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ABSTRACT 

Accurate condition monitoring of rotating machinery 

requires integrating multi-sensor data to capture fault-related 

information distributed across sensing locations. While 

attention-based deep learning models can assess sensor 

importance, their lack of transparency limits industrial 

adoption. This study proposes an interpretable sensor 

importance-based multi-sensor integration framework 

combining a CNN-inspired kernel sharing strategy, a 

Transformer-based feature extraction module for local and 

global feature extraction, and a channel attention mechanism 

for dynamic sensor weighting. Attention weights in the 

Transformer-based feature extraction module were analyzed 

in the frequency domain to reveal spectral components 

influencing sensor importance evaluation. Validation on a 

pump testbed with various speeds conditions shows superior 

fault diagnosis accuracy, robustness to unseen conditions, 

and clear alignment between high-weight sensors and known 

fault frequencies, supporting trustworthy AI-driven condition 

monitoring in practice. 

1. INTRODUCTION 

Condition monitoring is essential for the predictive 

maintenance of industrial rotating machinery, ensuring 

operational reliability, preventing unexpected downtime, and 

reducing maintenance costs (Lee et al., 2014). Traditional 

approaches, typically based on single-sensor measurements 

and expert-driven analysis, have proven effective for well-

understood systems under stable operating conditions. 

However, they often underperform in complex industrial 

environments, where fault signatures are distributed across 

multiple sensing modalities and operating states. Single-

sensor analysis may fail to capture complementary 

information from heterogeneous signals, thereby limiting 

fault diagnosis performance. 

The advancement of the industrial Internet of Things (IIoT) 

has enabled the deployment of diverse sensor networks that 

collect large-scale, multi-modal datasets, such as vibration, 

acoustic, temperature, and other process variables (Liu et al., 

2018). These data offer richer fault-related information but 

introduce the challenge of effective integration, particularly 

when combining signals with varying noise levels, frequency 

characteristics, and fault sensitivities. Conventional fusion 

techniques, including simple averaging or fixed expert-

defined weights, cannot fully capture the complex, nonlinear 

dependencies among sensors. 

Deep learning-based fusion models have emerged as a 

promising alternative, leveraging their ability to 

automatically learn hierarchical feature representations and 

model cross-modal correlations. Among these, attention 

mechanisms have shown strong potential for dynamically 

evaluating sensor importance, allowing models to emphasize 

the most informative sensors under varying operating 

conditions (Wu et al., 2023). Despite these advances, most 

attention-based approaches operate as black boxes, providing 

little insight into the specific signal characteristics that drive 

sensor importance estimation, which limits transparency and 

trust in industrial decision-making (Li et al., 2024). 

To address this interpretability gap, this paper proposes an 

interpretable sensor importance-based multi-sensor 
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integration framework for rotating machinery condition 

monitoring. The framework employs a unified Transformer-

based feature extraction module along with sensor with 

channel attention to jointly model multi-sensor relationships 

and adaptively quantify sensor importance. In addition, we 

introduce a frequency-domain attention weight interpretation 

method that traces attention flow through network layers and 

maps it to specific spectral components, thereby linking 

model decisions to physically meaningful fault indicators. 

The proposed approach is validated on a pump testbed under 

multiple rotational speeds and fault conditions, 

demonstrating superior fault diagnosis accuracy and clear 

interpretability compared with state-of-the-art fusion 

methods. 

The main contributions of this study are as follows: 

1) An interpretable, attention-based multi-sensor integration 

framework for rotating machinery condition monitoring. 

2) A frequency-domain attention weights interpretation 

method was developed to identify influential spectral 

information for evaluating sensor importance. 

3) Comprehensive experimental validation under various 

speed conditions. 

2. PRELIMINARY BACKGROUNDS 

2.1. CNN-inspired Kernel Sharing Strategy  

Convolutional Neural Networks (CNNs) have been widely 

applied across various domains due to their ability to 

efficiently capture local patterns in image data. Their 

effectiveness is largely attributed to two key characteristics 

of image data: stationarity of statistics and locality of 

dependency, which allow convolution kernels to learn 

recurring patterns and localized relationships. 

These concepts can be extended to multi-sensor condition 

monitoring data. In this context, kernel operations can be 

designed to leverage statistical stationarity for capturing 

recurring fault patterns across sensors, while preserving 

sensor-specific information by respecting the locality of 

dependency (Kim et al., 2025). 

(1) Stationarity of Statistics 

In image analysis, the same convolution kernel is applied 

across the spatial domain to detect patterns that recur 

regardless of position. Similarly, in rotating machinery, 

defect-related periodic components may appear in signals 

from multiple sensors due to a common fault source. 

Applying a shared kernel across sensor channels can thus 

efficiently extract these recurring features. 

(2) Locality of Dependency 

Locality in image data refers to meaningful information being 

confined to a limited region. For multi-sensor data, 

distinctive characteristics are often localized to individual 

sensor channels. Maintaining this locality can be achieved by 

applying kernels in a channel-wise (depth-wise) manner, 

ensuring that each kernel processes only its corresponding 

sensor channel. 

2.2. Attention Rollout 

Improving the interpretability of Transformer-based models 

requires identifying which parts of the input sequence most 

strongly influence the model’s predictions. The attention 

rollout technique (Abnar and Zuidema, 2020) provides a way 

to trace the cumulative flow of attention through multiple 

layers, thereby yielding a global measure of token influence. 

In this work, the method is adapted to the analysis of time-

series data. 

Let 𝐴(𝑖) denote the average attention weight matrix of the 𝑖-
th Transformer-based feature extraction module, where the 

attention weights are averaged over all attention heads.  

                                     A(i)∈RNQ×NK                                  (1)  

Here, where NQ and NK are the dimension of query and key 

tokens in Transformer block, respectively. 

Because Transformer block employ residual connections, the 

identity matrix is added. 
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The rollout process recursively multiplies the normalized 

attention matrices across layers to accumulate the influence 

of each token from the input to a given layer.  

                                     Ã
(i)

=An
(1)∙An

(2)
∙⋯∙An

(i)  (2) 

The resulting matrix Ã
(i)

aggregates attention contributions 

from all preceding layers, producing an attention map that 

reflects the effective contribution of each input segment to 

the representation at i-th layer.  

3. PROPOSED METHOD 

The proposed interpretable sensor importance-based multi-

sensor integration framework comprises two main 

components: a sensor-wise shared Transformer-based feature 

extraction module for feature extraction, and a sensor 

importance evaluation module with a classification head for 

fault diagnosis as depicted in  . After the fault diagnosis stage, 

the attention patterns of the Transformer-based feature 

extraction module are analyzed via an attention rollout 

procedure to identify the frequency characteristics that most 

strongly contribute to the evaluated sensor importance. 

Sensor-wise Shared Transformer-based feature extraction 

module.  
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Figure 1. Flowchart of the proposed method 

The sensor-wise shared Transformer-based feature extraction 

module is designed to capture both the periodic fault patterns 

common across multiple sensors and the unique sensor-

specific information crucial for fault diagnosis. 

For each sensor channel, the input signal is divided into non-

overlapping patches, which are linearly projected to obtain 

patch embedding. These embedding are then transformed 

into queries, keys, and values, and processed by a shared 

Transformer-based feature extraction module. Within the 

Transformer block, multi-head self-attention (MHSA) 

captures long-range temporal dependencies. The MHSA 

output is passed through a position-wise feed-forward 

network, with each sublayer followed by residual 

connections and layer normalization to ensure stable training 

and rich representational capacity. 

The feature extraction module is shared across all sensor 

channels to exploit the statistical stationarity of rotating 

machinery, where localized defects produce similar periodic 

patterns in each channel regardless of location. At the same 

time, to retain sensor-specific responses, the Transformer-

based feature extraction module is applied in a depth-wise 

manner, ensuring that information from different channels is 

not aggregated during extraction. This preserves distinctive 

features for each sensor, enabling accurate evaluation of its 

fault diagnosis contribution.  

3.1. Sensor Importance Evaluation with Classification 

Head 

To estimate the importance of each sensor channel for fault 

diagnosis, a CNN-based channel attention module processes 

the multi-sensor features as illustrated in Error! Reference 

source not found.. Two stacked one-dimensional 

convolution layers extract discriminative features that 

capture contextual patterns within each channel. Temporal 

average pooling then condenses each feature map into a 

compact descriptor summarizing its overall activation. 

The descriptors are normalized via a softmax function to 

produce channel attention weights, representing the relative 

importance of each sensor. These weights are applied to 

reweight the latent features, which are then fed into a 

classification module. A fully connected layer maps the 

features to predefined fault categories, followed by a softmax 

activation to produce confidence scores for each fault type. 

The model is trained using a cross-entropy loss between the 

predicted confidence scores and the ground-truth labels, 

guiding both the feature extraction layers and attention 

weights to emphasize the most informative sensors under 

varying operating conditions. 

 

Figure 2. Flowchart of the sensor importance evaluation & 

integration module 

3.2. Self-Attention Weights Interpretation 

To enhance interpretability, we apply an extended self-

attention interpretation pipeline that links attention patterns 

to physically meaningful spectral fault characteristics. 

First, the attention rollout technique accumulates attention 

weights across all Transformer layers, tracing the cumulative 

influence of each input patch. The resulting attention map is 

interpolated back to the original temporal resolution for 

alignment with the time-series signals. Finally, the 

interpolated attention weights are transformed into the 

frequency domain using the Fast Fourier Transform (FFT), 

revealing dominant spectral components corresponding to 

known fault-related frequencies. 

This combined time–frequency interpretation highlights both 

the most influential temporal segments and the key frequency 

bands that drive the model’s fault diagnosis decisions, 

improving transparency and aligning the learned importance 

with domain knowledge. 
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4. EXPERIMENTAL VALIDATION 

The proposed framework was experimentally validated on a 

pump testbed operating at six distinct rotational frequencies 

of 20, 22, 24, 26, 28, and 30 Hz. To evaluate the model’s 

capability to generalize to unseen operating conditions, an 

interpolation training scenario was employed. In this setting, 

the model was trained only on data from 20 Hz and 30 Hz 

operating speeds and tested on the intermediate speeds of 22, 

24, 26, and 28 Hz, which were excluded from the training set. 

This configuration represents realistic industrial situations 

where fault signatures may appear at operating speeds 

different from those observed during model development. 

The fault diagnosis performance of the proposed framework 

was compared with two state-of-the-art deep learning 

methods to validate its feature extraction capability. For a fair 

comparison, recent attention-based fault diagnosis models 

were selected as baselines. The first baseline, 

Diagnosisformer, is a Transformer-based approach that 

exploits spectral representations obtained via the Fast Fourier 

Transform (Hou et al., 2023). By modeling fault-related 

dependencies in the frequency domain through the 

Transformer architecture, it demonstrated improved 

diagnostic performance on bearing fault datasets. The second 

baseline, Global Contextual Feature Aggregation Network 

(GCFAN), is a multi-scale convolutional neural network 

designed to identify fault patterns under non-stationary 

conditions (Xu et al., 2023). This model incorporates a global 

contextual module and a multiscale attention mechanism 

within the CNN framework to extract both global and local 

discriminative features, thereby enhancing fault diagnosis 

robustness under varying operating environments.  

In addition to classification accuracy, the proposed method 

was further evaluated by interpreting the sensor importance 

derived from the attention weights in the Transformer-based 

feature extraction module, providing insights into the 

contribution of each sensor to the fault diagnosis decision.  

4.1. Dataset Description 

The experiments were conducted using a closed loop pump 

testbed designed to reproduce various operating speeds 

encountered in industrial rotating machinery. As shown in 

Figure 3, the system consists of a water reservoir, a pump 

driven by an induction motor, and associated piping with 

adjustable control valves. The pump shaft is supported by 

rolling element bearings, in which artificial defects were 

introduced by drilling 3 mm-diameter holes on the inner 

raceway and the outer raceway to simulate typical bearing 

spall fault scenarios. 

Two accelerometers were mounted directly on the pump to 

record vibration signals. Accelerometer 1 (Channel 1) was 

installed near the drive end bearing housing, while 

Accelerometer 2 (Channel 2) was positioned adjacent to the 

non-drive end bearing. This placement enabled simultaneous 

monitoring of vibration responses from different mechanical 

locations, capturing both localized defect impacts and 

propagated vibration patterns. 

The pump was operated at six discrete rotational frequencies 

of 20, 22, 24, 26, 28, and 30 Hz. For each operating condition, 

vibration data were sampled at 20 kHz for a duration of 10 

seconds, with a single experimental trial performed for each 

condition.  

4.2. Model training 

All models were trained under identical experimental settings 

to ensure a fair performance comparison. The vibration 

signals acquired from the pump testbed were lowpass filtered 

between 4 kHz to highlight the resonance frequency range 

primarily excited by bearing faults, while attenuating high 

frequency noise. The filtered signals were subsequently 

segmented into sequences of 4,000 data points, 

corresponding to a 0.1 s time window, and normalized before 

being fed into the models. As a result, 100 samples were 

obtained for each class at each rotational speed, yielding a 

total of 1,800 samples across six rotational speed conditions 

and three fault types. 

In the proposed framework, each preprocessed vibration 

signal samples were further partitioned into 50 non-

overlapping segments, which served as discrete input tokens 

to the Transformer-based feature extraction module. The 

Adam optimizer was employed with an initial learning rate of 

10-3 , and an early stopping criterion was applied to the 

validation loss, terminating training if no performance 

improvement was observed within 20 consecutive epochs on 

subset of training dataset. This setup ensured both 

convergence stability and prevention of overfitting.  

 

Figure 3. Pump testbed configuration 

4.3. Comparative Study 

Figure 4 presents the average fault classification accuracy 

across all test conditions with five-fold cross validation for 

the comparative models and ablation model with independent 

Pump (motor)

Reservoir

Accelerometer 1

Accelerometer 2

Outer raceway fault

Inner raceway fault
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feature extraction module on each channel. The proposed 

method achieved the highest mean accuracy, surpassing both 

Diagnosisformer and GCFAN. Although these baseline 

models demonstrated competitive performance, their 

classification accuracy was more sensitive to variations in 

operating speed, as evidenced by the wider error bars 

representing standard deviation. 

Furthermore, the ablation study exhibited a 3 percentage-

point decrease in fault diagnosis accuracy compared to the 

proposed method, which is attributed to overfitting in the 

independently trained feature extraction modules for each 

channel, resulting in reduced generalization capability. The 

superior performance of the proposed method is attributed to 

the sensor-wise shared feature extraction module design 

preserves sensor-specific fault diagnosis information while 

efficiently extracting recurring fault patterns common across 

sensors. By adaptively emphasizing the most informative 

sensor channels, the framework maintains stable fault 

diagnosis accuracy. This finding highlights the effectiveness 

of the shared Transformer-based feature extraction module in 

enhancing generalizable fault diagnosis performance. 

 

Figure 4. Fault diagnosis performance of existing and 

proposed methods with ablation study 

4.4. Sensor Importance Evaluation Results 

Figure 5 presents the sensor importance evaluation results 

obtained using the proposed framework. Across all test 

conditions, the model consistently assigned higher 

importance scores to channel 1 than to channel 2. This finding 

aligns with the physical setup of the pump testbed, as 

Accelerometer 1 was installed closer to the drive-end bearing, 

where fault impacts are more prominent. The elevated 

weighting indicates that the model effectively learned to 

prioritize measurements from the sensor capturing stronger 

fault-related signals, thereby enhancing fault diagnosis 

accuracy.  

In contrast, the lower importance assigned to channel 2 

suggests that, although it still contributed meaningful 

information, its sensitivity to localized fault-induced 

vibrations was diminished due to its complicated transfer 

path from the primary fault source. The low standard 

deviation in sensor importance scores across repeated trials 

highlights the stability and robustness of the proposed 

estimation process.  

Overall, these results confirm that the method not only 

achieves strong classification performance but also provides 

interpretable, physically consistent insights into sensor 

contributions, supporting informed sensor placement and 

optimization in practical condition monitoring applications  

 
Figure 5. Sensor importance evaluation result 

4.5. Interpretation on Attention Weights in Transformer-

based Feature Extraction Module 

The attention weight distributions in the Transformer-based 

feature extraction module were examined in the frequency 

domain to interpret how sensor importance is determined. 

Figure 6 presents the attention weight heat map overlaid on 

the raw vibration signal, where high-intensity regions 

correspond to time segments that the model identified as 

highly relevant for fault diagnosis. These highlighted 

intervals align with periodic impulse-like patterns commonly 

associated with bearing defect impacts. 

 
Figure 6. Attention weight heat map on vibration signal 

 

To gain further insight, the interpolated attention weights 

were transformed into the frequency domain using FFT and 

compared with analytically derived bearing fault 
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characteristic frequencies, including the ball pass frequency 

of the inner race (BPFI), ball pass frequency of the outer race 

(BPFO), and the fundamental train frequency (FTF), as 

defined in Eqs. (4–6). Here, f
r

 is the shaft rotational 

frequency, 𝑛 is the number of rolling elements, 𝜙 is the 

contact angle, and 𝐷 and 𝑑 represent the pitch diameter and 

rolling element diameter of the bearing, respectively. 

BPFI: 

                                BPFI=
nfr

2
(1+

d

D
𝑐𝑜𝑠𝜙) (4) 

BPFO: 

BPFO=
nfr

2
(1-

d

D
𝑐𝑜𝑠𝜙) (5) 

FTF: 

                                FTF=
fr

2
(1+

d

D
𝑐𝑜𝑠𝜙)  (6) 

 

Under the normal operating condition (Figure 7), no distinct 

peaks are observed at fault characteristic frequencies. For 

channel 1, the FFT spectrum of attention weights contain 

intense 4x harmonics of the rotational frequency, which is 

induced by the 4-blade impeller rotation, while channel 2 

exhibits rotational frequency and its harmonics. This 

indicates that the Transformer-based feature extraction 

module adaptively focuses on sensor-specific information 

relevant to the system’s dynamics.  

  

Figure 7. FFT spectrum of attention weight under normal 

condition 

 

In the inner raceway fault condition (Figure 8), the FFT 

spectrum shows pronounced peaks at the calculated BPFI 

(green rhombus), confirming that the model selectively 

attended to defect-related frequency components. The 

amplitude at the fault characteristic frequency is higher for 

channel 1, which also received a higher sensor importance 

score, demonstrating that sensor importance reflects the 

intensity of fault-related content in the signal.  

For the outer raceway fault condition (Figure 9), distinct 

peaks appear at the BPFO frequency band (blue triangles), 

with the FTF located in the low-frequency region below 20 

Hz. Although the amplitude at these frequencies is similar for 

both channels, channel 1 exhibits fewer irrelevant spectral 

components, suggesting an advantage in fault discrimination.  

Overall, these findings confirm that the proposed framework 

not only delivers accurate fault classification but also offers 

physically consistent interpretability by linking attention-

based sensor importance to established fault characteristic 

frequencies.  

 
Figure 8. FFT spectrum of attention weight under inner 

raceway fault condition 

 

 
Figure 9. FFT spectrum of attention weight under outer 

raceway fault condition 

5. CONCLUSION 

This study proposed an interpretable sensor importance-

based multi-sensor integration framework for condition 

monitoring of rotating machinery. The framework integrates 

a Sensor-wise Shared Transformer-based feature extraction 

module with a kernel sharing strategy to simultaneously 

capture recurring fault patterns and sensor-specific 

characteristics. In addition, a CNN-based channel attention 

module was introduced to quantify the relative contribution 
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of each sensor, while an attention interpretation method in the 

frequency domain was developed to associate attention 

distributions with fault characteristic frequencies. 

Experimental validation on a pump testbed under multiple 

rotational speeds demonstrated that the proposed framework 

achieved more than a 7 percentage-point improvement in 

fault diagnosis accuracy compared to existing methods, and 

a 3 percentage-point improvement over the ablation method. 

Furthermore, since the proposed framework effectively 

extracts and integrates fault-related information from multi-

sensor data, it can be extended for various health 

management applications, such as anomaly detection and 

remaining useful life prediction, by adapting the output layer 

accordingly. 

Although the method achieved strong results in a controlled 

laboratory environment, its applicability to more complex 

and dynamic industrial settings remains to be verified. Future 

work will extend evaluation to diverse machinery types, 

operating conditions, and compound fault scenarios. 

Incorporating additional sensing modalities and deploying 

the framework in real-world industrial monitoring systems 

will be explored to further enhance fault diagnosis coverage, 

robustness, and interpretability. 
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