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ABSTRACT

Accurate early fault diagnosis and Remaining Useful Life
(RUL) prediction are critical for predictive maintenance in
collaborative robotic systems, especially under limited la-
beled data. We propose PhysODE-Joint, a physics-informed
deep learning framework that jointly models fault classi-
fication and RUL estimation. The framework integrates
Transformer-based temporal modeling with fault-specific Or-
dinary Differential Equation (ODE)-guided degradation dy-
namics, embedding domain knowledge of mechanical wear
and thermal degradation into feature learning. A cascade ar-
chitecture ensures physical plausibility and class-aware pre-
diction, while a hybrid training strategy combines scarce real-
world sensor data with physics-based synthetic degradation
sequences. Evaluated on real robotic datasets, PhysODE-
Joint outperforms conventional data-driven models, partic-
ularly in small-sample settings, demonstrating its robust-
ness for health monitoring and maintenance scheduling in
resource-constrained environments.

Yingjun Shen et al. This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States License, which per-
mits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

1. INTRODUCTION

Health monitoring of industrial robots plays a critical role in
modern manufacturing systems, where robotic arms perform
high-precision and high-reliability tasks in applications such
as automotive assembly, semiconductor fabrication, and lo-
gistics automation (Kumar, Khalid, & Kim, 2023). Accurate
early fault diagnosis and Remaining Useful Life (RUL) pre-
diction are essential for ensuring operational safety, minimiz-
ing unplanned downtime, and enabling efficient condition-
based maintenance (CBM) (Kumaran, Tan, Chiew, & Chua,
2023). Studies have shown that timely detection of incipient
faults, such as joint fatigue cracks, motor performance degra-
dation, or control board anomalies, can effectively prevent
catastrophic failures and significantly reduce lifecycle main-
tenance costs (Vichare & Pecht, 2006). However, due to the
complexity and dynamism of industrial environments, accu-
rate RUL estimation remains challenging, particularly under
data-scarce conditions, such as in newly deployed systems or
those with sparse sensor coverage. In such scenarios, conven-
tional purely data-driven models often lack physical priors,
leading to poor generalization and an inability to capture true
degradation mechanisms.

Current approaches to Remaining Useful Life (RUL) predic-
tion can be broadly categorized into three paradigms: signal-
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based, model-based, and data-driven methods. Signal-based
methods process raw sensor measurements, such as vibra-
tion, current, or temperature, leveraging techniques like Fast
Fourier Transform (FFT), wavelet decomposition, or deep au-
toencoders to extract degradation indicators, and are widely
applied in gear and bearing health monitoring (Zhao, Liu,
Jin, Dang, & Deng, 2021). Model-based methods rely on
first-principles or empirical physical laws for failure time
modeling, or thermodynamic equations for thermal degrada-
tion, offering strong interpretability and mechanistic insight.
However, their deployment is often constrained by the need
for precise parameter calibration and domain expertise, which
is difficult to obtain in complex industrial cyber-physical sys-
tems (“Modified Paris law for mode I fatigue fracture of
concrete based on crack propagation resistance”, 2024). In
recent years, data-driven methods, including Support Vec-
tor Machines (SVM), Long Short-Term Memory networks
(LSTM), and deep Convolutional Neural Networks (CNN),
which have gained prominence due to their ability to auto-
matically learn complex, nonlinear degradation patterns from
high-dimensional time-series data (“A review on physics-
informed data-driven remaining useful life prediction: Chal-
lenges and opportunities”, 2024).

Data-driven models typically assume independent and
identically distributed (i.i.d.) data and require large la-
beled datasets, rendering them brittle under data-scarce or
distribution-shifted conditions, which are common in newly
deployed or sparsely monitored robotic systems (“Data-
driven and Knowledge-based predictive maintenance method
for industrial robots for the production stability of intel-
ligent manufacturing”, 2023). Model-based approaches,
while interpretable, are highly sensitive to parameter accu-
racy and system assumptions, and critically vulnerable to
cyber-physical integrity attacks (Lei et al., 2016). Moreover,
most existing methods focus on single-component monitor-
ing (e.g., bearing vibration), failing to capture multi-variable
degradation dynamics or detect time-sensitive anomalies
within operational thresholds, such as a gradual rise in
motor current that remains below alarm limits but signals
incipient wear (Wang, Xian, & Song, 2024). These gaps
motivate the development of hybrid modeling frameworks
that integrate physics-informed structural constraints with
data-driven learning. Such approaches aim to preserve causal
interpretability while enhancing generalization, robustness,
and context-awareness, which make them uniquely suited for
RUL prediction in industrial robotic systems under sparse,
noisy, or potentially compromised sensor data.

The Transformer architecture has recently demonstrated great
potential in time series modeling due to its ability to capture
long-range dependencies and parallelize computation (Mo &
Iacca, 2023; Han et al., n.d.). Its self-attention mechanism
enables dynamic focus on relevant sensor signals across time
steps, making it particularly well-suited for modeling com-

plex degradation patterns in mechanical systems. Recent
work has shown that incorporating physics-informed con-
straints into Transformer-based architectures—either through
structured loss functions or guided feature learning, which
can improve prediction accuracy and model robustness un-
der noisy or sparse data (Zhang, Song, & Li, 2022). In
the context of industrial robot RUL prediction, domain-
specific physical knowledge, such as crack propagation dy-
namics, thermal degradation models, and kinematic con-
straints, which can be integrated into the model design, either
through architectural modifications or hybrid training strate-
gies.

This paper proposes PhysODE-Joint, an ODE-Guided Trans-
former framework for joint fault classification and RUL
prediction in industrial robots under limited degradation
data scenarios. The core innovation lies in embedding
a physics-based degradation model—derived from domain
knowledge—into the Transformer architecture, thereby guid-
ing the temporal evolution of the model’s hidden states and
ensuring physically plausible representations. To address
data scarcity, we introduce a hybrid training strategy that
combines real data with synthetic degradation sequences gen-
erated from the ODE model.

The remainder of this paper is organized as follows: Sec-
tion 2 presents the problem formulation for joint fault clas-
sification and RUL prediction. Section 3 details the architec-
ture and components of the proposed PhysODE-Joint frame-
work. Section 4 outlines the experimental setup and evalua-
tion methodology, while Section 5 presents and discusses the
experimental results. Finally, Section 6 concludes the paper
and suggests directions for future research.

2. JOINT MODELING OF FAULT CLASSIFICATION AND
RUL ESTIMATION

Let X = {xt ∈ Rd}Tt=1 denote a multivariate time se-
ries representing the observed system state — such as joint
currents, temperatures, and speeds — at discrete time steps
t = 1, . . . , T , where d is the feature dimension and T is the
total sequence length. The objective is to perform joint fault
classification an RUL prediction at each time step t, based
on a finite temporal window Xt−L+1:t = {xt−L+1, . . . , xt},
where L is a tunable hyperparameter controlling the context
size.

Let yt+∆ ∈ {0, 1, . . . , C− 1} denote the system state at a fu-
ture time t+∆, where y = 0 indicates normal operation, and
y ∈ {1, . . . , C − 1} represent distinct fault types (e.g., grip
loss, protective stop). The fault classification task estimates
the most probable future state:

ŷt+∆ = argmax
y

p(y | Xt−L+1:t). (1)

The RUL estimation task, conditioned on the predicted fault
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class, estimates the time remaining until the next failure:

rt = inf {τ > 0 | yt+τ ∈ {1, . . . , C − 1}} , (2)

and is approximated by a function f that maps the historical
sequence and predicted fault class to a scalar RUL value:

r̂t = f(Xt−L+1:t, ŷt+∆). (3)

This formulation captures the core challenges of predictive
maintenance in robotic systems: (1) modeling long-range
temporal dependencies between current observations and fu-
ture failures; (2) coupling discrete fault types with continuous
RUL values; and (3) generalizing under limited labeled fail-
ure data, a common scenario in newly deployed or sparsely
monitored robots like UR3. These challenges motivate the
development of physics-informed joint modeling frameworks
that embed domain knowledge into the learning process, en-
abling robust, interpretable, and data-efficient prediction.

Figure 1. Illustration of the joint fault classification and RUL
estimation task.

As illustrated in Figure 1, the joint prediction task requires
modeling both discrete fault classes and continuous RUL val-
ues from a sliding temporal window.

3. PHYSODE-JOINT: PHYSICS-INFORMED ODE-
GUIDED JOINT MODELING

This section presents PhysODE-Joint, a physics-informed
deep learning framework for joint fault classification and
Remaining Useful Life (RUL) prediction in robotic sys-
tems. The framework integrates three core components: (1)
physics-guided feature learning, (2) Transformer-based tem-
poral modeling, and (3) cascade fault-RUL prediction. This
design enables robust, interpretable, and data-efficient joint
predictions by embedding domain knowledge of mechani-
cal wear and thermal degradation into the learning process,
while leveraging expressive sequence modeling and class-
aware degradation dynamics.

Let Xt−L+1:t = {xt−L+1, . . . , xt} ∈ RL×d denote the in-
put sequence, where xτ ∈ Rd represents the system state at
time τ , and L is the length of the historical window used for
prediction. Each xτ consists of sensor measurements such
as joint currents, temperatures, speeds, and gripper current
— all of which are critical indicators of underlying physical
degradation processes.

As illustrated in Figure 2, PhysODE-Joint operates in a se-
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Figure 2. Overview of the PhysODE-Joint framework.

quential manner: physical priors shape the input representa-
tion, temporal dependencies are captured via self-attention,
and final predictions are generated through a cascade struc-
ture that ensures fault classification directly informs RUL es-
timation. The following subsections detail each component.

3.1. Physics-Informed Feature Learning

To embed domain-specific physical knowledge into the fea-
ture learning process, we define a physics-guided transforma-
tion function P(·), which maps raw sensor data into a physi-
cally meaningful latent space. For example, the temperature
evolution of robotic joints follows a first-order thermal dy-
namics model:

dTJk

dt
= αkIJk − βk(TJk − Tamb), (4)

where αk and βk are learnable thermal constants, and Tamb
is ambient temperature. Although this ODE is not solved ex-
plicitly during training, its structure guides the design of P(·)
to promote physically plausible feature representations.

The transformation is implemented as a linear layer with
ReLU activation:

hτ = P(x̃τ ) = ReLU(Wp · x̃τ + bp), (5)

where x̃τ = (xτ − µ)/σ is the standardized input, and Wp ∈
Rh×d, bp ∈ Rh are learnable parameters. This step acts as a
soft physical constraint, encouraging the model to prioritize
features consistent with known thermal-mechanical behavior.

3.2. Transformer-Based Temporal Encoder

Temporal dependencies in the sequence Xt−L+1:t are mod-
eled using a multi-layer Transformer encoder. Each trans-
formed feature vector hτ is augmented with positional en-
coding PE(τ) to retain temporal order:

h′
τ = hτ + PE(τ). (6)

The resulting sequence H′
t−L+1:t = {h′

t−L+1, . . . , h
′
t} is

passed through N layers of multi-head self-attention and
position-wise feed-forward networks. The final contextual-
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ized representation zt ∈ Rh at time t is obtained by global
average pooling over the temporal dimension:

zt =
1

L

t∑
τ=t−L+1

A(h′
τ ), (7)

where A denotes the output of the Transformer encoder stack.
This representation encodes both local and global temporal
patterns, serving as the shared foundation for downstream
tasks.

3.3. Cascade Fault-RUL Joint Modeling

PhysODE-Joint performs fault classification and RUL esti-
mation in a cascade manner, first predicting the most likely
future system state, then estimating RUL conditioned on that
prediction. This design reflects the real-world causal relation-
ship: the type of fault dictates the degradation trajectory.

The first stage predicts the system state ŷt+∆ ∈ {0, 1, 2} at
a future time t + ∆, where y = 0 means Normal operation,
y = 1 means Grip loss and y = 2 means Protective stop.

The classification is performed via a linear layer followed by
Softmax:

ŷt+∆ = argmax
y

Softmax (Wy · zt + by) , (8)

where Wy ∈ R3×h and by ∈ R3 are task-specific parameters.

The second stage estimates RUL by modeling the degradation
process as a neural ODE, parameterized per fault class:

dg

dt
= fθy (g, zt), (9)

where fθy is a neural network with parameters θy , and y ∈
{0, 1, 2} selects the fault-specific dynamics. Given an initial
degradation state gt, the RUL is defined as the first time τ > 0
when the degradation state exceeds a fault-specific threshold
ηy:

r̂t = inf {τ > 0 | gt+τ ≥ ηy} . (10)

This cascade structure ensures that RUL estimation is class-
aware and physically grounded, avoiding unrealistic degrada-
tion paths that might arise from treating all faults uniformly.
The ODE solver (e.g., Runge-Kutta) is integrated via auto-
matic differentiation, enabling end-to-end training.

3.4. Multi-Task Learning Objective

The model is trained end-to-end using a weighted multi-task
loss:

L = λ · Lcls + (1− λ) · Lrul, (11)

where λ ∈ [0, 1] balances the two objectives and is tuned via
validation performance.

The classification loss Lcls is cross-entropy:

Lcls = −
2∑

y=0

y log(ŷ), (12)

where y is the one-hot encoded true label and ŷ is the pre-
dicted probability distribution.

The RUL regression loss Lrul is mean absolute error (MAE):

Lrul =
1

N

N∑
i=1

|ri − r̂i| , (13)

where N is the batch size.

This multi-task framework encourages the shared representa-
tion zt to encode both discriminative features for classifica-
tion and predictive patterns for degradation modeling. Cru-
cially, the ODE-guided RUL estimation introduces an im-
plicit physical constraint, even without explicit physics loss,
because the degradation dynamics are parameterized per fault
class and evolve continuously over time, promoting smooth,
plausible trajectories.

4. DATA DESCRIPTION AND EXPERIMENTAL SETUP

We evaluate PhysODE-Joint on the UR3 CobotOps
Dataset (Tyrovolas & Stylios, 2024), a real-world, multi-
cycle time-series dataset collected from a UR3 collaborative
robot during industrial operation. The dataset contains 7,409
time-stamped samples, each comprising 20 sensor measure-
ments, including joint currents, temperatures, speeds (J0–J5),
and gripper current, acquired via MODBUS and RTDE pro-
tocols. These signals provide fine-grained insight into the
robot’s electromechanical dynamics, making the dataset ideal
for predictive maintenance research.

Table 1. Feature description of the UR3 CobotOps dataset.

Variable Name Type Description
Current J0–J5 Continuous Joint currents (A)
Temperature J0–J5 Continuous Joint temperatures (°C)
Speed J0–J5 Continuous Joint angular speeds (rad/s)
Tool current Continuous Gripper current (A)
Cycle Integer Operation cycle identifier
Event Integer 0: Normal, 1: Grip Loss, 2: Protective Stop

The dataset supports two core tasks: fault classification and
Remaining Useful Life (RUL) prediction. The Event vari-
able serves as the classification target, with three classes: nor-
mal operation (0), grip loss (1), and protective stop (2). The
RUL at each time step t is defined as the time (in samples or
seconds) until the next failure event:

rt = inf {τ > 0 | Eventt+τ ∈ {1, 2}} . (14)

This formulation enables joint modeling of discrete fault
types and continuous degradation trajectories — precisely the
scenario PhysODE-Joint is designed to address.
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To simulate real-world deployment, the dataset is split
chronologically into training (70%), validation (15%), and
test (15%) sets, preventing future information leakage. Miss-
ing values in sensor channels are imputed using linear in-
terpolation, and all continuous features are standardized per
cycle to mitigate scale differences.

To evaluate the effectiveness of PhysODE-Joint, we con-
duct comparative experiments against five widely adopted
deep learning baselines for time-series modeling: a stan-
dard Transformer encoder (Transformer-Only) for capturing
long-range temporal dependencies; recurrent architectures in-
cluding GRU and LSTM for modeling sequential dynam-
ics; and hybrid models comprising CNN and CNN-LSTM,
which combine local feature extraction with temporal context
modeling. All competing models are trained under identical
preprocessing pipelines, hyperparameter configurations, and
early stopping criteria to ensure a fair and reproducible com-
parison.

Performance is evaluated using a unified set of metrics for
both classification and RUL prediction, summarized in Ta-
ble 2.

Table 2. Evaluation metrics for fault classification and RUL
prediction.

Metric Definition
Accuracy (ACC) Proportion of correctly classified samples
Macro F1-score Harmonic mean of precision and recall, averaged across classes
Precision TP / (TP + FP)
Recall TP / (TP + FN)

RMSE
√

1
N

∑N
i=1(ri − r̂i)2

MAE 1
N

∑N
i=1 |ri − r̂i|

Spearman Rank correlation between true and predicted RUL

5. EXPERIMENTAL RESULTS

We evaluate PhysODE-Joint against five state-of-the-art deep
learning baselines. All models are trained under identical pre-
processing, hyperparameter tuning, and early stopping crite-
ria to ensure fair comparison.

5.1. Fault Classification Performance

Table 3 reports classification accuracy and Macro F1 scores
for predicting system states one minute ahead. PhysODE-
Joint achieves the highest test-set performance: 57.83% ac-
curacy and 27.31% Macro F1, significantly outperforming
the best baseline (CNN-LSTM: 54.12% accuracy, 23.44%
F1). Notably, while Transformer-Only achieves high valida-
tion accuracy (63.94%), it degrades sharply on the test set
(48.57%), indicating overfitting to early-cycle patterns. In
contrast, PhysODE-Joint maintains consistent performance
across train, validation, and test sets , which is a direct con-
sequence of its physics-informed feature learning and ODE-
guided degradation modeling, which regularize the repre-
sentation space and enhance generalization under limited,
distribution-shifted data.

Table 3. State classification performance for predicting sys-
tem states 1 minute ahead.

Model Accuracy (%) Macro F1 (%)

Train Val Test Train Val Test

Transformer-Only 58.96 63.94 48.57 26.21 27.85 17.77
GRU 57.52 60.20 54.09 25.67 26.15 24.97
LSTM 55.16 63.14 47.68 23.42 24.24 21.28
CNN 64.62 59.21 53.50 30.66 26.75 23.40
CNN-LSTM 64.87 61.23 54.12 29.64 27.11 23.44

PhysODE-Joint (Ours) 65.05 63.55 57.83 29.33 28.99 27.31

5.2. RUL Prediction Performance

Table 4 presents RUL prediction results using RMSE, MAE,
and Spearman correlation. PhysODE-Joint achieves the low-
est training RMSE (0.4254) and MAE (0.4557), indicating
strong convergence and minimal underfitting. More impor-
tantly, it maintains superior generalization on the test set:
RMSE = 0.7141, MAE = 0.5014, and Spearman = 29.43%,
which outperforming all baselines by a significant margin.
For instance, Transformer-Only, while achieving high train-
ing Spearman (66.21%), collapses on test (19.87%), revealing
its vulnerability to distribution shift. CNN and RNN variants
show inconsistent performance, with low Spearman scores
suggesting poor ranking ability, which is critical for main-
tenance scheduling.

Figure 3 visually summarizes the performance gap:
PhysODE-Joint dominates in both classification accuracy/F1
(left) and RUL regression metrics (right), particularly on the
test set — where generalization matters most.

5.3. Discussion: Why PhysODE-Joint Works

The consistent gains of PhysODE-Joint over baselines arise
from its principled fusion of physical priors with deep tempo-
ral modeling. By encoding known thermal-mechanical rela-
tionships, such as the dependence of joint temperature on cur-
rent (dT/dt ∝ I), into the feature learning stage, the model
avoids purely data-driven overfitting and instead learns rep-
resentations that reflect underlying degradation mechanisms.
This is particularly valuable under limited or distribution-
shifted data, where physical constraints act as inductive bias
to guide generalization.

The cascade prediction architecture further enhances perfor-
mance by decoupling fault identification from RUL estima-
tion while preserving their causal link. Rather than predicting
RUL in isolation, the model first infers the most likely fault
class and then estimates RUL using a class-conditioned ODE.
This enables fault-specific degradation modeling, for exam-
ple, distinguishing between the wear patterns of grip loss and
protective stop, and aligns with real-world maintenance logic,
where diagnostic decisions inform prognostic actions.

Finally, the use of Transformer as the temporal encoder is
critical for capturing long-range dependencies without re-
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Table 4. RUL prediction performance (RMSE, MAE, and Spearman correlation) across training, validation, and test sets.

Model RMSE MAE Spearman (%)
Train Val Test Train Val Test Train Val Test

CNN-LSTM 0.7661 0.6297 0.8018 0.7947 0.5002 0.6097 52.57 23.62 15.96
CNN 0.7954 0.6761 0.7717 0.6712 0.4857 0.5667 74.58 19.48 19.21
GRU 0.8122 0.6651 0.8496 0.8268 0.5018 0.6614 54.79 25.79 13.51
LSTM 0.8258 0.6674 0.7674 0.8169 0.4161 0.5137 38.41 16.89 12.88
Transformer-Only 0.5268 0.6400 0.8441 0.4724 0.5344 0.5883 66.21 25.05 19.87
PhysODE-Joint (Ours) 0.4254 0.5423 0.7141 0.4557 0.4807 0.5014 91.35 39.24 29.43

Transformer-Only GRU
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Figure 3. Comparison of RUL prediction performance across baseline models. Left: fault classification accuracy and F1-score
on the test set. Right: overall RUL prediction metrics (RMSE, MAE, Spearman correlation).

currence constraints, essential for detecting subtle precursors
that emerge hundreds of steps before failure. Combined with
physics-guided dynamics, this architecture demonstrates ro-
bustness under chronological data splitting, where training
data reflects early degradation and test data captures ma-
ture faults. While a formal ablation study is planned to
isolate component contributions, the current results strongly
suggest that the synergy between physical grounding, class-
aware dynamics, and expressive sequence modeling is key to
PhysODE-Joint’s success.

6. CONCLUSION

This paper proposes PhysODE-Joint, a physics-informed
deep learning framework that unifies Transformer-based tem-
poral modeling, physics-guided feature learning, and ODE-
driven degradation estimation for joint fault classification and
RUL prediction in industrial robotic systems. By explicitly
modeling class-conditional degradation dynamics and incor-
porating domain knowledge through structured feature learn-
ing and hybrid training, the framework addresses key chal-
lenges posed by limited failure data and complex system be-
haviors. Experimental results on the UR3 CobotOps dataset
demonstrate that PhysODE-Joint outperforms conventional
deep learning models in both classification accuracy and RUL
prediction precision. The integration of physics-based priors
and uncertainty quantification further enhances model inter-
pretability and robustness, making it a promising solution for
real-world predictive maintenance applications in robotics.
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