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ABSTRACT

In industrial intelligent maintenance, the construction of a
reliable health indicator (HI) is crucial for accurate
degradation assessment and fault prediction. However,
existing methods face two major limitations: fusion-based
approaches often suffer from low-quality or irrelevant
features that degrade the discriminative capability of the Hl,
while reconstruction-based approaches rely heavily on high-
quality healthy data, which is difficult to obtain in real-world
scenarios. To overcome these challenges, this paper proposes
an Unsupervised Terminal-Dominant framework for HI
construction (UTD-HI). The method does not rely on
remaining useful life (RUL) labels or pre-defined thresholds.
Within a deep reinforcement learning (DRL) paradigm,
UTD-HI learns an adaptive feature-weighting policy that
suppresses irrelevant features and enhances informative ones.
A reward mechanism integrating monotonicity, smoothness,
and a sparse terminal constraint is designed, while hindsight
experience replay (HER) is introduced to address reward
sparsity. Furthermore, by employing different reward
strategies in normal and abnormal stages, the framework can
automatically and accurately distinguish between healthy and
degraded operating conditions. Experimental results on the
XJTU-SY bearing dataset demonstrate that the proposed
method constructs HIs with superior trendability,
monotonicity, and robustness across different operating
conditions, thereby offering a practical solution for Hl
construction in real-world environments.

1. ELECTRONIC SUBMISSION

Prognostic Health Management (PHM) systems play a
critical role in ensuring the reliability and safety of machinery
by monitoring equipment health and predicting faults.
Constructing a health indicator (HI) is necessary for

Zeqi Wei et al. This is an open-access article distributed under the terms of
the Creative Commons Attribution 3.0 United States License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

accurately assessing machine status (Lei, Li, Guo, Li, Yan &
Lin, 2018). Moreover, accurate Hls facilitate early anomaly
detection and support condition-based maintenance strategies,
reducing unexpected downtime and maintenance costs.
Consequently, HI construction has attracted considerable
attention and remains a research focus in recent years (Wang,
Tsui & Miao, 2017). However, it is still challenging to create
HIs that are both sensitive to machine degradation and robust
across different equipment.

In general, His can be divided into two categories: physical
HIs (PHIs) and virtual HIs (VHIs) (Djeziri, Benmoussa & Zio,
2020). PHIs are derived from monitoring raw signals through
signal processing or statistical methods. In signal processing-
based methods, PHIs are typically constructed according to
the underlying physical failure mechanisms (Yan, Wang,
Kong, Xia, Peng & Li, 2021). In contrast, statistical methods
are more popular due to their simplicity. Various statistical
features such as root mean square (RMS) (Meng, Yan, Chen,
Liu & Wu, 2021), kurtosis (Zhong, Wang & Li, 2021),
entropy (Yan, Wang, Xia, Zheng, Peng & Xi, 2023), among
others, are widely used. PHIs provide clear physical
interpretability, but they are often designed for specific tasks,
which leads to poor generalization. In addition, these
methods require strong expert knowledge, which limits their
broader applicability.

VHIs are also categorized into two classes: fusion-based
methods and deep learning-based methods. In fusion-based
approaches, VHiIs are constructed by combining several PHIs
into a single indicator that represents overall degradation
information (Djeziri, Benmoussa & Zio, 2020). Various
techniques have been proposed for this purpose, among
which principal component analysis (PCA) is the most
widely used. For example, Guo, Wang, Li, Yang, Huang,
Yazdi, and Hooi (2024) applied PCA to construct a nonlinear
HI for degradation modeling and remaining useful life (RUL)
prediction. Similarly, Buchaiah and Shakya (2022) employed
14 dimensionality reduction methods to fuse selected features
into a VHI. Fusion-based methods are simple to apply
because they only require extracting basic features for fusion.
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However, the quality of the constructed VVHIs largely depends
on the selected features. Inappropriate features may introduce
side effects, resulting in insufficient representation of
degradation information.

Deep learning-based methods do not fuse PHIs directly.
Instead, they extract implicit degradation information from
high-dimensional data spaces. Among them, the autoencoder
(AE) is the most commonly used approach. These methods
aim to reconstruct healthy data and use reconstruction errors
as a VHI. For example, Gonzalez-Mufiiz, Diaz, Cuadrado,
and  Garcia-Perez  (2022) leveraged  disentangled
representations in the latent space of an AE and used the
latent reconstruction error as a VHI. Ye and Yu (2021)
proposed a long short-term memory convolutional AE that
generates HIs based-on reconstruction errors. Such methods
construct HIs directly from raw signals, but their performance

largely depends on the availability and quality of healthy data.

Moreover, their generalization ability is closely tied to the
network architecture and training process of the AE.

It is evident that these methods have achieved promising
results in HI construction. Beyond the aforementioned
limitations, applying constructed HIs to RUL prediction or
maintenance strategy optimization typically requires a failure
threshold. However, this threshold often differs across
devices, making it difficult to generalize a fixed, manually
defined one. To address this issue, some studies have
attempted to normalize HIs using their maximum and
minimum values (Ni, Ji & Feng, 2022). Nevertheless, such
normalization remains device-dependent and introduces
additional limitations.

This paper proposes an unsupervised HI construction method
based on a deep reinforcement learning (DRL) paradigm.
DRL is used to assign different weights to features, which
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improves both trendability and monotonicity. Firstly, time-
domain and frequency-domain features are extracted from
raw signals and modeled as the state space. Secondly, a
reward with monotonicity and smoothness constraints is
designed. To overcome the limitations of failure thresholds,
a dominance reward is introduced at the terminal state, and
hindsight experience replay (HER) is adopted to learn from
this sparse terminal reward. Finally, DRL outputs a weight
for each fused feature, assigning low weights to features with
little contribution to degradation. The HI is then obtained as
a weighted sum of the features. Moreover, by employing
different reward functions for normal and abnormal stages,
the proposed method can automatically and accurately
distinguish between healthy and degraded conditions.

2. METHODOLOGY

2.1. Framework of UTD-HI

The overall framework of the proposed unsupervised HI
construction (UTD-HI) is illustrated in Figure 1, where raw
sensor signals are first processed to extract a set of time-
domain and frequency-domain features, which together form
the state space for the DRL agent. The agent is trained to
assign adaptive weights to these features. To guide the
training, a reward function is designed with three components:
(1) monotonicity constraint, (2) smoothness constraint, and
(3) a terminal dominance reward that alleviates the need for
a manually defined failure threshold. HER is further
incorporated to address the sparsity of the terminal reward
and improve training result. During inference, the trained
DRL agent outputs weights for each feature, giving lower
weights to those less relevant to degradation. Finally, the HI
is obtained as the weighted sum of the fused features, which
ensures better trendability and monotonicity.
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Figure 1. Framework of the UTD-HI



2.2. Basic Features Extraction

To cover the degradation information as comprehensively as
possible, 10 time-domain features and 8 frequency-domain
features are extracted as shown in Table 1. In the time domain,
the raw vibration signal is represented as x, , where

i=1...,N and N is the total number of samples. The mean
value of the signal is denoted by 4 . In the frequency domain,

the spectrum obtained by the Fast Fourier Transform (FFT)
is denoted as X, , where k=1,...,K and K is the number

of frequency bins. Each spectral component corresponds to a
frequency f, whichisgivenby f, :Ex f,, where f, isthe
sampling frequency.

Table 1. Manually extracted features
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To reduce the influence of magnitude differences among
features and facilitate subsequent feature fusion, each feature
is normalized. Specifically, the mean of the first ten samples
of each feature is calculated as a reference value. Then, all
values of this feature are divided by the reference mean to
obtain the normalized feature. This method ensures that each
feature has a comparable scale while preserving the relative
variation trends, which is important for degradation analysis
and health index construction.

2.3. DRL Agent

2.3.1. Soft Actor-Critic

Soft Actor-Critic (SAC) is adopted in this study as the
reinforcement learning agent (Haarnoja, Zhou, Hartikainen,
Tucker, Ha, Tan, Kumar, Zhu, Gupta, Abbeel, and Levine,
2018). SAC is well-known for its superior performance in
continuous action spaces, owing to the introduction of an
entropy term in its objective function. Specifically, SAC aims
to maximize not only the expected cumulative reward but
also the policy entropy, which encourages exploration and
improves robustness against perturbations. The optimal
policy function of SAC is formulated as:

7 =arg max & o)-p, [Ztr(st’al )+aH (7[( | St))J (1)

where p_ denotes the state—action distribution induced by
policy 7, r(s;,a) is the reward function, H(-) is the

entropy, and « is the temperature coefficient that balances
reward maximization and entropy maximization. The
information entropy is defined as:

H(P)= E [~logP (x)] @

where x follow the probability distribution P . The soft
state-action value function in SAC is updated according to
the soft Bellman iteration:

Q(s.a) -
=r (Sl 1 a‘t ) + 7Esm,am I:Q (SHl' a‘t+l)_ a IOg (”(at+1|st+1)):'

where y is discount factor and « is the temperature

coefficient, which is adaptively tuned during training. By
maximizing both reward and entropy, SAC prevents
premature convergence to deterministic policies. In addition,
SAC employs two Q-functions to reduce overestimation bias
and applies the reparameterization trick to enable efficient
gradient-based optimization.

2.3.2. State

The state s, represents the input to the DRL agent at step t .
It is composed of two parts: (i) the candidate fusion features
{F.F,...,Fg}, which contain time-domain and frequency-
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domain degradation information, and (ii) the previously
constructed health indicator H,, , which reflects the
degradation trend up to step t—1. By including both the raw
features and the past HI, the state provides sufficient
information for the agent to learn feature weighting strategies
that are consistent with the degradation process. Formally,
the state is defined as:

s ={F" . FoH (4)

2.3.3. Action

Given a state s, , the agent outputs an action vector:
a ={A, 4. My} A €[01] (5)

where each element A' corresponds to the weight assigned to

the i -th feature at step t . These weights determine the
contribution of each feature to the fused HI. By adjusting the
values of A' , the agent is capable of emphasizing

degradation-sensitive features while suppressing noise or less
relevant ones. The bounded range [0,1] ensures numerical
stability and prevents the agent from assigning excessively
large or negative weights during HI construction.

2.3.4. Reward

Reward is the most critical component in reinforcement
learning. In this study, the reward function is divided into
three parts: monotonicity, smoothness, and a terminal
threshold constraint. The overall reward is defined as:

L=r +r+r (6)

where r, is the monotonicity reward, r, is the smoothness
reward, and r; is the terminal reward.

e Monotonicity reward (r, )

The form of r, depends on the degradation stage of the
machine, and is given as:

{—a)ﬁﬂ”)AHt normal stage

r. =

m

()

®PAH,  abnormal stage

where " >0 and o >0 are coefficients, and AH,

denotes the change in HI at step t . This design ensures that
the HI remains as stable as possible during the normal stage
and increases steadily during degradation, which matches the
real-world degradation process. The degradation stage is
determined by the slope of HI: if the slope exceeds 0.15, the
machine is considered in the abnormal stage; otherwise, it is
regarded as normal.

e  Smoothness reward (r,)

The smoothness reward constrains the HI to grow smoothly
by minimizing fluctuations. It is defined as:

I, =—a,|AH, —AH_,| (8)

where @, >0 is a coefficient. This formulation penalizes

large second-order differences, ensuring a smoother HI
trajectory.

e Terminal reward (r; )

The terminal reward ensures that the HI exceeds the failure
threshold = at the final step T , while remaining within

[0, ‘r) before failure. It is defined as:

I :{ a)r,
—a;

where @ >0 and w; >0 are coefficients. This encourages

the HI to cross the failure threshold only at the terminal step,
avoiding premature exceedance. Since the terminal reward
r. is very sparse, it may hinder the efficiency of policy
learning. To address this issue, this study introduces
hindsight experience replay (HER) (Andrychowicz, Wolski,
Ray, Schneider, Fong, Welinder, McGrew, Tobin, Abbeel,
and Zaremba, 2017). HER relabels failed trajectories with
alternative goals, allowing the agent to extract useful training
signals even when the original goal is not achieved. By
augmenting the replay buffer with such relabeled experiences,
HER effectively improves sample efficiency and accelerates
convergence in sparse-reward settings.

t=TandH, 27

)
t<TandH, 27

3. EXPERIMENT AND DISCUSSION

The effectiveness of the proposed method is verified using
the XJTU-SY dataset. Three evaluation metrics are employed
to compare with baseline methods: monotonicity, trendability,
and the hybrid metric.

3.1. Dataset Description and Preprocessing

The XJTU-SY dataset contains run-to-failure vibration
signals collected from 15 bearings under accelerated
degradation tests (Wang, Lei, Li, and Li, 2018). Three
operating conditions were set in the experiments, with five
bearings being tested under each condition, as summarized in
Table 2. The vibration signals were collected every 60
seconds with a sampling frequency of 25.6 kHz and a
sampling duration of 1.28 seconds. To ensure complete
degradation trajectories, each test started from the healthy
condition and was terminated when the maximum vibration
amplitude exceeded ten times that of the initial healthy state.

A non-overlapping sliding window is applied, where each
one-minute segment is treated as a time window for feature
extraction. The preprocessing procedure is illustrated in
Figure 2.
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Table 2. Operating conditions of XJTU-SY bearing dataset

Operating | 2 3
condition
Speed (rppm/Hz) | 2100/35 2250/37.5 2400/40
Load (kN) 12 11 10

Bearing 1 1 | Bearing 2_1 | Bearing 3_1
Dataset 015 025 035

1.28s

Non-overlap sliding

-

1min
Figure 2. Data preprocessing procedure

3.2. HI Construction

3.2.1. Implementation Details

The hyperparameters of the proposed method are set as
follows: 0" =10, &/ =5, @, =1, i =50, w; =100,
7=20. The terminal step T is determined by the length of
the dataset.

The DRL agent is trained with the SAC algorithm, using a
learning rate of 3x10* with the Adam optimizer and a batch
size of 32. The replay buffer size is 10°, and HER is employed
to deal with the sparse terminal reward. The discount factor y
is set to 0.99, and the temperature parameter « is
automatically adjusted during training.

Feature vectors of dimension 18 are extracted for each time
window, and the HI is updated at every step until the terminal
state.

3.2.2. The Constructed HI

Eight bearings (1 1,1 2,1 3,1 5,2 1,2 2,2 3,and 2_4)
are selected for analysis. Since failure threshold information
is incorporated during training, HI values exceeding the
threshold are truncated. Consequently, all constructed HIs
can be consistently normalized by dividing them by 7, which
facilitates cross-bearing comparisons. As Figure 3 shows,
each HI trajectory is clearly divided into two stages,
corresponding to the normal and degradation phases, owing
to the stage-wise reward design. In addition, abnormal points
are automatically identified along the trajectories, providing
valuable guidance for early fault detection and subsequent
prediction tasks.

The Constructed Hls
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Figure 3. The constructed Hlis of UTD-HI
3.3. Performance Evaluation

3.3.1. Evaluation Metrics

In order to quantitatively evaulate the performance of the
proposed method, three metrics are measured as follows:

e  Trendability

Trendability measures the correlation between the HI and the
run-to-failure timeline, and thus evaluates whether the Hl
follows the degradation process. It is defined as:

rea() -2l AED)
VLAY 2Ty

- 1 - 13
where H==>"H and T==>1.
T t=1 T t=1

(10)

e Monotonicity

Monotonicity evaluates whether the HI reflects the
irreversible degradation process of machinery. It is defined
as:

Mon(H)= )‘ 11)

[ (H=H > 0)= 30 I (Hiy—H, >0
1

where I(-) is an indicator function.

e Hybrid metric

Since trendability and monotonicity capture different aspects
of HI quality, a hybrid metric (HM) is used to provide a
comprehensive evaluation (Guo, Yu, Duan, Gao, and Zhang
2022):

_ Tred +Mon
2

HM (12)

3.3.2. Comparison Results

To evaluate the effectiveness of the proposed UTD-HI
method, comparisons are made with three representative Hl
construction approaches: (1) RMS-HI, which directly uses
the root mean square of raw signals as the health indicator;
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(2) PCA-HI, where the first principal component after
principal component analysis is used as the HI; and (3) AE-
HI, which employs the reconstruction error of an autoencoder
as the HI. The evaluation is conducted on eight bearings using
trendability, monotonicity, and a hybrid metric, as reported
in Tables 3-5.

Table 3. Trendability of different methods

Bearing | RMS-HI | PCA-HI | AE-HI | UTD-HI
11 0.8632 0.8106 0.5701 | 0.8698
1. 0.9014 0.8081 0.8824 | 0.9079
13 0.7560 0.8198 0.4436 | 0.7972
15 0.7584 0.6448 0.4527 | 0.7284
21 0.3731 0.4048 0.2573 | 0.3766
2.2 0.8838 0.6829 0.4497 | 0.8394
2.3 0.8821 0.7815 0.8236 | 0.8619
2.4 0.7909 0.7416 0.7224 | 0.7491

Table 4. Monotonicity of different methods

Bearing | RMS-HI | PCA-HI | AE-HI | UTD-HI
11 0.2459 0.1311 0.0943 | 0.3984
12 0.2000 0.2000 0.0766 | 0.1304
13 0.3885 0.0573 0.0422 | 0.3538
15 0.2157 0.1765 0.1127 | 0.4615
21 0.0245 0.0163 0.0357 | 0.0713
2.2 0.225 0.0125 0.0898 | 0.235
2.3 0.0301 0.0225 0.0298 | 0.0507
2.4 0.2195 0.2683 0.1494 | 0.381

Table 5. Hybrid metric of different methods

Bearing | RMS-HI | PCA-HI | AE-HI | UTD-HI
11 0.5546 0.4709 0.3322 | 0.6341
12 0.5507 0.50405 | 0.4795 | 0.5192
13 0.5723 0.43855 | 0.2429 | 0.5755
15 0.4871 0.4107 0.2827 | 0.5950
21 0.1988 0.2106 0.1465 | 0.2240
22 0.5544 0.3477 0.26975 | 0.5322
2.3 0.4561 0.402 0.4267 | 0.4563
2.4 0.5052 0.505 0.4359 | 0.5651

The results show that RMS-HI achieves the highest
trendability, as it is highly sensitive to signal amplitude
growth during degradation; however, its monotonicity is
limited and it lacks the capacity to integrate multi-feature
information. PCA-HI and AE-HI, as fusion-based and
reconstruction-based methods respectively, exhibit more
unstable performance. In particular, PCA-HI may introduce
counterproductive effects when irrelevant features are

incorporated, thereby reducing discriminative power, while
AE-HI relies heavily on high-quality healthy data that are
difficult to obtain in practice, leading to inferior results in
most cases. In contrast, although UTD-HI does not always
surpass RMS-HI in trendability, it achieves a better trade-off
between trendability and monotonicity. As reflected in the
hybrid metric, UTD-HI demonstrates superior overall
performance in the vast majority of cases and exhibits greater
robustness across different bearings and operating
conditions. These results demonstrate that the proposed
method effectively learns to assign feature weights,
suppresses low-quality contributions, and generates health
indicators that evolve smoothly and reliably with
degradation, thereby offering a more practical solution for
health assessment under unsupervised conditions.

4, CONCLUSION

This study proposes an unsupervised terminal-dominant
health indicator construction framework within a DRL
paradigm. The method adaptively assigns feature weights
under the guidance of stage-aware and smoothness rewards,
while HER is introduced to address sparse terminal rewards.
Experimental results on the XJTU-SY bearing dataset
demonstrate that the constructed HIs not only exhibit superior
monotonicity and trendability but also achieve the best
performance on the hybrid metric compared with RMS-,
PCA-, and AE-based baselines. These findings confirm that
UTD-HI can effectively capture degradation processes and
distinguish between normal and abnormal stages without
relying on labeled data. Therefore, the proposed method
provides a reliable foundation for downstream tasks such as
remaining useful life prediction and maintenance decision
optimization in complex industrial environments. Future
research may focus on improving generalization across
diverse operating conditions, for example, through meta-
reinforcement learning or transfer learning.
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