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ABSTRACT 

This paper introduces a real-time predictive analytics 

framework that integrates edge artificial intelligence for 

remaining useful life estimation and health index 

construction using turbofan engine sensor data. A 

MATLAB/Simulink model was designed to stream 14 

critical sensor signals, derived from the NASA C-MAPSS 

dataset, into an Opal-RT OP5707XG simulator for real-time 

emulation. These signals were output as analog voltages, 

converted into digital values using ADS1115 converters, and 

processed on an Nvidia Jetson AGX Orin edge-computing 

platform. A CatBoost regressor, trained on a feature-rich 

time-series dataset and refined through SHapley Additive 

Explanations-based feature selection was employed as the 

predictive model. System performance was benchmarked on 

two hardware platforms: a mid-tier desktop computer and the 

Jetson AGX Orin. The mid-tier desktop computer completed 

training in 18 minutes, while the Jetson required around 3 

hours. Inference speed was also faster on the computer at 2.8 

ms versus 7.5 ms, though both satisfied the 33 ms 

requirement for real-time processing of a 30 Hz data stream. 

The Jetson demonstrated a significant efficiency advantage, 

consuming 20—40 W compared to 250-350 W for the 

computer. The framework achieved high accuracy with 

strong generalization and transparent explainability through 

SHapley Additive Explanations-based feature selection 

confirming the feasibility of deploying advanced prognostics 

on edge AI hardware for real-time health monitoring. 

1. INTRODUCTION 

The adoption of Artificial Intelligence (AI) in diagnostics, 

prognostics, and health management of assets has become 

pivotal in advancing predictive maintenance solutions. 

Additionally, AI and Machine Learning (ML) algorithms are 

now being embedded in hardware devices to allow for real-

time monitoring while simultaneously generating important 

information that aids proactive maintenance and optimizes 

decision making capabilities. Furthermore, one of the 

primary goals of the Fourth Industrial Revolution is to 

implement predictive maintenance and condition monitoring 

in Edge AI devices, which are typically located close to the 

end devices and carry analytical capabilities and huge 

processing power (Sharanya et al., 2022). 

Research aimed at diagnosing and identifying failures in 

industrial facilities has primarily been carried out in the 

1980s, and it has mainly been conducted based on 

mathematical and physics-based principles (Park et al., 

2018). In predictive maintenance and condition-based 

maintenance, sensor data was typically collected and 

transmitted for analysis. Therefore, the transmission of the 

sensor data was done either through wires or the web. These 

extended transmission routes resulted in specific issues such 

as irrelevant information, delays in transmission, and 

dispatching inaccurate or insufficient data (Bala et al., 2024).  

To address these constraints and limitations, edge computing 

devices were introduced for initial data preparation and real-

time decision making which eliminates the need to transmit 

large quantities of raw data to the cloud, leading to an 

enhanced overall efficiency of the predictive maintenance 

framework (Hector & Panjanathan, 2024).  

Building on this foundation, prior work has established the 

evolution of prognostics and health management (PHM) 

techniques from classical physics-based models to modern 

data-driven and hybrid approaches. (An et al., 2013) provided 

an early taxonomy distinguishing model-based, data-driven, 

and hybrid methods, highlighting their respective advantages 

and shortcomings. More recently, (Su & Lee, 2024) compiled 

a comprehensive review of machine learning methods used 
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in diagnostics and prognostics across multiple PHM data 

challenges, offering practical insights into feature extraction, 

prediction accuracy, and benchmark limitations. Together, 

these works illustrate both the historical depth and ongoing 

diversification of PHM strategies. 

Parallel to advances in algorithms, edge computing has 

emerged as a transformative enabler for predictive 

maintenance. By shifting computation closer to the sensor, 

edge devices overcome the latency and bandwidth limitations 

of cloud‑based approaches. (Artiushenko et al., 2024) 

demonstrates how resource‑efficient Edge AI 

implementations can accelerate integration into maintenance 

workflows by providing rapid response times, scalability 

benefits, and improved data security.  

Another line of research has focused on feature engineering 

and explainability in prognostics. Interpretable models are 

critical for trust, particularly in aerospace and safety-critical 

domains. Studies applying SHapley Additive Explanations 

(SHAP) to RUL prediction confirm that combining 

optimized preprocessing with explainability can reveal 

degradation drivers more transparently (Ndao et al., 2025). 

Similarly, (Khandekar et al., 2024) illustrate how SHAP-

based feature attribution in predictive maintenance 

frameworks strengthens both accuracy and interpretability, 

thereby enhancing operational trustworthiness. 

Finally, several works highlight the challenges of hardware–

software integration when deploying PHM models on 

embedded platforms. Field-tested edge monitoring systems 

validated via hardware-in-the-loop (HIL) approaches 

illustrate the complexities of real-time data streaming, 

synchronization, and analog–digital conversion (Short & 

Twiddle, 2019). This approach specifically addresses the 

challenge of limited adaptability and accuracy in existing 

fault detection frameworks. Recent work on microcontroller-

based deployments further emphasizes the resource 

constraints of embedded devices, showing how techniques 

such as pruning and quantization are essential for achieving 

efficient yet accurate prognostic performance in constrained 

hardware environments (Pandey et al., 2023). While Short & 

Twiddle focused on model-based fault isolation and Pandey 

et al. emphasized data-driven diagnostics, both approaches 

faced difficulties in handling dynamic operating conditions. 

The current work improves on these by integrating a hybrid 

architecture that combines data-driven learning with adaptive 

thresholding, thereby enhancing robustness and real-time 

performance. 

This study introduces a real-time localized predictive 

analytics tool using simulated sensor signals and 

incorporating Edge AI functionalities for on-site data 

processing. The proposed setup in the paper acts as a 

foundation for developing a predictive analytics tool that 

employs real-time data from sensors in test rigs compared to 

prior HIL and Jetson-based studies, the novelty lies in a fully 

analog end-to-end chain (Opal-RT AO → ADC → Jetson) 

with synchronized timing measurements, real-time, 

explainable HI construction on-device using CatBoost 

feature importances, and a deployment-oriented 

characterization that couples latency and power to an explicit 

30 Hz budget. 

2. MATERIALS AND METHODS 

The study conducted in this paper proposes a system 

architecture that includes a MATLAB/Simulink model 

designed to stream sensor signals which are connected to 

several elements of a turbofan engine. The model is then 

configured to be connected to Opal-RT for real-time 

streaming of the sensor signals through its analog output 

ports. Furthermore, the deployment of Edge AI in this 

architecture is demonstrated by connecting the sensor signals 

to the Nvidia AGX Jetson development kit, where a 

sophisticated Remaining Useful Life (RUL) prediction model 

is deployed on the edge AI device for real-time sensor data 

analysis. The primary focus of the paper is the 

characterization of the performance of the hardware setup 

and the efficiency of the data streaming pipeline, rather than 

an exhaustive exploration of the machine learning model 

itself. The proposed system architecture is presented in 

Figure 1. 

  

Figure 1. System architecture of the proposed predictive 

analytics tool using real-time simulation and Edge-AI. 
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2.1. MATLAB/ Simulink Model 

MATLAB/Simulink was used to build a model that streams 

14 sensor signals attached to various elements of a turbofan 

engine. Each sensor measured critical parameters such as 

temperature, speed, and pressure across the compressor, 

turbine, and combustor. These signals are used to understand 

the behavior of the turbofan engine and diagnose it accurately 

in different operating conditions. The dataset which was used 

to stream the specified sensor signals was obtained from the 

Commercial Modular Aero-Propulsion System Simulation 

data (C-MAPSS) developed by the National Aeronautics and 

Space Administration (NASA) (Hong et al., 2020), 

Specifically, the FD001 subset of the C-MAPSS dataset was 

utilized for this study. This subset represents a fleet of 

simulated turbofan engines operating under a single steady 

operating condition and subject to one type of degradation 

fault, namely the high-pressure compressor (HPC) fault. 

FD001 serves as the most fundamental configuration among 

the four C-MAPSS subsets, making it ideal for initial model 

validation and baseline prognostics development. It provides 

100 training and 100 testing engine trajectories, each 

consisting of multivariate time-series data that capture the 

gradual degradation process until engine failure. 

For modelling purposes, out of the 21 available sensor 

signals, 14 were selected to be streamed into the model. 

These sensors were chosen based on their relevance, 

variability, and contribution to fault progression, while 

redundant or constant channels were excluded. The selected 

sensors are listed below: 

1. Temperature at Low Pressure Compressor (LPC) outlet 

2. Temperature at High Pressure Compressor (HPC) outlet 

3. Temperature at Low Pressure Turbine (LPT) outlet 

4. Pressure at High Pressure Compressor (HPC) outlet 

5. Physical fan speed 

6. Physical core speed  

7. Static pressure at High Pressure Compressor outlet 

8. Ratio of fuel flow to Ps30 

9. Corrected fan speed 

10. Corrected core speed 

11. Bypass ratio 

12. Bleed enthalpy 

13. High Pressure Turbine (HPT) coolant bleed 

14. Low Pressure Turbine coolant bleed 

Considering the system architecture and compatibility, the 

sensor signals streamed through Simulink are represented as 

analog voltages which needed to be normalized to between 

0V to 3.3V in order to be compatible with the voltage rating 

of the Analog-to-Digital Converters (ADC) and the Edge AI 

device in use. For this to be implemented, the MATLAB code 

was developed to load the dataset, identify the 14 sensors of 

choice, and remove any rows with missing data. As for the 

normalization of the data, the range was calculated for each 

sensor column, and the largest range was selected as the 

reference column, which was then used to scale all other 

sensor columns to the same voltage range as the Voltage at 

the Collector (VCC) of the ADCs and the Nvidia Jetson AGX 

kit. The Simulink model is presented in Figure 2.  

 

 

Figure 2. Simulink model of the 14 sensor signals of 

different elements of the turbofan engine. 

2.2. Opal-RT Real-time Simulation 

Real-time simulation was configured through Opal-RT to 

enable real-time streaming of sensor signals. The Opal-RT 

module used is OP5707XG, a high-end simulator offered by 

Opal-RT. The model comprised two systems; a Computation 

system labeled SM_Computation, which includes the 

deterministic, real-time simulation of the turbofan engine 

sensor signals, and it is the model that was built in 

MATLAB/Simulink. And a Graphical User Interface (GUI) 

system labeled SC_GUI, which is responsible for the 

monitoring, model design, and Input/Output (I/O) setup. 

Once the model was built, the Opal-RT board had to be 
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configured, and that was done by assigning each signal to its 

corresponding analog output channel. For all 14 sensor 

signals, the corresponding analog output channels A0 to A13 

were utilized, and these channels represent the physical 

voltage output ports on the simulator that will later on be used 

to connect the analog sensor signals to the ADCs in use. The 

analog output channels of the Opal-RT simulator and the 

physical connection of the 14 channels is shown in Figure 3. 

 

 

Figure 3. Opal-RT Analog Out channel and physical 

connection of 14 wires for the sensor signals. 

2.3. Analog-to-Digital Converters  

The Edge-AI device in the proposed system is the Nvidia 

Jetson AGX development kit, however, it is incapable of 

processing analog input signals, therefore, several ADCs had 

to be connected in order to convert the analog sensor signals 

to digital values that can be processed and used by the Edge-

AI device. In order to proceed with the connection of the 

ADCs to the Jetson AGX kit, several communication 

protocols were considered and evaluated based on the 

compatibility of all components in the system, and it was 

decided that the Inter-Integrated Circuit (I²C) protocol will be 

selected due to its simplicity and adaptability with all 

components in the system.  

The ADC of choice was the ADS1115 module, a 16-bit 

analog to digital converter with an I²C interface and a voltage 

range of 2V to 5V. The selection of the ADS1115 was 

motivated by its ease of integration, as it employs the simple 

and widely supported I²C communication protocol, unlike 

more complex ADC alternatives. Each module carries 4 

analog channels (A0-A3), meaning that the 14 analog signals 

representing the output of opal-RT required the use of 4 

ADS1115 modules in total, allowing for a total number of 16 

channels to be used. Furthermore, the VCC pins of all 

modules were connected to a power supply of 3.3V, the 

Ground (GND) pins of all 4 modules were tied to a common 

ground, the Serial Data Line (SDA) pins of all 4 modules 

were connected together, and the Serial Clock Line (SCL) 

pins were also connected together. 

As for the Address (ADDR) pin of all four modules, the 

ADDR pins of the ADCs were connected to VCC, GND, 

SDA, and SCL respectively. This enabled the unique address 

allocation for each module; 0x48, 0x49, 0x4A, and 0x4B 

accordingly. The four ADC modules were connected as 

illustrated in Figure 4. 

 

Figure 4. Connection of the four ADS1115 modules and 

Opal-RT analog output channels. 

 

As for the 14 analog output signals being streamed in real-

time from Opal-RT, each analog signal consisted of a positive 

channel (red wires) and a negative channel (black wires), the 

positive channel of each signal was connected to an analog 

channel on the ADC module, and the negative channel of 

each analog signal was connected to the common ground in 

the setup. The wire configuration of each pin is illustrated in 

Table 1. 

 

Table 1. Pin configuration and connection of ADCs and 

Opal-RT analog signals. 

2.4. Nvidia Jetson AGX Setup  

The NVIDIA Jetson AGX Orin Developer Kit was deployed 

as the edge-computing platform for executing machine 

learning inference in real time. For the hardware connection 

of the NVIDIA Jetson AGX developer kit and the four-

module ADC configuration. A 3.3V power supply was taken 

from the NVIDIA Jetson to power the entire system. 

Furthermore, the SDA, SCL, and GND pins were all tied to 

 

Pin Connection 

VDD 3.3 V (shared) 

GND Common ground 

SDA Shared SDA line 

SCL Shared SCL line 

ADDR 
VDD, GND, SDA, SCL 

0x48, 0x49, 0x4A, 0x4B 

A0–A3 
OPAL-RT analog outputs 

(A0-A13) 
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the corresponding pins in the ADC modules. The connection 

of both components is illustrated in Figure 5. 

 

 

Figure 5. Connection of the four-module ADC configuration 

and the NVIDIA Jetson AGX development kit. 

 

The device was configured with JetPack Software 

Development Kit (SDK), which is Ubuntu-based, and 

includes Compute Unified Device Architecture (CUDA), the 

Nvidia Deep Neural Network (cuDNN), TensorRT, and 

relevant Python dependencies. Data acquisition was 

performed via multiple ADS1115 16-bit ADC converters 

connected over the I²C bus, supporting up to twelve input 

channels across three modules, with the fourth module 

restricted to channels A0 and A1. All ADCs operated in 

differential mode where applicable, enabling noise rejection 

in thermocouple-like connections. 

The Jetson ingested the digitized sensor data at a fixed 

sampling rate determined by Opal-RT output frequency. The 

incoming signal stream underwent synchronous buffering to 

preserve temporal alignment across channels. Preprocessing 

routines execute on-device, including z-score normalization, 

moving average smoothing, and min–max scaling where 

model-specific requirements dictate. 

A dedicated Python pipeline was implemented for feature 

engineering, leveraging both statistical descriptors (mean, 

variance, kurtosis, skewness) and temporal descriptors 

(rolling window slope, first derivative, spectral entropy). The 

pipeline maintained compatibility with both regression and 

classification architectures. 

To support on-device explainability, SHAP values were 

computed for model predictions where latency budgets allow 

(Nohara et al., 2022), primarily for offline model validation. 

Feature importance scores are cached and employed in the 

dynamic construction of Health Indices, computed as a 

weighted dot product between normalized feature vectors and 

their corresponding importance coefficients. This enabled a 

univariate health trajectory representation from multivariate 

sensor data in real time. 

The Jetson operates in a fully standalone mode, without 

dependency on an external MATLAB/Simulink host. The 

only upstream requirement is the continuous feed of analog 

sensor signals from OPAL-RT, which emulates the turbofan 

engine environment. A local Python-based GUI, optimized 

for the Jetson environment, provides real-time visualization 

of sensor values, health indices, RUL estimates, and 

classification outcomes. 

2.5. Edge-AI Machine Learning  

Machine learning inference on the Jetson AGX Orin 

comprises both regression and classification pipelines, 

optimized for low-latency execution. Models are deployed in 

TensorRT-optimized form where applicable to leverage GPU 

acceleration. This study uses the FD001 subset of C-MAPSS 

exclusively. To prevent temporal leakage, we split by engine 

unit (grouped) and preserve chronology (no shuffling). 

Sliding windows are constructed over each engine’s time 

series using past-only context; specifically, features are 

computed from windows 𝑊 ∈ {15,30,45} with stride 𝑠 =
1on standardized signals, and no future information is used 

in any feature or target formation. Model selection used 

grouped cross-validation (GroupKFold by engine), and the 

final test set is a chronological hold-out of engines unseen 

during training. As the manuscript’s scope is the hardware-

streaming pipeline, a full exploration of windowing 

strategies, split variants, and model families is deferred to 

future work. 

2.5.1. Regression Model  

For RUL prediction, two model categories were employed: 

1. Ensemble Gradient Boosting Regressors (e.g., 

CatBoostRegressor, XGBoost, LightGBM), which were 

selected for their ability to handle non-linear feature 

interactions and heterogeneous data distributions. 

CatBoost was particularly leveraged for its native 

handling of categorical features without explicit one-hot 

encoding, thereby avoiding the curse of dimensionality. 

Categorical features (e.g., discretized operational modes, 

maintenance phase flags) were embedded internally via 

CatBoost’s target statistics mechanism. 

2. Similarity-based Models, where partial degradation 

trajectories from the current engine state are matched to 

a library of historical run-to-failure curves. Matching is 

performed via distance metrics (e.g., Dynamic Time 

Warping, cosine similarity) over normalized health 

index space, returning the RUL associated with the most 

similar historical patterns. 

Hyperparameters for all regression models were tuned via 

wights 𝜔 , Bayesian optimization, searching over learning 

rate, maximum tree depth, L2 regularization coefficient 𝜆, 

subsample ratio, and minimum child weight. The L2 penalty 

is: 
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ℛℒ2(ω) = λ ∑ ω𝑖
2

𝑛

𝑖=1
 (1) 

The optimization objective minimized cross-validated RMSE 

while maintaining inference latency constraints (<50 ms per 

prediction). The regression output includes the predicted 

RUL in operational seconds, accompanied by a confidence 

envelope derived from bootstrap resampling of the prediction 

residuals. 

2.5.2. Classification Model 

The classification pipeline identifies the current operational 

state and fault class of the turbofan engine. Models tested 

include: 

1. CatBoostClassifier (primary), leveraging identical 

categorical feature handling to the regression pipeline. 

2. Gradient Boosting Decision Trees (GBDT) and Support 

Vector Machines (SVM) for secondary benchmarks. 

A lightweight feedforward neural network for multi-class 

classification, trained offline and quantized for deployment. 

The classifier operates on the same engineered feature set as 

the regression model but includes additional binary indicators 

(e.g., threshold exceedances, fault mode activation) and 

categorical mode descriptors. Hyperparameter tuning 

followed the same Bayesian optimization procedure, 

minimizing log loss while controlling for overfitting via early 

stopping and L2 regularization. Model outputs include 

predicted fault class and associated probability scores. 

2.5.3. Health Index Integration 

Both regression and classification pipelines utilize the Health 

Index (HI) time series as the primary prognostic indicator. 

The HI is computed on the Jetson platform in real time 

through a CatBoost-driven weighted feature aggregation 

mechanism. For each feature xᵢ(t), the corresponding 

importance weight is obtained from the CatBoost model’s 

feature importance vector FIᵢ, normalized as: 

𝜋𝑖 =
𝐹𝐼𝑖

∑ 𝐹𝐼𝑗
𝑚
𝑗=1

  , 𝑖 = 1, … , 𝑚 (2) 

The normalized feature vector x̃ᵢ(t) is then constructed using 

a standard z-score transformation: 

𝑥𝑖̃(𝑡) =
𝑥𝑖(𝑡) − 𝜇𝑖

𝜎𝑖

 (3) 

where μᵢ and σᵢ denote the mean and standard deviation of 

feature i, respectively. The instantaneous Health Index is 

subsequently derived as a logistic aggregation of the 

normalized features: 

ℋ(t) =  𝜎 (∑ 𝜋𝑖

𝑚

𝑖=1

𝑥𝑖̃(𝑡)) , 𝜎(𝑧) =
1

1 + 𝑒−𝑧
 (4) 

which bounds the index within [0,1] for interpretability and 

consistent scaling across operating regimes. To suppress 

short-term noise and enhance temporal stability, an 

exponential moving average is applied, yielding the 

smoothed health trajectory: 

ℋ(t) = (1 − 𝛼)ℋ(t − 1) + 𝛼ℋ(t), 𝛼 ∈ (0,1) (5) 

This formulation ensures that the Health Index remains 

model-driven, explainable, and adaptive to varying engine 

operating conditions, providing a stable foundation for both 

regression-based RUL estimation and classification-based 

anomaly detection.er5 

3. RESULTS AND DISCUSSION 

To validate the proposed framework for real-time RUL 

prediction, a robust machine learning model was developed 

and assessed on two different hardware platforms: a typical 

mid-range desktop PC for baseline performance, and an 

Nvidia Jetson AGX Orin serving as the intended edge-AI 

deployment system.  

A state-of-the-art CatBoost Regressor was employed to 

predict RUL. The model was trained on a feature-rich dataset 

derived from the raw sensor signals using a multi-window 

time-series analysis to capture temporal degradation patterns. 

An initial model was used with SHAP to perform recursive 

feature selection, ensuring that only the most impactful 

features were used for the final model.  

The final model demonstrated exceptional performance on 

the test dataset, achieving an R² Score of 0.9957, a Root Mean 

Squared Error (RMSE) of 4.48 cycles, and a Mean Absolute 

Error (MAE) of 2.85 cycles. The following sections provide 

a detailed discussion of these results. 

3.1 Experimental Hardware Setup 

The performance of the predictive model was evaluated on 

two distinct hardware platforms: a standard mid-tier desktop 

Personal Computer (PC) for baseline performance, and an 

Nvidia Jetson AGX Orin as the target edge AI deployment 

system. The full system setup is demonstrated in Figure 6. 

The mid-tier PC setup featured a 12th Gen Intel Core i7-

12700F processor with 12 cores and 20 threads, paired with 

an NVIDIA GeForce RTX 3060 GPU containing 12 GB 

GDDR6 memory and delivering approximately 13 TFLOPS 

of FP16 performance. The system included 32 GB of DDR4 

RAM to support the computational workload. 

The Nvidia Jetson AGX Orin development kit represented 

the edge AI platform, equipped with a 12-core Arm Cortex-

A78AE v8.2 64-bit CPU and a 2048-core NVIDIA Ampere 

architecture GPU with 64 Tensor Cores capable of up to 275 

TOPS INT8 performance. The device included 32 GB of 256-

bit LPDDR5 memory optimized for edge computing 

applications.  
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Figure 6. Full system setup. 

3.2 Data Streaming and Performance Evaluation 

For the real-time evaluation, a data pipeline was designed to 

stream sensor readings to the inference engine at a continuous 

rate of 30 rows per second. The primary metrics for 

comparison were model training time, single-pass inference 

speed, and power consumption under load. 

This study considered; analog out (Opal-RT) →  ADC 

(ADS1115, I²C) → Jetson; direct digital via DAQ (SPI/I²C 

multiplexers); and network streaming (UDP/TCP from the 

simulator). Analog + ADS1115 offers simplicity, signal-

chain visibility, and low integration effort at the cost of extra 

conversion latency; DAQ-based digital links reduce 

conversion steps but increase integration complexity and 

cost; Ethernet streaming offers high throughput and flexible 

topology but requires timestamp synchronization and packet-

loss handling. The selection prioritized repeatable timing, 

ease of HIL wiring, and low power, aligning with edge 

deployment constraints. 

The real-time budget is set by the stream frequency: for 30 

Hz, 𝑇 = 1/30 = 33.3ms per sample. End-to-end inference 

must finish within this interval (including buffering and I/O) 

to maintain real-time operation. 

Performance evaluation showed distinct trade-offs between 

the platforms. The mid-tier PC demonstrated superior 

training performance, completing the model training and 

optimization process in approximately 18 minutes, while the 

Jetson AGX Orin was estimated to require 2.5 to 3 hours for 

the same training task due to its lower computational 

throughput. 

For inference performance (mean ± std over N = 10,000 

predictions after a 1,000-step warm-up), the PC achieved an 

average inference time of approximately 2.8 ms per 

prediction, while the Jetson AGX Orin delivered inference 

times of approximately 7.5 ms. Both systems met the real-

time requirements for the 30 Hz data stream, as each 

inference completed well within the 33 ms time budget 

between incoming data points. 

The most significant difference emerged in power 

consumption. The mid-tier PC consumed between 250-350 

Watts under computational load, while the Jetson AGX Orin 

operated at only 20-40 Watts. This substantial difference in 

power consumption makes the Jetson particularly suitable for 

edge deployment scenarios where power efficiency is critical, 

despite its slower individual inference times. 

3.3 Predictive Accuracy and Model Validation 

The primary measure of the model's success is its predictive 

accuracy, as illustrated in Figure 7. The plot of predicted 

versus actual RUL values shows a near-perfect correlation, 

with the data points forming a tight, linear cluster along the 

"Perfect Prediction" line. The exceptionally high R² score 

confirms that the model can explain over 99.5% of the 

variance in the RUL, indicating a highly reliable and precise 

predictive capability. 

 

 

Figure 7. Predicted vs. Actual RUL. 

 

To ensure the model is not systematically biased, a residual 

analysis was conducted. Figure 8 plots the residual errors 

against the predicted RUL. The errors are randomly 

distributed around the zero-error line, showing no discernible 

patterns. This homoscedastic distribution is a strong indicator 

of a well-calibrated model, confirming that the prediction 

error is independent of the magnitude of the RUL. 
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Figure 8. Residuals vs. predicted values. 

 

Further validating this, Figure 9 shows that the distribution of 

these errors is tightly centered around a near-zero mean (-

0.08 cycles), resembling a normal distribution. This confirms 

the absence of systemic bias and shows that large prediction 

errors are rare. 

 

 

Figure 9. Distribution of prediction errors. 

 

3.4 Model Robustness and Explainability 

The model's ability to generalize to unseen data was assessed 

using a learning curve, presented in Figure 10. The plot 

shows that the cross-validation score (green line) converges 

closely with the training score (red line) as more training 

examples are used. This convergence to a low error value, 

with a minimal gap between the two curves, demonstrates 

that the model has achieved an excellent bias-variance trade-

off and is not overfitting to the training data. This is a crucial 

finding, suggesting that the model is robust and its high 

performance is reliable. 

 

Figure 10. Model learning curve. 

 

Understanding the model's decision-making process is 

critical for trust and deployment. Figure 11 ranks the top 15 

most influential features as determined by the model. It is 

evident that features engineered to capture the trend (slope) 

of sensor readings over a long-term window (e.g., 

sensormeasure11_slope_w45) are the most powerful 

predictors. This highlights the success of the time-series 

feature engineering methodology.  

 

 

Figure 11. Top 15 feature importances. 

 

The linear relationship between the single most important 

feature and the RUL is explicitly shown in Figure 12, 

providing an intuitive confirmation of the physical 

degradation trend captured by the model. 
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Figure 12. Trend between top features and RUL. 

 

Finally, a SHAP summary plot, demonstrated in Figure 13, 

provides a deeper layer of explainability. It confirms the 

feature importance  

ranking and reveals the directional impact of each feature. 

For instance, for the top feature 

(sensormeasure17_mean_w45), high values (red dots) have a 

negative SHAP value, meaning they strongly push the model 

to predict a lower RUL. This granular analysis makes the 

model's behaviour transparent and aligns with the expected 

physics of failure. 

 

 
Figure 13. SHAP summary plot. 

 

Edge deployment imposes non-functional constraints such as 

cost, form factor, and environmental robustness 

(temperature, vibration). The prototype targets the electrical 

and timing viability; future engineering validation will 

integrate industrial enclosures, thermal design, and vibration 

isolation, and evaluate cost/performance bill-of-materials for 

target UAV/engine test-rig scenarios. 

4. CONCLUSION 

This research showcased the utilization of an edge AI device 

for prognostics on real-time sensor data. A CatBoost 

Regressor, developed with time-series attributes from 

unprocessed sensor data, attained remarkable prediction 

precision with an R² of 0.9957 and a mere RMSE of 4.48 

cycles. The residuals and error distributions obtained 

demonstrated no systemic bias, and the evaluation of the 

learning curve emphasized the model’s generalization 

abilities and resilience. As for the SHAP-based 

explainability, it detected the degradation-related 

characteristics that coincide with the anticipated failure 

physics, therefore enhancing the overall performance of the 

model.  

The experimental comparison and assessment of the Nvidia 

Jetson AGX Orin against a mid-range desktop PC presented 

distinct trade-offs in energy efficiency and processing power. 

Although the PC exceeded the Jetson in both training speed, 

consuming 18 minutes compared to the Jetson AGX Orin 

which consumed approximately 3 hours, and an inference 

latency of 2.8 ms versus 7.5 ms for the Jetson AGX Orin. 

Both systems satisfied the real-time requirement for 

processing a data stream of 30 Hz. Significantly, the Jetson 

performed these outcomes consuming below one-tenth of the 

energy usage of the PC, showcasing its suitability for edge 

deployment where portability and efficiency are crucial. 

In conclusion, the primary focus of this paper is the 

performance characterization of the hardware setup and the 

efficiency of the data streaming pipeline, rather than an 

exhaustive exploration of the machine learning model itself. 

As such, the fine-grained details of the model's architecture 

and hyperparameter optimization are reserved for a future 

extension of this work. Consecutive work will aim to broaden 

the assessment to a larger variety of hardware platforms, 

improve model architectures and hyperparameters, and 

confirm performance on live engine test rigs. 
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