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ABSTRACT 

Achieving higher levels of Industrial Autonomy (IA) requires 

fault diagnostic systems that combine predictive accuracy 

with transparent decision-making. In safety-critical process 

industries like petroleum refinery, black-box AI models often 

face adoption barriers due to limited interpretability. The 

work introduces a glass-box fault classification framework 

for the Tennessee Eastman Process, comparing a baseline 

direct-modeling approach with a novel dual-branch 

architecture. The proposed method decomposes process 

parameters into trend and cyclic components, trains dedicated 

classifiers on each and fuses their probabilistic outputs. The 

proposed design improves sensitivity to both gradual drifts 

and oscillatory anomalies. In the present work SHAP 

explainability is incorporated to provide global, local, and 

class-wise feature attribution, enabling operators to trace 

model reasoning and align diagnostics with process 

knowledge. Building on this, a strong industrial AI platform, 

purpose-built for domain engineers, emerges as essential for 

operationalizing such capabilities, empowering process 

experts to directly harness AI for decision-making. The 

present work serves as a steppingstone toward realizing such 

an Industrial AI platform, demonstrating how interpretable 

AI can bridge the gap between advanced analytics and 

domain expertise. The experimental evaluation of the 

proposed technique demonstrates that 35% of the fault 

classes achieved improved accuracy, with an average 

accuracy gain of 4.34% over the baseline, with pronounced 

gains in cyclic-dominated faults. The approach demonstrates 

a pathway toward Level 5 IA by delivering interpretable, 

high-performance fault diagnostics ready for real-time 

deployment. 

1. INTRODUCTION AND MOTIVATION 

Industrial process industries are undergoing a gradual but 

fundamental shift toward IA, where plants operate with 

minimal human intervention while ensuring safety, 

reliability, and efficiency. The IA transformation is fueled by 

competitive market pressures, an evolving workforce 

landscape, and the escalating complexity of interconnected 

process systems. In traditional IA Levels 1-3 as shown in 

Figure 1, operations rely on deterministic control loops and 

predefined logic, typically implemented in Distributed 

Control Systems (DCS) or Programmable Logic Controllers 

(PLC). In IA Levels 4-5, the systems must be adaptive and 

context-aware, capable of perceiving process states, 

reasoning about alternative actions, and executing control 

decisions autonomously under uncertainty(Autonomous 

Operations for Process Industries? | ARC Advisory, n.d.-a))  

 

 

Figure 1. Levels of Industrial Autonomy. 

 

However, reaching higher levels of autonomy in industrial 

environments poses significant challenges, as also 
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emphasized in (Industrial-Grade Data Fabrics | ARC 

Advisory Group, n.d.): 

• Heterogeneous, high-dimensional sensor data from 

thousands of measurement points. 

• Non-linear, strongly coupled process dynamics that 

defy simple models. 

• Rare but high-impact fault events with limited 

historical data. 

• Regulatory and operator constraints for autonomy. 

Bridging these gaps requires AI systems that are both high-

performing and explainable, enabling a transition from 

opaque black-box models to glass-box autonomy that 

integrates seamlessly into operator workflows.  

In the present study an attempt is made to build an 

explainable and trustworthy fault classification model to 

address the gaps and to take a step towards IA journey. The 

paper is organized as follows: section 2 discusses the 

Challenge in the IA journey, followed by section 3 details out 

the need of AI for IA journey with fault classification as a 

cornerstone discussed in Section 4. Section 5 brings out the 

motivation for explainable AI and how the proposed solution 

fits in for IA journey. Section 6 discusses the proposed 

methodology and section 7 analyzes the results and section 8 

concludes the present work with future directions of AI in IA 

journey. 

2. CHALLENGES IN THE IA JOURNEY 

The t common challenges of IA journey are based on data 

availability, latency requirement, transparency in decision 

and control integration. IA, particularly at Levels 4 and 5, is 

not just a technological leap from existing automation; it is 

an operational transformation that must overcome several 

deep-rooted challenges in process industries. The challenges 

span across data integrity, real-time decision-making, 

explainability, and system integration, which directly impacts 

the pace and safety of the autonomy transition. The following 

sections details out these challenges. 

2.1. Data Quality and Variability 

Accurate decision-making in autonomous systems depends 

on high-quality process data, yet real-world industrial data is 

often affected by: 

• Sensor noise and bias, caused by instrument 

degradation or calibration drift. 

• Unavailability of measurements. 

• Latency in measurements, as with many quality 

parameters, is based on lab results. 

• Missing data from network disruptions or sensor 

failures. 

• Process variability from changes in raw materials, 

environment, or operating mode. 

Poor data directly compromises model generalization and 

robustness. Data preprocessing, sensor validation, and 

adaptive model updating have become essential for sustained 

autonomous operation. 

2.2. Fault Detection Latency 

In process industries, time-to-detection is critical, slow 

detection of anomalies can escalate into: 

• Safety incidents such as equipment failure, 

hazardous releases. 

• Quality deviations like off-spec products, waste 

generation 

• Production downtime like unplanned shutdowns, 

restart costs. 

Traditional statistical process control (SPC) or model-based 

methods may detect deviations only after significant process 

drift, especially in non-stationary environments. In order to 

achieve Level 5 IA, the systems must integrate real-time 

analytics to detect and diagnose faults before they propagate. 

2.3. Transparency and Trust 

A core requirement for IA adoption is operator trust. Many 

operators, accustomed to deterministic control logic, view 

black-box AI models with doubt, particularly in high-stakes 

environments like petroleum refineries where accountability 

is paramount. 

Glass-box AI approaches, which provide interpretable and 

justifiable outputs, are critical for bridging this gap. 

Explainability not only increases adoption but also assists in 

post-event root cause analysis and regulatory 

compliance(IEC TR 63069:2019 | IEC, n.d.). 

2.4. Control Integration 

In order for autonomy to be operationally viable, AI-driven 

decisions must integrate seamlessly with: 

• Existing safety instrumented systems (SIS). 

• Plant standard operating procedures (SOPs). 

• Real-time control platforms (DCS/PLC). 

The integration is non-trivial, any conflict between AI 

recommendations and safety logic can cause system 

overrides, nullifying autonomy benefits.  

In summary the above four challenge domains such as data 

quality, fault detection latency, trust and explainability, and 

control integration represent the gap between today’s 

automation (Levels 1–3) and the envisioned self-optimizing, 

self-healing industrial plants of the future (Levels 4–5). 

Closing this gap requires trustworthy, explainable AI that can 
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operate safely, transparently, and in real time within the 

constraints of existing industrial ecosystems. 

 

Bridging this gap is not solely a matter of incremental control 

logic improvement; it demands a paradigm shift in decision-

making approaches. AI offers the ability to perceive, learn, 

and adapt in complex process environments attributes 

essential for achieving higher autonomy levels. The next 

section briefs the role of AI in IA. 

3. ROLE OF AI AND FEATURE ENGINEERING IN 

INDUSTRIAL AUTONOMY 

AI is pivotal for elevating automation from reactive control 

to adaptive, autonomous operations (Levels 4–5)(Ohara, 

2020; Zhu et al., 2020). Its strengths such as pattern 

recognition, predictive reasoning, and real-time learning 

address the key limitations of legacy systems. Unlike fixed 

logic and deterministic control schemes, AI can learn from 

data, adapt to new conditions, and make informed decisions 

under uncertainty. Its contribution to IA can be understood 

through three core functional roles: perception and diagnosis, 

signal understanding and knowledge extraction, and 

transparent decision support. 

3.1. Perception and Diagnosis through Supervised 

Learning 

The backbone of autonomy lies the ability to perceive process 

state and identify deviations before they escalate. Supervised 

learning models are trained on historical labeled process data 

which enables systems to detect abnormal conditions and 

classify underlying fault types. In complex chemical 

processes such as the petroleum refinery process, these 

models can capture subtle, multivariate signatures that 

conventional threshold-based detection would miss. 

 

Accurate classification empowers the system to move beyond 

reactive alarms toward proactive interventions, which is 

essential for mitigating safety risks, avoiding quality 

deviations, and minimizing economic losses. The perception-

and-diagnosis capability provides the situational awareness 

foundation necessary for higher autonomy levels. 

 

However, the value of perception is directly linked to the 

system’s ability to correctly interpret and process sensor 

signals which brings to the second role of AI in industrial 

autonomy: understanding and extracting meaningful 

knowledge from raw process data. 

3.2. Signal Understanding and Knowledge Extraction by 

Feature Engineering 

Industrial sensor data typically exhibits long-term drifts, 

short-term oscillations, and measurements with noise. 

Without careful treatment, these characteristics can obscure 

the patterns that AI needs to detect. Signal decomposition 

techniques such as empirical mode decomposition, wavelet 

transforms, or trend–cycle separation allows AI models to 

treat slow degradation phenomena such as fouling, catalyst 

degradation separately from oscillatory phenomena like 

valve stiction, control loop instability. 

The signal decomposition enhances model robustness and 

fault isolation, as certain fault modes manifest predominantly 

in one component. By extracting knowledge from the right 

signal layers, AI systems improve both their predictive 

performance and their diagnostic precision.  

In the present work, the signal decomposition is extended by 

introducing a dual-branch modeling framework that 

independently learns from the trend and cyclic components 

of process signals, before fusing their probabilistic outputs 

for final fault classification. The proposed design exploits the 

distinct fault signatures present at different temporal scales, 

enhancing both detection accuracy and interpretability. In the 

context of IA, accurate predictions alone are insufficient, 

operators must also understand and trust these predictions 

which leads to the third and equally critical role of AI in 

autonomy: transparent decision support. 

3.3. Transparent Decision Support via Explainable AI 

In industrial autonomy, performance without transparency is 

insufficient for operational acceptance. Operators must be 

able to see why a model recommends a certain action, 

especially in safety-critical contexts. Explainable AI (XAI) 

methods, such as Shapley Additive Explanations (SHAP), 

Local Interpretable Model-agnostic Explanations (LIME), 

and Partial Dependence Plots (PDP), reveal the underlying 

drivers of AI decisions (Ohtani, 2020). 

The representation of feature contributions in human-

interpretable form, XAI transforms opaque “black-box” 

models into glass-box systems that can be audited, validated, 

and refined collaboratively with domain experts. 

Transparency is essential for regulatory compliance, fault 

investigation, and fostering operator confidence in 

autonomous decision-making and making the vision of IA 

reachable. 

The proposed method further integrates class-wise 

explainability using SHAP-based visualizations for both the 

trend and cyclic branches, enabling operators to understand 

not only which features contributed to a prediction, but also 

from which temporal component the evidence originated. 

The combination of predictive accuracy and interpretability 

is central to closing the autonomy trust gap. 

3.4. Integrated Impact on Autonomy 

The three functional roles discussed above like perception & 

diagnosis, signal understanding & knowledge extraction by 

feature engineering, and transparent decision support 

together form the operational backbone of IA. When 

integrated into plant control ecosystems, they enable AI 
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systems to perceive, interpret, and act in a way that is 

adaptive, trustworthy, and aligned with safety and 

operational constraints. 

The holistic approach of the integration of three functional 

roles allows AI to support not just isolated decision-making 

tasks, but the broader objective of sustained, self-optimizing 

plant operation and bringing the vision of Levels 4–5 

industrial autonomy within operational reach. 

Building on these foundational roles, the next section 

presents our proposed methodology that operationalizes these 

concepts in a dual-branch trend–cyclic classification 

framework with integrated class-wise explainability. 

4. FAULT CLASSIFICATION AS A CORNERSTONE 

Achieving higher levels of IA is impossible without accurate, 

timely, and reliable fault classification. In autonomous plant 

operation, classification does more than flag an abnormal 

condition, it enables the system to determine what kind of 

abnormality is occurring, so that responses can be targeted, 

effective, and safe. 

Fault classification supports four core operational benefits: 

 

1. Targeted Corrective Actions, by identifying the 

specific root cause, the system can apply fault-

specific recovery strategies for instance, adjusting 

control loops, initiating selective shutdown 

sequences. 

2. Reduced Downtime and Production Losses, early 

and correct classification allows intervention before 

faults propagate to system-wide disruptions. 

3. Improved Safety and Compliance, faults in safety-

critical units can be addressed in a controlled 

manner, reducing the likelihood of hazardous events 

and regulatory violations. 

4. Structured Input for Higher-Level Autonomy, at 

autonomy Levels 4–5, classification outputs serve 

as structured perception signals for higher-level 

decision-making agents, optimization algorithms, 

and scheduling systems. 

 

The above benefits of position classification as a cornerstone 

capability in the IA stack by bridging perception and 

intelligent action(Ohtani, 2020). The next section discusses 

the data sets considered for the proposed work. 

4.1. The Tennessee Eastman Process (TEP) as a 

Benchmark 

The Tennessee Eastman Process (TEP)(Additional Tennessee 

Eastman Process Simulation Data for Anomaly Detection 

Evaluation - Harvard Dataverse, n.d.) is one of the most 

widely adopted benchmarks in process systems engineering 

for evaluating fault detection and diagnosis algorithms. TEP 

simulates a realistic petrochemical process involving 

multiple reactors, separators, and recycle streams. The TEP 

simulates a realistic chemical process with five major unit 

operations, multiple interacting control loops, 53 variables 

with 41 measured variables, and 12 manipulated variables, 

reflecting typical plant instrumentation. The dataset contains 

two primary subsets: FaultFree (normal operation, fault 

number = 0) and Faulty (20 distinct fault types, fault numbers 

1–20). Each record comprises faultNumber identifying 

process state, simulationRun indicating the simulation seed 

(1–500 for training, non-overlapping with testing), sample 

representing the time index (1–500 for training, 1–960 for 

testing) sampled every 3 minutes for total durations of 25 

hours and 48 hours respectively, and columns xmeas_1 to 

xmeas_41 (measured variables) plus xmv_1 to xmv_12 

(manipulated variables). Faults are introduced one hour into 

training runs and eight hours into testing runs, allowing 

models to learn both pre-fault and fault evolution patterns. 

Because of its realistic process complexity, public 

availability, and clear definition of multiple fault classes. 

5. MOTIVATION FOR EXPLAINABILITY IN IA AND ITS 

PLACEMENT IN THE AUTONOMY HIERARCHY 

High predictive accuracy in fault classification is essential for 

IA, but alone it is insufficient for operational acceptance in 

safety-critical environments. In these contexts, plant 

operators and engineers require more than a categorical fault 

label. They must be able to interpret the reasoning behind the 

classification, identify which process variables exerted the 

greatest influence, and understand how variations in those 

variables might affect the outcome. 

Several operational imperatives drive the demand for 

explainability: 

• Transparency: Model outputs must be accompanied 

by interpretable justifications, enabling operators to 

verify decisions against process knowledge (Ohtani, 

2020). 

• Accountability: Safety and regulatory compliance 

depend on the ability to audit and trace decision-

making processes, particularly in cases of abnormal 

plant behavior(AI Policy | Yokogawa Electric 

Corporation, n.d.-a) 

• Trust: Operators are more likely to adopt AI-driven 

recommendations when the underlying rationale 

aligns with plant physics, control logic, and 

operational experience(Ohtani, 2020). 

Glass-Box AI methods address these needs by making the 

internal reasoning of machine learning models visible. 

Techniques such as SHAP, LIME, and PDP reveal variable- 
level contributions to model predictions, turning opaque 

“black-box” algorithms into auditable and collaborative 

decision-support tools. 
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Figure 2. Proposed Methodology. 

 

5.1. Positioning within the ISA/IEC Industrial 

Autonomy Hierarchy 

The ISA/IEC framework describes industrial operational 

maturity as a progression through five levels(ISA-95 

Standard: Enterprise-Control System Integration, n.d.) as 

shown in Figure 1 

The fault classification methodology under consideration 

directly addresses Level 4 and partly in Level 3. It provides 

adaptive decision-support capabilities that integrate 

explainable AI into supervisory and optimization layers, 

enabling operators to make informed interventions with 

confidence. The decision support capability serves as a 

transitional step toward Level 5 autonomy, where the AI 

would execute similar decisions autonomously. 

Achieving explainable, high-performance fault classification 

requires a methodological design that balances predictive 

accuracy with interpretability. The following section outlines 

a two-stage approach: beginning with a baseline supervised 

learning framework applied to the TEP dataset, and extending 

to a dual-path architecture that decomposes process variables 

into trend and cyclic components. By training specialized 

classifiers on each component and fusing their probabilistic 

outputs, the design improves classification robustness while 

maintaining transparent, variable-level interpretability, 

addressing both operational and trust requirements of IA. 

6. PROPOSED METHODOLOGY 

The current study evaluates two distinct fault classification 

strategies for advancing IA: a baseline supervised learning 

pipeline applied directly to raw process data with windowed 

feature extraction, and a proposed dual-path architecture that 

decomposes signals into trend and cyclic components before 

classification as shown in Figure 2. In the present work 

Hodrick–Prescott filter is employed to decompose the time-

series data into Trend and Cyclic components. Leakage-safe 

evaluation was ensured by partitioning datasets strictly 

according to simulationRun identifiers, thereby preventing 

cross-run contamination between training and testing sets. 

Furthermore, K-fold cross-validation with K = 5 was 

conducted within the training data to assess model 

generalization and identify potential overfitting or leakage 

artifacts. 

The baseline pipeline follows a conventional supervised 

learning workflow comprising data preprocessing, statistical 

aggregation of windowed time-series segments, model 

training with gradient boosting algorithms such as 

LightGBM using stratified cross-validation, and evaluation 

through macro F1-score, accuracy, and confusion matrices. 

The windowed feature extraction stage employed a sliding-

window decomposition strategy to extract robust statistical 

representations of the dynamic process behavior, where a 

fixed window length of 60 samples with a 10-sample overlap 

was applied to each simulation run, ensuring sufficient 

temporal context while maintaining high sample diversity. 

While this approach achieves competitive accuracy, it 

processes all signal characteristics together, potentially 

masking fault-specific patterns that manifest differently in 

slow trends versus rapid oscillations. The LightGBM 

algorithm employed in this study was identified through an 

extensive, internally developed AutoML-style workflow 

applied to the baseline modeling approach. The detailed 

description of this framework is considered beyond the scope 

of the present work. The same LightGBM algorithm was then 

adopted for the proposed trend–cyclic modeling framework 

to ensure a consistent basis for performance comparison. 

The proposed trend–cyclic dual-path architecture addresses 

this by applying time-series decomposition to separate long-

term drift or degradation from short-term oscillatory 

dynamics. Independent classifiers are trained for each 

component, one capturing gradual fault evolution, the other 

targeting oscillatory fault behavior. The two models 

probabilistic outputs are fused, through averaging, allowing 

the model to leverage complementary dynamic information 

for improved fault discrimination and robustness. 

In the present study, both approaches incorporate an 

explainability layer to meet transparency and trust 

requirements in industrial settings. SHAP explainability is 

adopted in the present work. SHAP quantifies the 

contribution of each process variable to classification 

outcomes, with class-wise analysis identifying the most 

influential drivers for each fault type. By enhancing both 

predictive performance and interpretability, this framework 

moves fault classification from opaque “black-box” models 

toward glass-box systems, positioning them as enablers for 
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Level 4 industrial autonomy and a steppingstone toward fully 

autonomous, self-optimizing operations. 

7. RESULT ANALYSIS  

The comparative evaluation between the baseline supervised 

learning pipeline and the proposed trend–cyclic dual-path 

architecture was conducted on the TEP dataset using the same 

stratified test split. Figure 3 provides the per-class accuracy 

comparison of precision, recall and F1 score of baseline 

model with proposed methodology. 

Across all three primary evaluation metrics such as overall 

accuracy, macro-averaged F1-score, and macro-averaged 

area under the ROC curve (AUC), the dual-path architecture 

achieved consistent improvements over the baseline. 

Accuracy increased from 93.19% to 94.56%, and macro-F1 

improved from 0.9283 to 0.9424, indicating enhanced 

balance between precision and recall across fault classes. 

Macro-AUC(ROC) and micro-AUC(ROC) both approached 

unity, with slight gains in the novel approach, confirming that 

both methods maintained near-perfect separability while the 

proposed method offered marginal but meaningful 

enhancements. 

A class-level analysis reveals more granular insights. The 

dual-path approach improved classification accuracy for 7 

out of 21 fault categories shown in Table 1. 

 

These improvements are particularly noteworthy because 

they correspond to fault modes with distinct temporal 

signatures in either trend or cyclic components. For example, 

Fault 8 exhibited strong oscillatory patterns superimposed on 

a slow process drift, which the baseline approach processing 

all features jointly could not isolate effectively. The 

decomposition in the dual-path method allowed each 

classifier to specialize, capturing subtle dynamic patterns and 

improving fault discrimination. 

Performance remained unchanged in 12 classes, including 

several where baseline accuracy was already perfect (Faults 

1, 2, 4, 14, 17), indicating that the proposed architecture 

preserved high performance where the baseline had no 

shortcomings. Small decreases in accuracy were observed in 

a few cases (Faults 4, 5, 10), with the largest drop being 

−1.79% for Fault 10. These declines are within acceptable 

margins and may reflect over-segmentation in the 

decomposition process when the underlying signal does not 

exhibit a strong separation between trend and cyclic 

components. 

In operational perspective, the gains in fault classes with 

historically lower baseline performance are significant. In 

safety-critical process environments, even modest 

improvements in detection accuracy for specific fault types 

can translate into substantial risk reduction, especially when 

these fault types are precursors to major incidents or 

unplanned shutdowns. The per class comparison of precision, 

recall and F1 of baseline model and proposed model 

approaches are shown in Figure 3a and 3b respectively. 

 

(a) 

 

(b) 

Figure 3. Per class metrics comparison of (a) Baseline with 

(b) Proposed Methodology. 

 

 From Figure 3, the per-class precision, recall, and F1-score 

comparison shows that while the baseline model delivers 

strong performance across most fault types, the proposed 

fused approach consistently improves detection for 

challenging classes such as Fault 8, 20, 19, 16, and 11, with 

notable recall gains and in some cases achieving perfect 

classification (e.g., Fault 8). Well-performing classes in the 

baseline (e.g., Fault 1, 2, 14) maintain their performance, and 

only minor drops are observed for a few classes (e.g., Fault 

4, 5, 10). These results indicate that the trend–cyclic fusion 

 

Fault 

% of Improvement in 

Accuracy in Proposed 

Method 

8 7.81% 

20 6.58% 

19 5.26% 

11 4.17% 

16 3.57% 

15 1.67% 

18 1.32% 

Table 1. Fault number and its % of accuracy 

improvement. 
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enhances robustness and fault discrimination, particularly for 

fault modes with distinct dynamic signatures, while 

preserving high accuracy in already well-classified cases. 

 

Figure 4. Mean SHAP values for Baseline model. 

 

  

(a) (b) 

Figure 5. Mean SHAP Values for (a) Trend Component 

Model, (b) Cyclic Component Model. 

The explainability layer, implemented using SHAP, further 

reinforced these quantitative gains by enabling class-wise 

identification of the most influential variables. The SHAP 

values are shown in Figure 4 and 5. While the nuanced 

implications of these influential variables are best interpreted 

by process or domain engineers, their identification is a 

critical enabler for autonomous operations. By translating 

complex model behavior into process-relevant insights, this 

step bridges the gap between data-driven decision-making 

and domain expertise, laying the groundwork for trustworthy, 

higher-level autonomy. Moreover, incorporating 

explainability aligns with emerging AI regulatory 

requirements, such as those outlined in the EU AI Act and 

industry standards, ensuring that model decisions remain 

transparent, auditable, and justifiable in safety-critical 

industrial contexts. The baseline model placed the highest 

emphasis on variables such as 𝑥𝑚𝑣_10_𝑙𝑎𝑠𝑡 , 

𝑥𝑚𝑒𝑎𝑠_21_𝑙𝑎𝑠𝑡, and 𝑥𝑚𝑣_4_𝑙𝑎𝑠𝑡, reflecting the dominance 

of certain actuator positions and sensor readings in fault 

discrimination. In the cyclic pathway, variables like 

𝑐𝑦_𝑥𝑚𝑒𝑎𝑠_21_𝑙𝑎𝑠𝑡 , 𝑐𝑦_𝑥𝑚𝑣_4_𝑙𝑎𝑠𝑡 , and 

𝑐𝑦_𝑥𝑚𝑒𝑎𝑠_9_𝑙𝑎𝑠𝑡  were most influential, capturing fast-

changing oscillatory behavior tied to control loop dynamics. 

The trend pathway highlighted slow-varying measurements 

such as 𝑡𝑟_𝑥𝑚𝑒𝑎𝑠_1_𝑙𝑎𝑠𝑡 , 𝑡𝑟_𝑥𝑚𝑣_3_𝑙𝑎𝑠𝑡 , and 

𝑡𝑟_𝑥𝑚𝑣_4_𝑙𝑎𝑠𝑡, which are indicative of gradual performance 

degradation and long-term process imbalance. 

The separation of variable importance profiles across 

pathways confirms that the trend and cyclic decompositions 

capture complementary fault-relevant dynamics. Class-

specific color patterns in the SHAP plots further show that 

certain features are strongly tied to individual fault classes—

for example, tr_xmeas_1_last with Fault 5 and 

cy_xmeas_21_last with Fault 20—facilitating targeted root 

cause analysis. This combination of improved predictive 

performance and transparent feature attribution transforms 

the architecture from an opaque “black box” into a “glass-

box” decision support system, aligning with the trust, 

interpretability, and safety requirements of Level 4 IA. 

In summary, the dual-path trend–cyclic decomposition 

architecture not only improved aggregate classification 

metrics but also delivered targeted enhancements in fault 

classes that stand to benefit most from dynamic signal 

separation. The combination of higher accuracy, class-

specific performance gains, and enhanced interpretability 

positions this approach as a strong candidate for Level 4 

industrial autonomy deployment, bridging the gap between 

predictive analytics and operational decision-making. 

8. CONCLUSION AND FUTURE SCOPE 

This study demonstrated that a trend–cyclic dual-path 

architecture, applied to the Tennessee Eastman Process 

benchmark, can enhance fault classification performance 

while preserving operational transparency through 

explainability. By decomposing process signals into slow-

varying trends and fast oscillations, the proposed method 

improved overall classification accuracy and macro-F1 over 

a baseline supervised pipeline, with notable gains for specific 

faults that exhibit distinct temporal dynamics. The integration 

of SHAP-based explainability at both the pathway and fused 

levels enabled clear identification of the most influential 

process variables for each fault, providing actionable insights 

for operators and aligning with the transparency and safety 

requirements of Level 4 industrial autonomy. The 

complementary nature of the trend and cyclic pathways 

confirms the value of multi-timescale analysis in industrial 

AI fault diagnosis. 

Future work will focus on extending this framework in two 

key directions. First, real-time deployment will be explored 

by integrating the model with distributed control systems 

(DCS) and safety instrumented systems (SIS) to evaluate 

latency, robustness, and interoperability in live 

environments. Second, adaptive explainability mechanisms 
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will be developed to tailor model interpretations to different 

operator roles summarized alerts for shift operators, detailed 

root-cause paths for process engineers, and compliance-

focused reporting for auditors. Collectively, these 

enhancements aim to transform the current interpretable 

model into a fully operational, human-centered decision-

support layer within industrial AI ecosystems, strengthening 

trust, usability, and continuous learning toward Level 5 self-

optimizing and self-healing operations. 
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