts to refine alert thresholds, validate latency
under operational constraints, and extend subsystem-level
fault classification, thereby advancing unsupervised
anomaly detection toward practical, deployable solutions for
complex propulsion systems.
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NOMENCLATURE
Xop operational indicator sensors
m number of operational sensors
T number of time steps
min, x(f))) minimum value of sensor j
max(x(j ) maximum value of sensor j
w window length
N window stride

0) . .
Xop window input

i window number

m operational sensors

w consecutive time steps
f mapping function

m operational indicators
n response sensors

w consecutive time steps

Yz(,l,)ed prediction

Ll Loss

R® residual window

Ya(?m al actual response sensors window
Yp(;)ed predicted response sensors window
E encoder

R® residual window

z latent space

D decoder

) reconstruction error

I(t) set of all window indices

TW anomaly detection threshold

j sensor name

61%)1 distribution of reconstruction errors
n hall sensor

Fn tension/comp sensor

V% coriolis sensor

TtO T-type sensor

Hum humidity sensor

PtO pressure sensor

Vib speed sensor

T9 K-type sensor

Tt7 K-type sensor

Ptl press scanner

Pt3 press scanner

Pt7 press scanner

Ps1 press scanner

Ttl T-type sensor

Tt3 K-type sensor
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