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ABSTRACT

This paper introduces a real-time predictive analytics
framework that integrates edge artificial intelligence for
remaining useful life estimation and health index
construction using turbofan engine sensor data. A
MATLAB/Simulink model was designed to stream 14
critical sensor signals, derived from the NASA C-MAPSS
dataset, into an Opal-RT OP5707XG simulator for real-time
emulation. These signals were output as analog voltages,
converted into digital values using ADS1115 converters, and
processed on an Nvidia Jetson AGX Orin edge-computing
platform. A CatBoost regressor, trained on a feature-rich
time-series dataset and refined through SHapley Additive
Explanations-based feature selection was employed as the
predictive model. System performance was benchmarked on
two hardware platforms: a mid-tier desktop computer and the
Jetson AGX Orin. The mid-tier desktop computer completed
training in 18 minutes, while the Jetson required around 3
hours. Inference speed was also faster on the computer at 2.8
ms versus 7.5 ms, though both satisfied the 33 ms
requirement for real-time processing of a 30 Hz data stream.
The Jetson demonstrated a significant efficiency advantage,
consuming 20—40 W compared to 250-350 W for the
computer. The framework achieved high accuracy with
strong generalization and transparent explainability through
SHapley Additive Explanations-based feature selection
confirming the feasibility of deploying advanced prognostics
on edge Al hardware for real-time health monitoring.

1. INTRODUCTION

The adoption of Artificial Intelligence (Al) in diagnostics,
prognostics, and health management of assets has become

Salama Almbheiri et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License,
which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

pivotal in advancing predictive maintenance solutions.
Additionally, Al and Machine Learning (ML) algorithms are
now being embedded in hardware devices to allow for real-
time monitoring while simultaneously generating important
information that aids proactive maintenance and optimizes
decision making capabilities. Furthermore, one of the
primary goals of the Fourth Industrial Revolution is to
implement predictive maintenance and condition monitoring
in Edge Al devices, which are typically located close to the
end devices and carry analytical capabilities and huge
processing power (Sharanya et al., 2022).

Research aimed at diagnosing and identifying failures in
industrial facilities has primarily been carried out in the
1980s, and it has mainly been conducted based on
mathematical and physics-based principles (Park et al.,
2018). In predictive maintenance and condition-based
maintenance, sensor data was typically collected and
transmitted for analysis. Therefore, the transmission of the
sensor data was done either through wires or the web. These
extended transmission routes resulted in specific issues such
as irrelevant information, delays in transmission, and
dispatching inaccurate or insufficient data (Bala et al., 2024).

To address these constraints and limitations, edge computing
devices were introduced for initial data preparation and real-
time decision making which eliminates the need to transmit
large quantities of raw data to the cloud, leading to an
enhanced overall efficiency of the predictive maintenance
framework (Hector & Panjanathan, 2024).

Building on this foundation, prior work has established the
evolution of prognostics and health management (PHM)
techniques from classical physics-based models to modern
data-driven and hybrid approaches. (An et al., 2013) provided
an early taxonomy distinguishing model-based, data-driven,
and hybrid methods, highlighting their respective advantages
and shortcomings. More recently, (Su & Lee, 2024) compiled
a comprehensive review of machine learning methods used
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in diagnostics and prognostics across multiple PHM data
challenges, offering practical insights into feature extraction,
prediction accuracy, and benchmark limitations. Together,
these works illustrate both the historical depth and ongoing
diversification of PHM strategies.

Parallel to advances in algorithms, edge computing has
emerged as a transformative enabler for predictive
maintenance. By shifting computation closer to the sensor,
edge devices overcome the latency and bandwidth limitations
of cloud-based approaches. (Artiushenko et al., 2024)
demonstrates ~ how  resource-efficient =~ Edge Al
implementations can accelerate integration into maintenance
workflows by providing rapid response times, scalability
benefits, and improved data security.

Another line of research has focused on feature engineering
and explainability in prognostics. Interpretable models are
critical for trust, particularly in aerospace and safety-critical
domains. Studies applying SHapley Additive Explanations
(SHAP) to RUL prediction confirm that combining
optimized preprocessing with explainability can reveal
degradation drivers more transparently (Ndao et al., 2025).
Similarly, (Khandekar et al., 2024) illustrate how SHAP-
based feature attribution in predictive maintenance
frameworks strengthens both accuracy and interpretability,
thereby enhancing operational trustworthiness.

Finally, several works highlight the challenges of hardware—
software integration when deploying PHM models on
embedded platforms. Field-tested edge monitoring systems
validated via hardware-in-the-loop (HIL) approaches
illustrate the complexities of real-time data streaming,
synchronization, and analog—digital conversion (Short &
Twiddle, 2019). This approach specifically addresses the
challenge of limited adaptability and accuracy in existing
fault detection frameworks. Recent work on microcontroller-
based deployments further emphasizes the resource
constraints of embedded devices, showing how techniques
such as pruning and quantization are essential for achieving
efficient yet accurate prognostic performance in constrained
hardware environments (Pandey et al., 2023). While Short &
Twiddle focused on model-based fault isolation and Pandey
et al. emphasized data-driven diagnostics, both approaches
faced difficulties in handling dynamic operating conditions.
The current work improves on these by integrating a hybrid
architecture that combines data-driven learning with adaptive
thresholding, thereby enhancing robustness and real-time
performance.

This study introduces a real-time localized predictive
analytics tool wusing simulated sensor signals and
incorporating Edge Al functionalities for on-site data
processing. The proposed setup in the paper acts as a
foundation for developing a predictive analytics tool that
employs real-time data from sensors in test rigs compared to
prior HIL and Jetson-based studies, the novelty lies in a fully
analog end-to-end chain (Opal-RT AO — ADC — Jetson)

with ~ synchronized timing measurements, real-time,
explainable HI construction on-device using CatBoost
feature  importances, and a deployment-oriented
characterization that couples latency and power to an explicit
30 Hz budget.

2. MATERIALS AND METHODS

The study conducted in this paper proposes a system
architecture that includes a MATLAB/Simulink model
designed to stream sensor signals which are connected to
several elements of a turbofan engine. The model is then
configured to be connected to Opal-RT for real-time
streaming of the sensor signals through its analog output
ports. Furthermore, the deployment of Edge Al in this
architecture is demonstrated by connecting the sensor signals
to the Nvidia AGX Jetson development kit, where a
sophisticated Remaining Useful Life (RUL) prediction model
is deployed on the edge Al device for real-time sensor data
analysis. The primary focus of the paper is the
characterization of the performance of the hardware setup
and the efficiency of the data streaming pipeline, rather than
an exhaustive exploration of the machine learning model
itself. The proposed system architecture is presented in
Figure 1.
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Figure 1. System architecture of the proposed predictive
analytics tool using real-time simulation and Edge-Al.
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2.1. MATLAB/ Simulink Model

MATLAB/Simulink was used to build a model that streams
14 sensor signals attached to various elements of a turbofan
engine. Each sensor measured critical parameters such as
temperature, speed, and pressure across the compressor,
turbine, and combustor. These signals are used to understand
the behavior of the turbofan engine and diagnose it accurately
in different operating conditions. The dataset which was used
to stream the specified sensor signals was obtained from the
Commercial Modular Aero-Propulsion System Simulation
data (C-MAPSS) developed by the National Aeronautics and
Space Administration (NASA) (Hong et al., 2020),
Specifically, the FD0O01 subset of the C-MAPSS dataset was
utilized for this study. This subset represents a fleet of
simulated turbofan engines operating under a single steady
operating condition and subject to one type of degradation
fault, namely the high-pressure compressor (HPC) fault.
FDOO01 serves as the most fundamental configuration among
the four C-MAPSS subsets, making it ideal for initial model
validation and baseline prognostics development. It provides
100 training and 100 testing engine trajectories, each
consisting of multivariate time-series data that capture the
gradual degradation process until engine failure.

For modelling purposes, out of the 21 available sensor
signals, 14 were selected to be streamed into the model.
These sensors were chosen based on their relevance,
variability, and contribution to fault progression, while
redundant or constant channels were excluded. The selected
sensors are listed below:
Temperature at Low Pressure Compressor (LPC) outlet
Temperature at High Pressure Compressor (HPC) outlet
Temperature at Low Pressure Turbine (LPT) outlet
Pressure at High Pressure Compressor (HPC) outlet
Physical fan speed
Physical core speed
Static pressure at High Pressure Compressor outlet
Ratio of fuel flow to Ps30
Corrected fan speed
. Corrected core speed
. Bypass ratio
. Bleed enthalpy
. High Pressure Turbine (HPT) coolant bleed
14. Low Pressure Turbine coolant bleed

Considering the system architecture and compatibility, the
sensor signals streamed through Simulink are represented as
analog voltages which needed to be normalized to between
0V to 3.3V in order to be compatible with the voltage rating
of the Analog-to-Digital Converters (ADC) and the Edge Al
device in use. For this to be implemented, the MATLAB code
was developed to load the dataset, identify the 14 sensors of
choice, and remove any rows with missing data. As for the
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normalization of the data, the range was calculated for each
sensor column, and the largest range was selected as the
reference column, which was then used to scale all other
sensor columns to the same voltage range as the Voltage at
the Collector (VCC) of the ADCs and the Nvidia Jetson AGX
kit. The Simulink model is presented in Figure 2.
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Figure 2. Simulink model of the 14 sensor signals of
different elements of the turbofan engine.

2.2. Opal-RT Real-time Simulation

Real-time simulation was configured through Opal-RT to
enable real-time streaming of sensor signals. The Opal-RT
module used is OP5707XG, a high-end simulator offered by
Opal-RT. The model comprised two systems; a Computation
system labeled SM_Computation, which includes the
deterministic, real-time simulation of the turbofan engine
sensor signals, and it is the model that was built in
MATLAB/Simulink. And a Graphical User Interface (GUI)
system labeled SC_GUI, which is responsible for the
monitoring, model design, and Input/Output (1/O) setup.
Once the model was built, the Opal-RT board had to be
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configured, and that was done by assigning each signal to its
corresponding analog output channel. For all 14 sensor
signals, the corresponding analog output channels A0 to A13
were utilized, and these channels represent the physical
voltage output ports on the simulator that will later on be used
to connect the analog sensor signals to the ADCs in use. The
analog output channels of the Opal-RT simulator and the
physical connection of the 14 channels is shown in Figure 3.

a

pp 1

l Analog Out

Pi—A—rz

Figure 3. Opal-RT Analog Out channel and physical
connection of 14 wires for the sensor signals.

2.3. Analog-to-Digital Converters

The Edge-Al device in the proposed system is the Nvidia
Jetson AGX development Kit, however, it is incapable of
processing analog input signals, therefore, several ADCs had
to be connected in order to convert the analog sensor signals
to digital values that can be processed and used by the Edge-
Al device. In order to proceed with the connection of the
ADCs to the Jetson AGX Kkit, several communication
protocols were considered and evaluated based on the
compatibility of all components in the system, and it was
decided that the Inter-Integrated Circuit (12C) protocol will be
selected due to its simplicity and adaptability with all
components in the system.

The ADC of choice was the ADS1115 module, a 16-bit
analog to digital converter with an I2C interface and a voltage
range of 2V to 5V. The selection of the ADS1115 was
motivated by its ease of integration, as it employs the simple
and widely supported 12C communication protocol, unlike
more complex ADC alternatives. Each module carries 4
analog channels (A0-A3), meaning that the 14 analog signals
representing the output of opal-RT required the use of 4
ADS1115 modules in total, allowing for a total number of 16
channels to be used. Furthermore, the VCC pins of all
modules were connected to a power supply of 3.3V, the
Ground (GND) pins of all 4 modules were tied to a common
ground, the Serial Data Line (SDA) pins of all 4 modules

were connected together, and the Serial Clock Line (SCL)
pins were also connected together.

As for the Address (ADDR) pin of all four modules, the
ADDR pins of the ADCs were connected to VCC, GND,
SDA, and SCL respectively. This enabled the unique address
allocation for each module; 0x48, 0x49, 0x4A, and 0x4B
accordingly. The four ADC modules were connected as
illustrated in Figure 4.

Figure 4. Connection of the four ADS1115 modules and
Opal-RT analog output channels.

As for the 14 analog output signals being streamed in real-
time from Opal-RT, each analog signal consisted of a positive
channel (red wires) and a negative channel (black wires), the
positive channel of each signal was connected to an analog
channel on the ADC module, and the negative channel of
each analog signal was connected to the common ground in
the setup. The wire configuration of each pin is illustrated in
Table 1.

Pin Connection

VDD 3.3V (shared)

GND Common ground

SDA Shared SDA line

SCL Shared SCL line
VDD, GND, SDA, SCL

ADDR 0x48, 0x49, 0x4A, 0x4B
OPAL-RT analog outputs

AO-A3 (A0-A13)

Table 1. Pin configuration and connection of ADCs and
Opal-RT analog signals.

2.4. Nvidia Jetson AGX Setup

The NVIDIA Jetson AGX Orin Developer Kit was deployed
as the edge-computing platform for executing machine
learning inference in real time. For the hardware connection
of the NVIDIA Jetson AGX developer kit and the four-
module ADC configuration. A 3.3V power supply was taken
from the NVIDIA Jetson to power the entire system.
Furthermore, the SDA, SCL, and GND pins were all tied to
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the corresponding pins in the ADC modules. The connection
of both components is illustrated in Figure 5.
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Figure 5. Connection of the four-module ADC configuration
and the NVIDIA Jetson AGX development Kit.

The device was configured with JetPack Software
Development Kit (SDK), which is Ubuntu-based, and
includes Compute Unified Device Architecture (CUDA), the
Nvidia Deep Neural Network (cuDNN), TensorRT, and
relevant Python dependencies. Data acquisition was
performed via multiple ADS1115 16-bit ADC converters
connected over the 12C bus, supporting up to twelve input
channels across three modules, with the fourth module
restricted to channels A0 and Al. All ADCs operated in
differential mode where applicable, enabling noise rejection
in thermocouple-like connections.

The Jetson ingested the digitized sensor data at a fixed
sampling rate determined by Opal-RT output frequency. The
incoming signal stream underwent synchronous buffering to
preserve temporal alignment across channels. Preprocessing
routines execute on-device, including z-score normalization,
moving average smoothing, and min—-max scaling where
model-specific requirements dictate.

A dedicated Python pipeline was implemented for feature
engineering, leveraging both statistical descriptors (mean,
variance, kurtosis, skewness) and temporal descriptors
(rolling window slope, first derivative, spectral entropy). The
pipeline maintained compatibility with both regression and
classification architectures.

To support on-device explainability, SHAP values were
computed for model predictions where latency budgets allow
(Nohara et al., 2022), primarily for offline model validation.
Feature importance scores are cached and employed in the
dynamic construction of Health Indices, computed as a
weighted dot product between normalized feature vectors and
their corresponding importance coefficients. This enabled a
univariate health trajectory representation from multivariate
sensor data in real time.

The Jetson operates in a fully standalone mode, without
dependency on an external MATLAB/Simulink host. The
only upstream requirement is the continuous feed of analog
sensor signals from OPAL-RT, which emulates the turbofan
engine environment. A local Python-based GUI, optimized
for the Jetson environment, provides real-time visualization
of sensor values, health indices, RUL estimates, and
classification outcomes.

2.5. Edge-Al Machine Learning

Machine learning inference on the Jetson AGX Orin
comprises both regression and classification pipelines,
optimized for low-latency execution. Models are deployed in
TensorRT-optimized form where applicable to leverage GPU
acceleration. This study uses the FD001 subset of C-MAPSS
exclusively. To prevent temporal leakage, we split by engine
unit (grouped) and preserve chronology (no shuffling).
Sliding windows are constructed over each engine’s time
series using past-only context; specifically, features are
computed from windows W € {15,30,45} with stride s =
1on standardized signals, and no future information is used
in any feature or target formation. Model selection used
grouped cross-validation (GroupKFold by engine), and the
final test set is a chronological hold-out of engines unseen
during training. As the manuscript’s scope is the hardware-
streaming pipeline, a full exploration of windowing
strategies, split variants, and model families is deferred to
future work.

2.5.1. Regression Model
For RUL prediction, two model categories were employed:

1. Ensemble Gradient Boosting Regressors (e.g.,
CatBoostRegressor, XGBoost, LightGBM), which were
selected for their ability to handle non-linear feature
interactions and heterogeneous data distributions.
CatBoost was particularly leveraged for its native
handling of categorical features without explicit one-hot
encoding, thereby avoiding the curse of dimensionality.
Categorical features (e.g., discretized operational modes,
maintenance phase flags) were embedded internally via
CatBoost’s target statistics mechanism.

2. Similarity-based Models, where partial degradation
trajectories from the current engine state are matched to
a library of historical run-to-failure curves. Matching is
performed via distance metrics (e.g., Dynamic Time
Warping, cosine similarity) over normalized health
index space, returning the RUL associated with the most
similar historical patterns.

Hyperparameters for all regression models were tuned via
wights w, Bayesian optimization, searching over learning
rate, maximum tree depth, L2 regularization coefficient 1,
subsample ratio, and minimum child weight. The L2 penalty
is:
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n
Rep(w) =1 ) 10)12 €Y)
i=
The optimization objective minimized cross-validated RMSE
while maintaining inference latency constraints (<50 ms per
prediction). The regression output includes the predicted
RUL in operational seconds, accompanied by a confidence
envelope derived from bootstrap resampling of the prediction
residuals.

2.5.2. Classification Model

The classification pipeline identifies the current operational
state and fault class of the turbofan engine. Models tested
include:

1. CatBoostClassifier (primary), leveraging identical
categorical feature handling to the regression pipeline.

2. Gradient Boosting Decision Trees (GBDT) and Support
Vector Machines (SVM) for secondary benchmarks.

A lightweight feedforward neural network for multi-class
classification, trained offline and quantized for deployment.
The classifier operates on the same engineered feature set as
the regression model but includes additional binary indicators
(e.g., threshold exceedances, fault mode activation) and
categorical mode descriptors. Hyperparameter tuning
followed the same Bayesian optimization procedure,
minimizing log loss while controlling for overfitting via early
stopping and L2 regularization. Model outputs include
predicted fault class and associated probability scores.

2.5.3. Health Index Integration

Both regression and classification pipelines utilize the Health
Index (HI) time series as the primary prognostic indicator.
The HI is computed on the Jetson platform in real time
through a CatBoost-driven weighted feature aggregation
mechanism. For each feature x;(t), the corresponding
importance weight is obtained from the CatBoost model’s
feature importance vector Fl;, normalized as:

FI,

— i=1,..,m 2)
j=1

Tl,'i =
The normalized feature vector x;(t) is then constructed using
a standard z-score transformation:

x; (1) — u
0;

x(6) = 3)
where ; and o; denote the mean and standard deviation of
feature i, respectively. The instantaneous Health Index is
subsequently derived as a logistic aggregation of the
normalized features:

m

#©O = o| Y mE© | 0@ =

i=1

1+e % )

which bounds the index within [0,1] for interpretability and
consistent scaling across operating regimes. To suppress
short-term noise and enhance temporal stability, an
exponential moving average is applied, yielding the
smoothed health trajectory:

HOO=0Q-a)H(t—1)+ aX(t),a € (0,1) (5)

This formulation ensures that the Health Index remains
model-driven, explainable, and adaptive to varying engine
operating conditions, providing a stable foundation for both
regression-based RUL estimation and classification-based
anomaly detection.er5

3. RESULTS AND DISCUSSION

To validate the proposed framework for real-time RUL
prediction, a robust machine learning model was developed
and assessed on two different hardware platforms: a typical
mid-range desktop PC for baseline performance, and an
Nvidia Jetson AGX Orin serving as the intended edge-Al
deployment system.

A state-of-the-art CatBoost Regressor was employed to
predict RUL. The model was trained on a feature-rich dataset
derived from the raw sensor signals using a multi-window
time-series analysis to capture temporal degradation patterns.
An initial model was used with SHAP to perform recursive
feature selection, ensuring that only the most impactful
features were used for the final model.

The final model demonstrated exceptional performance on
the test dataset, achieving an R2 Score 0f 0.9957, a Root Mean
Squared Error (RMSE) of 4.48 cycles, and a Mean Absolute
Error (MAE) of 2.85 cycles. The following sections provide
a detailed discussion of these results.

3.1 Experimental Hardware Setup

The performance of the predictive model was evaluated on
two distinct hardware platforms: a standard mid-tier desktop
Personal Computer (PC) for baseline performance, and an
Nvidia Jetson AGX Orin as the target edge Al deployment
system. The full system setup is demonstrated in Figure 6.

The mid-tier PC setup featured a 12th Gen Intel Core i7-
12700F processor with 12 cores and 20 threads, paired with
an NVIDIA GeForce RTX 3060 GPU containing 12 GB
GDDR6 memory and delivering approximately 13 TFLOPS
of FP16 performance. The system included 32 GB of DDR4
RAM to support the computational workload.

The Nvidia Jetson AGX Orin development kit represented
the edge Al platform, equipped with a 12-core Arm Cortex-
AT8AE v8.2 64-bit CPU and a 2048-core NVIDIA Ampere
architecture GPU with 64 Tensor Cores capable of up to 275
TOPS INT8 performance. The device included 32 GB of 256-
bit LPDDR5 memory optimized for edge computing
applications.

Baker Hughes Confidential



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2025

ML Algorithm on the
Edge-Al device

Turbofan Engine
Simulink Model

NVIDIA Jetson AGX
Development Kit

Four-Module
ADS1115 ADC
Configuration

Opal-RT 14 Analog
Output Sensor Signals

Figure 6. Full system setup.

3.2 Data Streaming and Performance Evaluation

For the real-time evaluation, a data pipeline was designed to
stream sensor readings to the inference engine at a continuous
rate of 30 rows per second. The primary metrics for
comparison were model training time, single-pass inference
speed, and power consumption under load.

This study considered; analog out (Opal-RT) — ADC
(ADS1115, 1°C) — Jetson; direct digital via DAQ (SPI/I*C
multiplexers); and network streaming (UDP/TCP from the
simulator). Analog + ADS1115 offers simplicity, signal-
chain visibility, and low integration effort at the cost of extra
conversion latency; DAQ-based digital links reduce
conversion steps but increase integration complexity and
cost; Ethernet streaming offers high throughput and flexible
topology but requires timestamp synchronization and packet-
loss handling. The selection prioritized repeatable timing,
ease of HIL wiring, and low power, aligning with edge
deployment constraints.

The real-time budget is set by the stream frequency: for 30
Hz, T = 1/30 = 33.3ms per sample. End-to-end inference
must finish within this interval (including buffering and 1/0)
to maintain real-time operation.

Performance evaluation showed distinct trade-offs between
the platforms. The mid-tier PC demonstrated superior
training performance, completing the model training and
optimization process in approximately 18 minutes, while the
Jetson AGX Orin was estimated to require 2.5 to 3 hours for
the same training task due to its lower computational
throughput.

For inference performance (mean + std over N = 10,000
predictions after a 1,000-step warm-up), the PC achieved an
average inference time of approximately 2.8 ms per
prediction, while the Jetson AGX Orin delivered inference
times of approximately 7.5 ms. Both systems met the real-
time requirements for the 30 Hz data stream, as each
inference completed well within the 33 ms time budget
between incoming data points.

The most significant difference emerged in power
consumption. The mid-tier PC consumed between 250-350
Watts under computational load, while the Jetson AGX Orin
operated at only 20-40 Watts. This substantial difference in
power consumption makes the Jetson particularly suitable for
edge deployment scenarios where power efficiency is critical,
despite its slower individual inference times.

3.3 Predictive Accuracy and Model Validation

The primary measure of the model's success is its predictive
accuracy, as illustrated in Figure 7. The plot of predicted
versus actual RUL values shows a near-perfect correlation,
with the data points forming a tight, linear cluster along the
"Perfect Prediction” line. The exceptionally high Rz score
confirms that the model can explain over 99.5% of the
variance in the RUL, indicating a highly reliable and precise
predictive capability.

350

R = 0.9957
RMSE = 4.4826
MAE = 2.8474

300

250

200

Predicted RUL

100

= Perfect Prediction

0 50 100 150 200 250 300 350
Actual RUL

Figure 7. Predicted vs. Actual RUL.

To ensure the model is not systematically biased, a residual
analysis was conducted. Figure 8 plots the residual errors
against the predicted RUL. The errors are randomly
distributed around the zero-error line, showing no discernible
patterns. This homoscedastic distribution is a strong indicator
of a well-calibrated model, confirming that the prediction
error is independent of the magnitude of the RUL.
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Figure 8. Residuals vs. predicted values.
Further validating this, Figure 9 shows that the distribution of
these errors is tightly centered around a near-zero mean (-
0.08 cycles), resembling a normal distribution. This confirms

the absence of systemic bias and shows that large prediction
errors are rare.
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Figure 9. Distribution of prediction errors.

3.4 Model Robustness and Explainability

The model's ability to generalize to unseen data was assessed
using a learning curve, presented in Figure 10. The plot
shows that the cross-validation score (green line) converges
closely with the training score (red line) as more training
examples are used. This convergence to a low error value,
with a minimal gap between the two curves, demonstrates
that the model has achieved an excellent bias-variance trade-
off and is not overfitting to the training data. This is a crucial

finding, suggesting that the model is robust and its high
performance is reliable.

—e— Training score
16 —e— Cross-validation score

2000 4000 6000 8000 10000 12000
Training examples

Figure 10. Model learning curve.

Understanding the model's decision-making process is
critical for trust and deployment. Figure 11 ranks the top 15
most influential features as determined by the model. It is
evident that features engineered to capture the trend (slope)
of sensor readings over a long-term window (e.g.,
sensormeasurell slope_w45) are the most powerful
predictors. This highlights the success of the time-series
feature engineering methodology.

sensormeasurel 1_slope_wd5

sensormeasured_slope_wi

sensormeasure3_mean_waS
sensormeasurel?_mean wi
sensormeasured_std_wd
sensormeasural 2 slope_wi5
sensormeasure?_slope_wa5

sensormeasured_slope_wd5

Feature

sonsormeasuro20_slope_wi5
sensormeasure2_mean_w45
sensormeasureld_std_wd5b
sensormeasurell_std wds

sensormeasurel5_mean_wd5

sured_mean w45

sensormeasureld slope wis

3 L 5 6
Importance

Figure 11. Top 15 feature importances.

The linear relationship between the single most important
feature and the RUL is explicitly shown in Figure 12,
providing an intuitive confirmation of the physical
degradation trend captured by the model.
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Figure 12. Trend between top features and RUL.

Finally, a SHAP summary plot, demonstrated in Figure 13,
provides a deeper layer of explainability. It confirms the
feature importance

ranking and reveals the directional impact of each feature.
For instance, for the top feature
(sensormeasurel7_mean_w45), high values (red dots) have a
negative SHAP value, meaning they strongly push the model
to predict a lower RUL. This granular analysis makes the
model's behaviour transparent and aligns with the expected
physics of failure.

sensormeasurel?_mean_w45 . - —-—..-’—
sensormeasurell slope w45 -—-—h—-
sensormeasure3_mean w45 --—+-+—
sensormeasurel2_slope w45 t +———--
sensormeasure?_slope_w45 -+-—
sensormeasured_slope_w45 —“—-
sensormeasure2_mean wib --—++—--
sensormeasure20_slope_ w45 -“--
sensormeasured mean w45 '—“—- o
sensormeasurel3_slope w45 'h 73
o
sensormeasure9d_std_w45 -—-*— %
@
sensormeasurel5_mean_w45 —*—.- =
sensormeasurel5_slope_w45 -”-
sensormeasure9_slope_w45 —*—
sensormeasurel4_std_w45 —+—
sensormeasurell_std_w45 -h——
sensormeasure20_mean w45 —-‘p
sensormeasure?_slope_w45 *—
sensormeasurel?_slope w45 *
sensormeasure21_slope w45 +
20 -10 0 10 20 oW

SHAP value (impact on model output)

Figure 13. SHAP summary plot.

Edge deployment imposes non-functional constraints such as
cost, form factor, and environmental robustness
(temperature, vibration). The prototype targets the electrical
and timing viability; future engineering validation will
integrate industrial enclosures, thermal design, and vibration
isolation, and evaluate cost/performance bill-of-materials for
target UAV/engine test-rig scenarios.

4. CONCLUSION

This research showcased the utilization of an edge Al device
for prognostics on real-time sensor data. A CatBoost
Regressor, developed with time-series attributes from
unprocessed sensor data, attained remarkable prediction
precision with an Rz of 0.9957 and a mere RMSE of 4.48
cycles. The residuals and error distributions obtained
demonstrated no systemic bias, and the evaluation of the
learning curve emphasized the model’s generalization
abilities and resilience. As for the SHAP-based
explainability, it detected the degradation-related
characteristics that coincide with the anticipated failure
physics, therefore enhancing the overall performance of the
model.

The experimental comparison and assessment of the Nvidia
Jetson AGX Orin against a mid-range desktop PC presented
distinct trade-offs in energy efficiency and processing power.
Although the PC exceeded the Jetson in both training speed,
consuming 18 minutes compared to the Jetson AGX Orin
which consumed approximately 3 hours, and an inference
latency of 2.8 ms versus 7.5 ms for the Jetson AGX Orin.
Both systems satisfied the real-time requirement for
processing a data stream of 30 Hz. Significantly, the Jetson
performed these outcomes consuming below one-tenth of the
energy usage of the PC, showcasing its suitability for edge
deployment where portability and efficiency are crucial.

In conclusion, the primary focus of this paper is the
performance characterization of the hardware setup and the
efficiency of the data streaming pipeline, rather than an
exhaustive exploration of the machine learning model itself.
As such, the fine-grained details of the model's architecture
and hyperparameter optimization are reserved for a future
extension of this work. Consecutive work will aim to broaden
the assessment to a larger variety of hardware platforms,
improve model architectures and hyperparameters, and
confirm performance on live engine test rigs.
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