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ABSTRACT

Achieving higher levels of Industrial Autonomy (IA) requires
fault diagnostic systems that combine predictive accuracy
with transparent decision-making. In safety-critical process
industries like petroleum refinery, black-box Al models often
face adoption barriers due to limited interpretability. The
work introduces a glass-box fault classification framework
for the Tennessee Eastman Process, comparing a baseline
direct-modeling approach with a novel dual-branch
architecture. The proposed method decomposes process
parameters into trend and cyclic components, trains dedicated
classifiers on each and fuses their probabilistic outputs. The
proposed design improves sensitivity to both gradual drifts
and oscillatory anomalies. In the present work SHAP
explainability is incorporated to provide global, local, and
class-wise feature attribution, enabling operators to trace
model reasoning and align diagnostics with process
knowledge. Building on this, a strong industrial Al platform,
purpose-built for domain engineers, emerges as essential for
operationalizing such capabilities, empowering process
experts to directly harness Al for decision-making. The
present work serves as a steppingstone toward realizing such
an Industrial Al platform, demonstrating how interpretable
Al can bridge the gap between advanced analytics and
domain expertise. The experimental evaluation of the
proposed technique demonstrates that 35% of the fault
classes achieved improved accuracy, with an average
accuracy gain of 4.34% over the baseline, with pronounced
gains in cyclic-dominated faults. The approach demonstrates
a pathway toward Level 5 IA by delivering interpretable,
high-performance fault diagnostics ready for real-time
deployment.

1. INTRODUCTION AND MOTIVATION

Industrial process industries are undergoing a gradual but
fundamental shift toward 1A, where plants operate with
minimal human intervention while ensuring safety,
reliability, and efficiency. The 1A transformation is fueled by
competitive market pressures, an evolving workforce
landscape, and the escalating complexity of interconnected
process systems. In traditional 1A Levels 1-3 as shown in
Figure 1, operations rely on deterministic control loops and
predefined logic, typically implemented in Distributed
Control Systems (DCS) or Programmable Logic Controllers
(PLC). In IA Levels 4-5, the systems must be adaptive and
context-aware, capable of perceiving process states,
reasoning about alternative actions, and executing control
decisions autonomously under uncertainty(Autonomous
Operations for Process Industries? | ARC Advisory, n.d.-a))

Level-5
Full Autonomy: Complete Safe, Reliable |AT Adoption Levels
Operation without human intervention

Level -4
High Autonomy: System Perceives, reasons
and acts in real time under uncertainity

Level-3

ion handles normal and some
abnormal cases, human remain 'in the loop’

Level -2
Partial Automation, Automated control
loops;operators handle abnormal events.

Level-1
Assistive Automation, system provide
‘monitoring, alarms, basic advice

Level -0
Manual Operation, All sensing, decision
making and actuation by humans.

Figure 1. Levels of Industrial Autonomy.

However, reaching higher levels of autonomy in industrial
environments poses significant challenges, as also
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emphasized in (Industrial-Grade Data Fabrics | ARC
Advisory Group, n.d.):

e Heterogeneous, high-dimensional sensor data from
thousands of measurement points.

e Non-linear, strongly coupled process dynamics that
defy simple models.

e Rare but high-impact fault events with limited
historical data.

e Regulatory and operator constraints for autonomy.

Bridging these gaps requires Al systems that are both high-
performing and explainable, enabling a transition from
opaque black-box models to glass-box autonomy that
integrates seamlessly into operator workflows.

In the present study an attempt is made to build an
explainable and trustworthy fault classification model to
address the gaps and to take a step towards IA journey. The
paper is organized as follows: section 2 discusses the
Challenge in the 1A journey, followed by section 3 details out
the need of Al for IA journey with fault classification as a
cornerstone discussed in Section 4. Section 5 brings out the
motivation for explainable Al and how the proposed solution
fits in for 1A journey. Section 6 discusses the proposed
methodology and section 7 analyzes the results and section 8
concludes the present work with future directions of Al in A
journey.

2. CHALLENGES IN THE A JOURNEY

The t common challenges of 1A journey are based on data
availability, latency requirement, transparency in decision
and control integration. 1A, particularly at Levels 4 and 5, is
not just a technological leap from existing automation; it is
an operational transformation that must overcome several
deep-rooted challenges in process industries. The challenges
span across data integrity, real-time decision-making,
explainability, and system integration, which directly impacts
the pace and safety of the autonomy transition. The following
sections details out these challenges.

2.1. Data Quality and Variability

Accurate decision-making in autonomous systems depends
on high-quality process data, yet real-world industrial data is
often affected by:

e Sensor noise and bias, caused by instrument
degradation or calibration drift.

e Unavailability of measurements.

e Latency in measurements, as with many quality
parameters, is based on lab results.

e Missing data from network disruptions or sensor
failures.

e  Process variability from changes in raw materials,
environment, or operating mode.

Poor data directly compromises model generalization and
robustness. Data preprocessing, sensor validation, and
adaptive model updating have become essential for sustained
autonomous operation.

2.2. Fault Detection Latency

In process industries, time-to-detection is critical, slow
detection of anomalies can escalate into:
e Safety incidents such as equipment failure,
hazardous releases.

e Quality deviations like off-spec products, waste
generation

e Production downtime like unplanned shutdowns,
restart costs.

Traditional statistical process control (SPC) or model-based
methods may detect deviations only after significant process
drift, especially in non-stationary environments. In order to
achieve Level 5 IA, the systems must integrate real-time
analytics to detect and diagnose faults before they propagate.

2.3. Transparency and Trust

A core requirement for IA adoption is operator trust. Many
operators, accustomed to deterministic control logic, view
black-box Al models with doubt, particularly in high-stakes
environments like petroleum refineries where accountability
is paramount.

Glass-box Al approaches, which provide interpretable and
justifiable outputs, are critical for bridging this gap.
Explainability not only increases adoption but also assists in
post-event  root cause analysis and  regulatory
compliance(IEC TR 63069:2019 | IEC, n.d.).

2.4. Control Integration

In order for autonomy to be operationally viable, Al-driven
decisions must integrate seamlessly with:
e  Existing safety instrumented systems (SIS).

e Plant standard operating procedures (SOPs).
¢ Real-time control platforms (DCS/PLC).

The integration is non-trivial, any conflict between Al
recommendations and safety logic can cause system
overrides, nullifying autonomy benefits.

In summary the above four challenge domains such as data
quality, fault detection latency, trust and explainability, and
control integration represent the gap between today’s
automation (Levels 1-3) and the envisioned self-optimizing,
self-healing industrial plants of the future (Levels 4-5).
Closing this gap requires trustworthy, explainable Al that can
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operate safely, transparently, and in real time within the
constraints of existing industrial ecosystems.

Bridging this gap is not solely a matter of incremental control
logic improvement; it demands a paradigm shift in decision-
making approaches. Al offers the ability to perceive, learn,
and adapt in complex process environments attributes
essential for achieving higher autonomy levels. The next
section briefs the role of Al in IA.

3. ROLE OF Al AND FEATURE ENGINEERING IN
INDUSTRIAL AUTONOMY

Al is pivotal for elevating automation from reactive control
to adaptive, autonomous operations (Levels 4-5)(Ohara,
2020; Zhu et al.,, 2020). Its strengths such as pattern
recognition, predictive reasoning, and real-time learning
address the key limitations of legacy systems. Unlike fixed
logic and deterministic control schemes, Al can learn from
data, adapt to new conditions, and make informed decisions
under uncertainty. Its contribution to 1A can be understood
through three core functional roles: perception and diagnosis,
signal understanding and knowledge extraction, and
transparent decision support.

3.1. Perception and Diagnosis through Supervised
Learning

The backbone of autonomy lies the ability to perceive process
state and identify deviations before they escalate. Supervised
learning models are trained on historical labeled process data
which enables systems to detect abnormal conditions and
classify underlying fault types. In complex chemical
processes such as the petroleum refinery process, these
models can capture subtle, multivariate signatures that
conventional threshold-based detection would miss.

Accurate classification empowers the system to move beyond
reactive alarms toward proactive interventions, which is
essential for mitigating safety risks, avoiding quality
deviations, and minimizing economic losses. The perception-
and-diagnosis capability provides the situational awareness
foundation necessary for higher autonomy levels.

However, the value of perception is directly linked to the
system’s ability to correctly interpret and process sensor
signals which brings to the second role of Al in industrial
autonomy: understanding and extracting meaningful
knowledge from raw process data.

3.2. Signal Understanding and Knowledge Extraction by
Feature Engineering

Industrial sensor data typically exhibits long-term drifts,
short-term oscillations, and measurements with noise.
Without careful treatment, these characteristics can obscure
the patterns that Al needs to detect. Signal decomposition

techniques such as empirical mode decomposition, wavelet
transforms, or trend—cycle separation allows Al models to
treat slow degradation phenomena such as fouling, catalyst
degradation separately from oscillatory phenomena like
valve stiction, control loop instability.

The signal decomposition enhances model robustness and
fault isolation, as certain fault modes manifest predominantly
in one component. By extracting knowledge from the right
signal layers, Al systems improve both their predictive
performance and their diagnostic precision.

In the present work, the signal decomposition is extended by
introducing a dual-branch modeling framework that
independently learns from the trend and cyclic components
of process signals, before fusing their probabilistic outputs
for final fault classification. The proposed design exploits the
distinct fault signatures present at different temporal scales,
enhancing both detection accuracy and interpretability. In the
context of IA, accurate predictions alone are insufficient,
operators must also understand and trust these predictions
which leads to the third and equally critical role of Al in
autonomy: transparent decision support.

3.3. Transparent Decision Support via Explainable Al

In industrial autonomy, performance without transparency is
insufficient for operational acceptance. Operators must be
able to see why a model recommends a certain action,
especially in safety-critical contexts. Explainable Al (XAl)
methods, such as Shapley Additive Explanations (SHAP),
Local Interpretable Model-agnostic Explanations (LIME),
and Partial Dependence Plots (PDP), reveal the underlying
drivers of Al decisions (Ohtani, 2020).

The representation of feature contributions in human-
interpretable form, XAI transforms opaque “black-box”
models into glass-box systems that can be audited, validated,
and refined collaboratively with domain experts.
Transparency is essential for regulatory compliance, fault
investigation, and fostering operator confidence in
autonomous decision-making and making the vision of IA
reachable.

The proposed method further integrates class-wise
explainability using SHAP-based visualizations for both the
trend and cyclic branches, enabling operators to understand
not only which features contributed to a prediction, but also
from which temporal component the evidence originated.
The combination of predictive accuracy and interpretability
is central to closing the autonomy trust gap.

3.4. Integrated Impact on Autonomy

The three functional roles discussed above like perception &
diagnosis, signal understanding & knowledge extraction by
feature engineering, and transparent decision support
together form the operational backbone of IA. When
integrated into plant control ecosystems, they enable Al
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systems to perceive, interpret, and act in a way that is
adaptive, trustworthy, and aligned with safety and
operational constraints.

The holistic approach of the integration of three functional
roles allows Al to support not just isolated decision-making
tasks, but the broader objective of sustained, self-optimizing
plant operation and bringing the vision of Levels 4-5
industrial autonomy within operational reach.

Building on these foundational roles, the next section
presents our proposed methodology that operationalizes these
concepts in a dual-branch trend—cyclic classification
framework with integrated class-wise explainability.

4, FAULT CLASSIFICATION AS A CORNERSTONE

Achieving higher levels of 1A is impossible without accurate,
timely, and reliable fault classification. In autonomous plant
operation, classification does more than flag an abnormal
condition, it enables the system to determine what kind of
abnormality is occurring, so that responses can be targeted,
effective, and safe.

Fault classification supports four core operational benefits:

1. Targeted Corrective Actions, by identifying the
specific root cause, the system can apply fault-
specific recovery strategies for instance, adjusting
control loops, initiating selective shutdown
sequences.

2. Reduced Downtime and Production Losses, early
and correct classification allows intervention before
faults propagate to system-wide disruptions.

3. Improved Safety and Compliance, faults in safety-
critical units can be addressed in a controlled
manner, reducing the likelihood of hazardous events
and regulatory violations.

4. Structured Input for Higher-Level Autonomy, at
autonomy Levels 4-5, classification outputs serve
as structured perception signals for higher-level
decision-making agents, optimization algorithms,
and scheduling systems.

The above benefits of position classification as a cornerstone
capability in the 1A stack by bridging perception and
intelligent action(Ohtani, 2020). The next section discusses
the data sets considered for the proposed work.

4.1. The Tennessee Eastman Process (TEP) as a
Benchmark

The Tennessee Eastman Process (TEP)(Additional Tennessee
Eastman Process Simulation Data for Anomaly Detection
Evaluation - Harvard Dataverse, n.d.) is one of the most
widely adopted benchmarks in process systems engineering
for evaluating fault detection and diagnosis algorithms. TEP
simulates a realistic petrochemical process involving
multiple reactors, separators, and recycle streams. The TEP

simulates a realistic chemical process with five major unit
operations, multiple interacting control loops, 53 variables
with 41 measured variables, and 12 manipulated variables,
reflecting typical plant instrumentation. The dataset contains
two primary subsets: FaultFree (normal operation, fault
number = 0) and Faulty (20 distinct fault types, fault numbers
1-20). Each record comprises faultNumber identifying
process state, simulationRun indicating the simulation seed
(1-500 for training, non-overlapping with testing), sample
representing the time index (1-500 for training, 1-960 for
testing) sampled every 3 minutes for total durations of 25
hours and 48 hours respectively, and columns xmeas_1 to
xmeas_41 (measured variables) plus xmv_1 to xmv_12
(manipulated variables). Faults are introduced one hour into
training runs and eight hours into testing runs, allowing
models to learn both pre-fault and fault evolution patterns.
Because of its realistic process complexity, public
availability, and clear definition of multiple fault classes.

5. MOTIVATION FOR EXPLAINABILITY IN IA AND ITS
PLACEMENT IN THE AUTONOMY HIERARCHY

High predictive accuracy in fault classification is essential for
IA, but alone it is insufficient for operational acceptance in
safety-critical environments. In these contexts, plant
operators and engineers require more than a categorical fault
label. They must be able to interpret the reasoning behind the
classification, identify which process variables exerted the
greatest influence, and understand how variations in those
variables might affect the outcome.

Several operational
explainability:

imperatives drive the demand for

e Transparency: Model outputs must be accompanied
by interpretable justifications, enabling operators to
verify decisions against process knowledge (Ohtani,
2020).

e Accountability: Safety and regulatory compliance
depend on the ability to audit and trace decision-
making processes, particularly in cases of abnormal
plant behavior(Al Policy | Yokogawa Electric
Corporation, n.d.-a)

e  Trust: Operators are more likely to adopt Al-driven
recommendations when the underlying rationale
aligns with plant physics, control logic, and
operational experience(Ohtani, 2020).

Glass-Box Al methods address these needs by making the
internal reasoning of machine learning models visible.
Techniques such as SHAP, LIME, and PDP reveal variable-
level contributions to model predictions, turning opaque
“black-box” algorithms into auditable and collaborative
decision-support tools.
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Figure 2. Proposed Methodology.

5.1. Positioning within the ISA/IEC Industrial
Autonomy Hierarchy

The ISA/IEC framework describes industrial operational
maturity as a progression through five levels(ISA-95
Standard: Enterprise-Control System Integration, n.d.) as
shown in Figure 1

The fault classification methodology under consideration
directly addresses Level 4 and partly in Level 3. It provides
adaptive decision-support capabilities that integrate
explainable Al into supervisory and optimization layers,
enabling operators to make informed interventions with
confidence. The decision support capability serves as a
transitional step toward Level 5 autonomy, where the Al
would execute similar decisions autonomously.

Achieving explainable, high-performance fault classification
requires a methodological design that balances predictive
accuracy with interpretability. The following section outlines
a two-stage approach: beginning with a baseline supervised
learning framework applied to the TEP dataset, and extending
to a dual-path architecture that decomposes process variables
into trend and cyclic components. By training specialized
classifiers on each component and fusing their probabilistic
outputs, the design improves classification robustness while
maintaining transparent, variable-level interpretability,
addressing both operational and trust requirements of I1A.

6. PROPOSED METHODOLOGY

The current study evaluates two distinct fault classification
strategies for advancing IA: a baseline supervised learning
pipeline applied directly to raw process data with windowed

feature extraction, and a proposed dual-path architecture that
decomposes signals into trend and cyclic components before
classification as shown in Figure 2. In the present work
Hodrick—Prescott filter is employed to decompose the time-
series data into Trend and Cyclic components. Leakage-safe
evaluation was ensured by partitioning datasets strictly
according to simulationRun identifiers, thereby preventing
cross-run contamination between training and testing sets.
Furthermore, K-fold cross-validation with K = 5 was
conducted within the training data to assess model
generalization and identify potential overfitting or leakage
artifacts.

The baseline pipeline follows a conventional supervised
learning workflow comprising data preprocessing, statistical
aggregation of windowed time-series segments, model
training with gradient boosting algorithms such as
LightGBM using stratified cross-validation, and evaluation
through macro F1-score, accuracy, and confusion matrices.
The windowed feature extraction stage employed a sliding-
window decomposition strategy to extract robust statistical
representations of the dynamic process behavior, where a
fixed window length of 60 samples with a 10-sample overlap
was applied to each simulation run, ensuring sufficient
temporal context while maintaining high sample diversity.
While this approach achieves competitive accuracy, it
processes all signal characteristics together, potentially
masking fault-specific patterns that manifest differently in
slow trends versus rapid oscillations. The LightGBM
algorithm employed in this study was identified through an
extensive, internally developed AutoML-style workflow
applied to the baseline modeling approach. The detailed
description of this framework is considered beyond the scope
of the present work. The same LightGBM algorithm was then
adopted for the proposed trend—cyclic modeling framework
to ensure a consistent basis for performance comparison.

The proposed trend—cyclic dual-path architecture addresses
this by applying time-series decomposition to separate long-
term drift or degradation from short-term oscillatory
dynamics. Independent classifiers are trained for each
component, one capturing gradual fault evolution, the other
targeting oscillatory fault behavior. The two models
probabilistic outputs are fused, through averaging, allowing
the model to leverage complementary dynamic information
for improved fault discrimination and robustness.

In the present study, both approaches incorporate an
explainability layer to meet transparency and trust
requirements in industrial settings. SHAP explainability is
adopted in the present work. SHAP quantifies the
contribution of each process variable to classification
outcomes, with class-wise analysis identifying the most
influential drivers for each fault type. By enhancing both
predictive performance and interpretability, this framework
moves fault classification from opaque “black-box” models
toward glass-box systems, positioning them as enablers for
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Level 4 industrial autonomy and a steppingstone toward fully
autonomous, self-optimizing operations.

7. RESULT ANALYSIS

The comparative evaluation between the baseline supervised
learning pipeline and the proposed trend—cyclic dual-path
architecture was conducted on the TEP dataset using the same
stratified test split. Figure 3 provides the per-class accuracy
comparison of precision, recall and F1 score of baseline
model with proposed methodology.

Across all three primary evaluation metrics such as overall
accuracy, macro-averaged F1-score, and macro-averaged
area under the ROC curve (AUC), the dual-path architecture
achieved consistent improvements over the baseline.
Accuracy increased from 93.19% to 94.56%, and macro-F1
improved from 0.9283 to 0.9424, indicating enhanced
balance between precision and recall across fault classes.
Macro-AUC(ROC) and micro-AUC(ROC) both approached
unity, with slight gains in the novel approach, confirming that
both methods maintained near-perfect separability while the
proposed method offered marginal but meaningful
enhancements.

A class-level analysis reveals more granular insights. The
dual-path approach improved classification accuracy for 7
out of 21 fault categories shown in Table 1.

% of Improvement in

Fault Accuracy in Proposed
Method
8 7.81%
20 6.58%
19 5.26%
11 4.17%
16 3.57%
15 1.67%
18 1.32%

Table 1. Fault number and its % of accuracy
improvement.

These improvements are particularly noteworthy because
they correspond to fault modes with distinct temporal
signatures in either trend or cyclic components. For example,
Fault 8 exhibited strong oscillatory patterns superimposed on
a slow process drift, which the baseline approach processing
all features jointly could not isolate effectively. The
decomposition in the dual-path method allowed each
classifier to specialize, capturing subtle dynamic patterns and
improving fault discrimination.

Performance remained unchanged in 12 classes, including
several where baseline accuracy was already perfect (Faults

1, 2, 4, 14, 17), indicating that the proposed architecture
preserved high performance where the baseline had no
shortcomings. Small decreases in accuracy were observed in
a few cases (Faults 4, 5, 10), with the largest drop being
—1.79% for Fault 10. These declines are within acceptable
margins and may reflect over-segmentation in the
decomposition process when the underlying signal does not
exhibit a strong separation between trend and cyclic
components.

In operational perspective, the gains in fault classes with
historically lower baseline performance are significant. In
safety-critical ~ process environments, even modest
improvements in detection accuracy for specific fault types
can translate into substantial risk reduction, especially when
these fault types are precursors to major incidents or
unplanned shutdowns. The per class comparison of precision,
recall and F1 of baseline model and proposed model
approaches are shown in Figure 3a and 3b respectively.
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Figure 3. Per class metrics comparison of (a) Baseline with
(b) Proposed Methodology.

From Figure 3, the per-class precision, recall, and F1-score
comparison shows that while the baseline model delivers
strong performance across most fault types, the proposed
fused approach consistently improves detection for
challenging classes such as Fault 8, 20, 19, 16, and 11, with
notable recall gains and in some cases achieving perfect
classification (e.g., Fault 8). Well-performing classes in the
baseline (e.g., Fault 1, 2, 14) maintain their performance, and
only minor drops are observed for a few classes (e.g., Fault
4, 5, 10). These results indicate that the trend—cyclic fusion
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enhances robustness and fault discrimination, particularly for
fault modes with distinct dynamic signatures, while
preserving high accuracy in already well-classified cases.
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Figure 4. Mean SHAP values for Baseline model.
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Figure 5. Mean SHAP Values for (a) Trend Component
Model, (b) Cyclic Component Model.
The explainability layer, implemented using SHAP, further
reinforced these quantitative gains by enabling class-wise
identification of the most influential variables. The SHAP
values are shown in Figure 4 and 5. While the nuanced
implications of these influential variables are best interpreted
by process or domain engineers, their identification is a
critical enabler for autonomous operations. By translating
complex model behavior into process-relevant insights, this
step bridges the gap between data-driven decision-making
and domain expertise, laying the groundwork for trustworthy,
higher-level autonomy. Moreover, incorporating
explainability aligns with emerging Al regulatory
requirements, such as those outlined in the EU Al Act and
industry standards, ensuring that model decisions remain
transparent, auditable, and justifiable in safety-critical
industrial contexts. The baseline model placed the highest
emphasis on variables such as xmv_10_last
xmeas_21_last, and xmv_4_last, reflecting the dominance
of certain actuator positions and sensor readings in fault

discrimination. In the cyclic pathway, variables like
cy_xmeas_21_last , cy_xmv_4_last , and
cy_xmeas_9_last were most influential, capturing fast-
changing oscillatory behavior tied to control loop dynamics.
The trend pathway highlighted slow-varying measurements
such as tr_xmeas_1_last , tr_xmv_3_last , and
tr_xmv_4_last, which are indicative of gradual performance
degradation and long-term process imbalance.

The separation of variable importance profiles across
pathways confirms that the trend and cyclic decompositions
capture complementary fault-relevant dynamics. Class-
specific color patterns in the SHAP plots further show that
certain features are strongly tied to individual fault classes—
for example, tr xmeas_1 last with Fault 5 and
cy_xmeas_21 last with Fault 20—facilitating targeted root
cause analysis. This combination of improved predictive
performance and transparent feature attribution transforms
the architecture from an opaque “black box™ into a “glass-
box” decision support system, aligning with the trust,
interpretability, and safety requirements of Level 4 IA.

In summary, the dual-path trend—cyclic decomposition
architecture not only improved aggregate classification
metrics but also delivered targeted enhancements in fault
classes that stand to benefit most from dynamic signal
separation. The combination of higher accuracy, class-
specific performance gains, and enhanced interpretability
positions this approach as a strong candidate for Level 4
industrial autonomy deployment, bridging the gap between
predictive analytics and operational decision-making.

8. CONCLUSION AND FUTURE SCOPE

This study demonstrated that a trend-cyclic dual-path
architecture, applied to the Tennessee Eastman Process
benchmark, can enhance fault classification performance
while preserving operational transparency through
explainability. By decomposing process signals into slow-
varying trends and fast oscillations, the proposed method
improved overall classification accuracy and macro-F1 over
a baseline supervised pipeline, with notable gains for specific
faults that exhibit distinct temporal dynamics. The integration
of SHAP-based explainability at both the pathway and fused
levels enabled clear identification of the most influential
process variables for each fault, providing actionable insights
for operators and aligning with the transparency and safety
requirements of Level 4 industrial autonomy. The
complementary nature of the trend and cyclic pathways
confirms the value of multi-timescale analysis in industrial
Al fault diagnosis.

Future work will focus on extending this framework in two
key directions. First, real-time deployment will be explored
by integrating the model with distributed control systems
(DCS) and safety instrumented systems (SIS) to evaluate
latency, robustness, and interoperability in live
environments. Second, adaptive explainability mechanisms
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will be developed to tailor model interpretations to different
operator roles summarized alerts for shift operators, detailed
root-cause paths for process engineers, and compliance-
focused reporting for auditors. Collectively, these
enhancements aim to transform the current interpretable
model into a fully operational, human-centered decision-
support layer within industrial Al ecosystems, strengthening
trust, usability, and continuous learning toward Level 5 self-
optimizing and self-healing operations.
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