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ABSTRACT 

In industrial intelligent maintenance, the construction of a 

reliable health indicator (HI) is crucial for accurate 

degradation assessment and fault prediction. However, 

existing methods face two major limitations: fusion-based 

approaches often suffer from low-quality or irrelevant 

features that degrade the discriminative capability of the HI, 

while reconstruction-based approaches rely heavily on high-

quality healthy data, which is difficult to obtain in real-world 

scenarios. To overcome these challenges, this paper proposes 

an Unsupervised Terminal-Dominant framework for HI 

construction (UTD-HI). The method does not rely on 

remaining useful life (RUL) labels or pre-defined thresholds. 

Within a deep reinforcement learning (DRL) paradigm, 

UTD-HI learns an adaptive feature-weighting policy that 

suppresses irrelevant features and enhances informative ones. 

A reward mechanism integrating monotonicity, smoothness, 

and a sparse terminal constraint is designed, while hindsight 

experience replay (HER) is introduced to address reward 

sparsity. Furthermore, by employing different reward 

strategies in normal and abnormal stages, the framework can 

automatically and accurately distinguish between healthy and 

degraded operating conditions. Experimental results on the 

XJTU-SY bearing dataset demonstrate that the proposed 

method constructs HIs with superior trendability, 

monotonicity, and robustness across different operating 

conditions, thereby offering a practical solution for HI 

construction in real-world environments. 

1. ELECTRONIC SUBMISSION 

Prognostic Health Management (PHM) systems play a 

critical role in ensuring the reliability and safety of machinery 

by monitoring equipment health and predicting faults. 

Constructing a health indicator (HI) is necessary for 

accurately assessing machine status (Lei, Li, Guo, Li, Yan & 

Lin, 2018). Moreover, accurate HIs facilitate early anomaly 

detection and support condition-based maintenance strategies, 

reducing unexpected downtime and maintenance costs. 

Consequently, HI construction has attracted considerable 

attention and remains a research focus in recent years (Wang, 

Tsui & Miao, 2017). However, it is still challenging to create 

HIs that are both sensitive to machine degradation and robust 

across different equipment.  

In general, HIs can be divided into two categories: physical 

HIs (PHIs) and virtual HIs (VHIs) (Djeziri, Benmoussa & Zio, 

2020). PHIs are derived from monitoring raw signals through 

signal processing or statistical methods. In signal processing-

based methods, PHIs are typically constructed according to 

the underlying physical failure mechanisms (Yan, Wang, 

Kong, Xia, Peng & Li, 2021). In contrast, statistical methods 

are more popular due to their simplicity. Various statistical 

features such as root mean square (RMS) (Meng, Yan, Chen, 

Liu & Wu, 2021), kurtosis (Zhong, Wang & Li, 2021), 

entropy (Yan, Wang, Xia, Zheng, Peng & Xi, 2023), among 

others, are widely used. PHIs provide clear physical 

interpretability, but they are often designed for specific tasks, 

which leads to poor generalization. In addition, these 

methods require strong expert knowledge, which limits their 

broader applicability. 

VHIs are also categorized into two classes: fusion-based 

methods and deep learning-based methods. In fusion-based 

approaches, VHIs are constructed by combining several PHIs 

into a single indicator that represents overall degradation 

information (Djeziri, Benmoussa & Zio, 2020). Various 

techniques have been proposed for this purpose, among 

which principal component analysis (PCA) is the most 

widely used. For example, Guo, Wang, Li, Yang, Huang, 

Yazdi, and Hooi (2024) applied PCA to construct a nonlinear 

HI for degradation modeling and remaining useful life (RUL) 

prediction. Similarly, Buchaiah and Shakya (2022) employed 

14 dimensionality reduction methods to fuse selected features 

into a VHI. Fusion-based methods are simple to apply 

because they only require extracting basic features for fusion. 
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However, the quality of the constructed VHIs largely depends 

on the selected features. Inappropriate features may introduce 

side effects, resulting in insufficient representation of 

degradation information. 

Deep learning-based methods do not fuse PHIs directly. 

Instead, they extract implicit degradation information from 

high-dimensional data spaces. Among them, the autoencoder 

(AE) is the most commonly used approach. These methods 

aim to reconstruct healthy data and use reconstruction errors 

as a VHI. For example, González-Muñiz, Diaz, Cuadrado, 

and Garcia-Perez (2022) leveraged disentangled 

representations in the latent space of an AE and used the 

latent reconstruction error as a VHI. Ye and Yu (2021) 

proposed a long short-term memory convolutional AE that 

generates HIs based-on reconstruction errors. Such methods 

construct HIs directly from raw signals, but their performance 

largely depends on the availability and quality of healthy data. 

Moreover, their generalization ability is closely tied to the 

network architecture and training process of the AE.  

It is evident that these methods have achieved promising 

results in HI construction. Beyond the aforementioned 

limitations, applying constructed HIs to RUL prediction or 

maintenance strategy optimization typically requires a failure 

threshold. However, this threshold often differs across 

devices, making it difficult to generalize a fixed, manually 

defined one. To address this issue, some studies have 

attempted to normalize HIs using their maximum and 

minimum values (Ni, Ji & Feng, 2022). Nevertheless, such 

normalization remains device-dependent and introduces 

additional limitations. 

This paper proposes an unsupervised HI construction method 

based on a deep reinforcement learning (DRL) paradigm. 

DRL is used to assign different weights to features, which 

improves both trendability and monotonicity. Firstly, time-

domain and frequency-domain features are extracted from 

raw signals and modeled as the state space. Secondly, a 

reward with monotonicity and smoothness constraints is 

designed. To overcome the limitations of failure thresholds, 

a dominance reward is introduced at the terminal state, and 

hindsight experience replay (HER) is adopted to learn from 

this sparse terminal reward. Finally, DRL outputs a weight 

for each fused feature, assigning low weights to features with 

little contribution to degradation. The HI is then obtained as 

a weighted sum of the features. Moreover, by employing 

different reward functions for normal and abnormal stages, 

the proposed method can automatically and accurately 

distinguish between healthy and degraded conditions. 

2. METHODOLOGY 

2.1. Framework of UTD-HI 

The overall framework of the proposed unsupervised HI 

construction (UTD-HI) is illustrated in Figure 1, where raw 

sensor signals are first processed to extract a set of time-

domain and frequency-domain features, which together form 

the state space for the DRL agent. The agent is trained to 

assign adaptive weights to these features. To guide the 

training, a reward function is designed with three components: 

(1) monotonicity constraint, (2) smoothness constraint, and 

(3) a terminal dominance reward that alleviates the need for 

a manually defined failure threshold. HER is further 

incorporated to address the sparsity of the terminal reward 

and improve training result. During inference, the trained 

DRL agent outputs weights for each feature, giving lower 

weights to those less relevant to degradation. Finally, the HI 

is obtained as the weighted sum of the fused features, which 

ensures better trendability and monotonicity. 

 

Figure 1. Framework of the UTD-HI 
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2.2. Basic Features Extraction 

To cover the degradation information as comprehensively as 

possible, 10 time-domain features and 8 frequency-domain 

features are extracted as shown in Table 1. In the time domain, 

the raw vibration signal is represented as ix , where 

1, ,i N=   and N  is the total number of samples. The mean 

value of the signal is denoted by  . In the frequency domain, 

the spectrum obtained by the Fast Fourier Transform (FFT) 

is denoted as kX , where 1, ,k K=   and K  is the number 

of frequency bins. Each spectral component corresponds to a 

frequency kf  which is given by k s

k
f f

K
=  , where sf  is the 

sampling frequency. 

Table 1. Manually extracted features 
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To reduce the influence of magnitude differences among 

features and facilitate subsequent feature fusion, each feature 

is normalized. Specifically, the mean of the first ten samples 

of each feature is calculated as a reference value. Then, all 

values of this feature are divided by the reference mean to 

obtain the normalized feature. This method ensures that each 

feature has a comparable scale while preserving the relative 

variation trends, which is important for degradation analysis 

and health index construction. 

2.3. DRL Agent 

2.3.1. Soft Actor-Critic 

Soft Actor-Critic (SAC) is adopted in this study as the 

reinforcement learning agent (Haarnoja, Zhou, Hartikainen, 

Tucker, Ha, Tan, Kumar, Zhu, Gupta, Abbeel, and Levine, 

2018). SAC is well-known for its superior performance in 

continuous action spaces, owing to the introduction of an 

entropy term in its objective function. Specifically, SAC aims 

to maximize not only the expected cumulative reward but 

also the policy entropy, which encourages exploration and 

improves robustness against perturbations. The optimal 

policy function of SAC is formulated as: 

 ( ) ( ) ( )( )*

,
arg max , |

t t
t t ts a t

E r s a H s


  


 = +    (1) 

where   denotes the state–action distribution induced by 

policy  , ( ),t tr s a  is the reward function, ( )·H  is the 

entropy, and   is the temperature coefficient that balances 

reward maximization and entropy maximization. The 

information entropy is defined as: 

 ( ) ( )
~

log
x P

H P E P x= −    (2) 

where x  follow the probability distribution P . The soft 

state-action value function in SAC is updated according to 

the soft Bellman iteration: 

 
( )

( ) ( ) ( )( )
1 1, 1 1 1 1

,

, , log |
t t

t t

t t s a t t t t

Q s a

r s a E Q s a a s  
+ + + + + +

 = + − 

(3) 

where   is discount factor and   is the temperature 

coefficient, which is adaptively tuned during training. By 

maximizing both reward and entropy, SAC prevents 

premature convergence to deterministic policies. In addition, 

SAC employs two Q-functions to reduce overestimation bias 

and applies the reparameterization trick to enable efficient 

gradient-based optimization.  

2.3.2. State 

The state ts   represents the input to the DRL agent at step t . 

It is composed of two parts: (i) the candidate fusion features 

 1 2 18, ,F F F , which contain time-domain and frequency-
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domain degradation information, and (ii) the previously 

constructed health indicator 1tH − , which reflects the 

degradation trend up to step 1t − . By including both the raw 

features and the past HI, the state provides sufficient 

information for the agent to learn feature weighting strategies 

that are consistent with the degradation process. Formally, 

the state is defined as: 

  1 18 1, , ,t t

t ts F F H −=   (4) 

2.3.3. Action 

Given a state ts , the agent outputs an action vector: 

    1 2 18, , , , 0,1t t t t

t ia    =    (5) 

where each element 
t

i  corresponds to the weight assigned to 

the i -th feature at step t . These weights determine the 

contribution of each feature to the fused HI. By adjusting the 

values of 
t

i , the agent is capable of emphasizing 

degradation-sensitive features while suppressing noise or less 

relevant ones. The bounded range [0,1] ensures numerical 

stability and prevents the agent from assigning excessively 

large or negative weights during HI construction. 

2.3.4. Reward 

Reward is the most critical component in reinforcement 

learning. In this study, the reward function is divided into 

three parts: monotonicity, smoothness, and a terminal 

threshold constraint. The overall reward is defined as: 

 t m s Tr r r r= + +  (6) 

where mr  is the monotonicity reward, sr  is the smoothness 

reward, and Tr  is the terminal reward.  

• Monotonicity reward ( mr ) 

The form of mr  depends on the degradation stage of the 

machine, and is given as: 

 

( )

( )

normal stage

abnormal stage

n

m t

m a

m t

H
r

H





− 
= 



 (7) 

where ( )
0

n

m   and ( )
0

a

m   are coefficients, and tH  

denotes the change in HI at step t . This design ensures that 

the HI remains as stable as possible during the normal stage 

and increases steadily during degradation, which matches the 

real-world degradation process. The degradation stage is 

determined by the slope of HI: if the slope exceeds 0.15, the 

machine is considered in the abnormal stage; otherwise, it is 

regarded as normal. 

• Smoothness reward ( sr ) 

The smoothness reward constrains the HI to grow smoothly 

by minimizing fluctuations. It is defined as: 

 
1s s t tr H H −= −  −  (8) 

where 0s   is a coefficient. This formulation penalizes 

large second-order differences, ensuring a smoother HI 

trajectory. 

• Terminal reward ( Tr ) 

The terminal reward ensures that the HI exceeds the failure 

threshold   at the final step T , while remaining within 

 )0,  before failure. It is defined as: 

 
 and 

 and 

T t

T

T t

t T H
r

t T H

 

 

+

−

 = 
= 

−  
 (9) 

where 0T
+   and 0T

−   are coefficients. This encourages 

the HI to cross the failure threshold only at the terminal step, 

avoiding premature exceedance. Since the terminal reward 

Tr  is very sparse, it may hinder the efficiency of policy 

learning. To address this issue, this study introduces 

hindsight experience replay (HER) (Andrychowicz, Wolski, 

Ray, Schneider, Fong, Welinder, McGrew, Tobin, Abbeel, 

and Zaremba, 2017). HER relabels failed trajectories with 

alternative goals, allowing the agent to extract useful training 

signals even when the original goal is not achieved. By 

augmenting the replay buffer with such relabeled experiences, 

HER effectively improves sample efficiency and accelerates 

convergence in sparse-reward settings. 

3. EXPERIMENT AND DISCUSSION 

The effectiveness of the proposed method is verified using 

the XJTU-SY dataset. Three evaluation metrics are employed 

to compare with baseline methods: monotonicity, trendability, 

and the hybrid metric. 

3.1. Dataset Description and Preprocessing 

The XJTU-SY dataset contains run-to-failure vibration 

signals collected from 15 bearings under accelerated 

degradation tests (Wang, Lei, Li, and Li, 2018). Three 

operating conditions were set in the experiments, with five 

bearings being tested under each condition, as summarized in 

Table 2. The vibration signals were collected every 60 

seconds with a sampling frequency of 25.6 kHz and a 

sampling duration of 1.28 seconds. To ensure complete 

degradation trajectories, each test started from the healthy 

condition and was terminated when the maximum vibration 

amplitude exceeded ten times that of the initial healthy state.  

A non-overlapping sliding window is applied, where each 

one-minute segment is treated as a time window for feature 

extraction. The preprocessing procedure is illustrated in 

Figure 2. 
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Table 2. Operating conditions of XJTU-SY bearing dataset 

 
Operating 

condition 
1 2 3 

Speed (rpm/Hz) 2100/35 2250/37.5 2400/40 

Load (kN) 12 11 10 

Dataset 
Bearing 1_1 

to 1_5 

Bearing 2_1 

to 2_5 

Bearing 3_1 

to 3_5 

 

Figure 2. Data preprocessing procedure 

3.2. HI Construction 

3.2.1. Implementation Details 

The hyperparameters of the proposed method are set as 

follows: ( )
10

n

m = , ( )
5

a

m = , 1s = , 50T
+ = , 100T

− = , 

20 = . The terminal step T  is determined by the length of 

the dataset.  

The DRL agent is trained with the SAC algorithm, using a 

learning rate of 3×10⁻⁴ with the Adam optimizer and a batch 

size of 32. The replay buffer size is 10⁶, and HER is employed 

to deal with the sparse terminal reward. The discount factor γ 

is set to 0.99, and the temperature parameter   is 

automatically adjusted during training. 

Feature vectors of dimension 18 are extracted for each time 

window, and the HI is updated at every step until the terminal 

state. 

3.2.2. The Constructed HI 

Eight bearings (1_1, 1_2, 1_3, 1_5, 2_1, 2_2, 2_3, and 2_4) 

are selected for analysis. Since failure threshold information 

is incorporated during training, HI values exceeding the 

threshold are truncated. Consequently, all constructed HIs 

can be consistently normalized by dividing them by  , which 

facilitates cross-bearing comparisons. As Figure 3 shows, 

each HI trajectory is clearly divided into two stages, 

corresponding to the normal and degradation phases, owing 

to the stage-wise reward design. In addition, abnormal points 

are automatically identified along the trajectories, providing 

valuable guidance for early fault detection and subsequent 

prediction tasks. 

 

Figure 3. The constructed HIs of UTD-HI 

3.3. Performance Evaluation 

3.3.1. Evaluation Metrics 

In order to quantitatively evaulate the performance of the 

proposed method, three metrics are measured as follows: 

• Trendability 

Trendability measures the correlation between the HI and the 

run-to-failure timeline, and thus evaluates whether the HI 

follows the degradation process. It is defined as: 

 ( )
( )( )

( ) ( )

1

2 2

1 1

T

tt

T T

tt t

H H t t
Tred H

H H t t

=

= =

− −
=

− −



 
 (10) 

where 
1

1 T

t

t

H H
T =

=   and 
1

1 T

t

t t
T =

=  . 

• Monotonicity 

Monotonicity evaluates whether the HI reflects the 

irreversible degradation process of machinery. It is defined 

as: 

 ( )
( ) ( )1 12 2

0 0

1

T T

t t t tt t
H H H H

Mon H
T

− −= =
−  − − 

=
−

 I I
 (11) 

where ( )I  is an indicator function. 

• Hybrid metric 

Since trendability and monotonicity capture different aspects 

of HI quality, a hybrid metric (HM) is used to provide a 

comprehensive evaluation (Guo, Yu, Duan, Gao, and Zhang 

2022): 

 
2

Tred Mon
HM

+
=  (12) 

3.3.2. Comparison Results 

To evaluate the effectiveness of the proposed UTD-HI 

method, comparisons are made with three representative HI 

construction approaches: (1) RMS-HI, which directly uses 

the root mean square of raw signals as the health indicator; 

Non-overlap sliding
1.28s

1min
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(2) PCA-HI, where the first principal component after 

principal component analysis is used as the HI; and (3) AE-

HI, which employs the reconstruction error of an autoencoder 

as the HI. The evaluation is conducted on eight bearings using 

trendability, monotonicity, and a hybrid metric, as reported 

in Tables 3–5. 

Table 3. Trendability of different methods 

 

Bearing RMS-HI PCA-HI AE-HI UTD-HI 

1_1 0.8632 0.8106 0.5701 0.8698 

1_2 0.9014 0.8081 0.8824 0.9079 

1_3 0.7560 0.8198 0.4436 0.7972 

1_5 0.7584 0.6448 0.4527 0.7284 

2_1 0.3731 0.4048 0.2573 0.3766 

2_2 0.8838 0.6829 0.4497 0.8394 

2_3 0.8821 0.7815 0.8236 0.8619 

2_4 0.7909 0.7416 0.7224 0.7491 

 

Table 4. Monotonicity of different methods 

 

Bearing RMS-HI PCA-HI AE-HI UTD-HI 

1_1 0.2459 0.1311 0.0943 0.3984 

1_2 0.2000 0.2000 0.0766 0.1304 

1_3 0.3885 0.0573 0.0422 0.3538 

1_5 0.2157 0.1765 0.1127 0.4615 

2_1 0.0245 0.0163 0.0357 0.0713 

2_2 0.225 0.0125 0.0898 0.235 

2_3 0.0301 0.0225 0.0298 0.0507 

2_4 0.2195 0.2683 0.1494 0.381 

 

Table 5. Hybrid metric of different methods 

 

Bearing RMS-HI PCA-HI AE-HI UTD-HI 

1_1 0.5546 0.4709 0.3322 0.6341 

1_2 0.5507 0.50405 0.4795 0.5192 

1_3 0.5723 0.43855 0.2429 0.5755 

1_5 0.4871 0.4107 0.2827 0.5950 

2_1 0.1988 0.2106 0.1465 0.2240 

2_2 0.5544 0.3477 0.26975 0.5322 

2_3 0.4561 0.402 0.4267 0.4563 

2_4 0.5052 0.505 0.4359 0.5651 

 

The results show that RMS-HI achieves the highest 

trendability, as it is highly sensitive to signal amplitude 

growth during degradation; however, its monotonicity is 

limited and it lacks the capacity to integrate multi-feature 

information. PCA-HI and AE-HI, as fusion-based and 

reconstruction-based methods respectively, exhibit more 

unstable performance. In particular, PCA-HI may introduce 

counterproductive effects when irrelevant features are 

incorporated, thereby reducing discriminative power, while 

AE-HI relies heavily on high-quality healthy data that are 

difficult to obtain in practice, leading to inferior results in 

most cases. In contrast, although UTD-HI does not always 

surpass RMS-HI in trendability, it achieves a better trade-off 

between trendability and monotonicity. As reflected in the 

hybrid metric, UTD-HI demonstrates superior overall 

performance in the vast majority of cases and exhibits greater 

robustness across different bearings and operating 

conditions. These results demonstrate that the proposed 

method effectively learns to assign feature weights, 

suppresses low-quality contributions, and generates health 

indicators that evolve smoothly and reliably with 

degradation, thereby offering a more practical solution for 

health assessment under unsupervised conditions. 

4. CONCLUSION 

This study proposes an unsupervised terminal-dominant 

health indicator construction framework within a DRL 

paradigm. The method adaptively assigns feature weights 

under the guidance of stage-aware and smoothness rewards, 

while HER is introduced to address sparse terminal rewards. 

Experimental results on the XJTU-SY bearing dataset 

demonstrate that the constructed HIs not only exhibit superior 

monotonicity and trendability but also achieve the best 

performance on the hybrid metric compared with RMS-, 

PCA-, and AE-based baselines. These findings confirm that 

UTD-HI can effectively capture degradation processes and 

distinguish between normal and abnormal stages without 

relying on labeled data. Therefore, the proposed method 

provides a reliable foundation for downstream tasks such as 

remaining useful life prediction and maintenance decision 

optimization in complex industrial environments. Future 

research may focus on improving generalization across 

diverse operating conditions, for example, through meta-

reinforcement learning or transfer learning. 
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