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ABSTRACT

Predictive maintenance has emerged as a crucial strategy in
complex systems management, leveraging machine learning
and data-driven health monitoring to anticipate failures and
optimize operational uptime. While significant progress has
been made in developing general-purpose models for
anomaly detection and condition-based maintenance, their
effectiveness often diminishes when applied to highly
specialized systems such as radar platforms. These systems
exhibit unique operational behaviours and failure modes,
necessitating tailored monitoring solutions. This paper
presents a methodology for anomaly detection tailored to
radar systems, addressing the inherent challenge of limited
labeled data and the ambiguity surrounding the definition of
anomalies. We employ a reconstruction-based approach
using autoencoders in conjunction with Mahalanobis distance
to generate anomaly scores, enabling the detection of subtle
deviations from normal system behavior without requiring
explicit failure labels. The proposed approach has been
applied to real sensor data collected from multiple radar units,
specifically from sensors located on the antenna mast. For
confidentiality, the data has been anonymized. Experimental
results demonstrate that the method effectively highlights
outliers and identifies the contributing features responsible
for anomalies. Furthermore, the model reveals interpretable
abnormal patterns and provides early indications that
condition-based monitoring can be a viable strategy for
identifying potential issues in radar operations.

1. INTRODUCTION

Condition-based maintenance (CBM) and predictive
maintenance strategies are attracting growing interest in
various industrial sectors, driven by the increasing
availability of sensor data and advances in machine learning
(Leukel, Gonzalez, and Riekert, 2021). These approaches
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enable health monitoring systems to move from reactive to
proactive paradigms, identifying signs of degradation or
failure before they lead to critical issues. In particular, data-
driven models now offer promising capabilities for detecting
anomalies and tracking equipment health in real-time.

However, the performance of such models is highly
dependent on the quality and completeness of the available
data. In practical settings, and especially in complex systems
like radar platforms, sensor data can be partial, noisy, or
missing altogether — whether due to sensor failures,
intermittent system operation, or logging constraints. This
makes it difficult to build purely statistical models or to
assign simple health status labels with confidence.

Given this challenge, our goal is to develop a robust anomaly
detection framework tailored to the specificities of radar
systems. Rather than addressing the system as a whole, we
focus our work on a particular subsystem: the antenna mast,
a critical mechanical component monitored by several
Sensors.

Our proposed methodology follows a two-stage approach.
The first stage involves a single-feature analysis, where we
analyze each sensor variable individually to understand its
behavior over time, detect basic anomalies, and prepare the
ground for a more complex analysis. The second stage
consists of a multi-feature analysis, integrating signals from
multiple sensors into a unified detection model, allowing for
more refined and context-aware anomaly detection.

Both stages require careful preprocessing to address the
imperfect nature of the dataset, including handling of missing
data, normalization, and segmentation of sensor logs. This
paper is organized as follows: we first describe the radar
system, the collected data, and the machine learning
architecture used. We then present the single-feature analysis
methodology and results, followed by the development and
evaluation of our complete multi-feature anomaly detection
framework.
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2. SYSTEM, DATA & MODEL DESCRIPTION

In this section, we describe the radar systems and the specific
subsystem we analyse: the antenna mast. Sensor data is
collected from this subsystem and includes both numerical
features (such as sensor measurements) and binary signals
(status indicators, position states, etc.).

We use data from four radars, anonymized as Alpha, Bravo,
Charlie and Delta. These units provide enough data for
training and testing our anomaly detection models. In
addition to sensor data, we also include maintenance records,
which indicate whether an intervention has taken place.
However, these logs are limited and do not offer detailed
labeling of the system’s health.

We will also study the structure of the dataset, the types of
features used, and the model architecture designed for
anomaly detection.

2.1. System Description

The antenna mast is the mechanical structure that connects
the equipped platform to the fixed part of the drive
mechanism on which the antenna is mounted. Its role is to
raise and lower the antenna between multiple predefined
configurations, depending on the operational needs.

The mast can be in one of the following positions:

e Position 0: The antenna is fully folded down. It is in a
non-operational state, fully retracted for transport or
storage. Both the drive actuator and the telescopic
actuators are retracted.

e Position 1: The antenna is raised just above the shelter
roof, allowing access for maintenance or operation. The
drive actuator is deployed, while the telescopic actuators
remain retracted.

e Position 2: The antenna is fully deployed, positioned
approximately 8 meters above ground level. In this
configuration, the telescopic actuators are deployed, and
the drive actuator is retracted.

Based on the mast’s mechanical architecture, we collect the
following data from the system at a sampling rate of every 10
seconds:

e Pressure values from two actuators

(actuator_1 and actuator_2),
e  Pressure from the drive actuator (actuator_3),
e Oil temperature from the hydraulic tank,

e Binary indicators reflecting the current position of the
antenna mast (positions 0, 1, or 2).

These features form the basis of our analysis in the next
sections.

telescopic

2.2. Maintenance Data

For each radar unit, we have access to three types of
maintenance records:

e Defect Record Sheets (DRS) — These report faults that
were serious enough to require sending the radar system
for repair.

e Maintenance Check Flights (MCF) — These list minor
issues that were fixed directly on-site and did not require
the system to be removed from operation.

e Bite Alerts: A log of alerts triggered by events, which
can range from routine occurrences (such as completing
the deployment of the mast antenna) to more significant
failures.

Each datasets include useful information such as the date of
the event and a textual description of the failure. When
possible, we manually analyze these descriptions to
determine whether a failure can be associated with the
antenna mast subsystem.

However, for each radar unit, only a few failure events are
clearly linked to the antenna mast. This sparse and weakly
labeled information makes it difficult to train supervised
models for anomaly detection or health assessment.

To address this limitation, we rely on an unsupervised
approach based on autoencoders (Lee., Jung, Song, and
Choo, 2020), which allows us to learn the system’s normal
behavior directly from the data. Deviations from this learned
behavior can then be interpreted as potential anomalies. The
next section details the dataset structure, and the model
architecture used in our framework.

2.3. Model Architecture

As discussed in the previous section, the lack of sufficient
labeled failure data — especially for the antenna mast —
makes supervised learning unsuitable. We instead adopt an
unsupervised anomaly detection approach based on a fully
connected autoencoder (FCAE) (Basora, Bry, Olive, and
Freeman, 2021). Autoencoders are neural networks trained to
reconstruct their input. When trained only on normal data,
they can later identify anomalies by measuring reconstruction
errors.

An autoencoder consists of two functions:

e The encoder, which maps an input vector x € R% to a
hidden (latent) representation y € R", through a non-
linear transformation:

y=g(W- s+b)

e The decoder, which reconstructs the original input from
the latent representation:

T=gW' - y+b)

In our case:
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e d corresponds to the input dimension after flattening a
sequence (i.e. sequence_length - n_features),

e h corresponds to the size of the latent space, i.e., the
most compact representation of the sequence,

e g(-) is a non-linear activation function, used to
introduce non-linearity into the model. We use RelLU
(Rectified Linear Unit) in the hidden layers to enable the
model to capture complex patterns and sparsity in the
representation. A Sigmoid activation is used in the final
layer to ensure the outputs remain within a stable
numeric range [0, 1], compatible with normalized input
data.

The model is trained to minimize the reconstruction loss
between the input x and the output X, using the mean
squared error (MSE) loss:

N
1
MSEG,%) =+ ) llx = B
i=1

The architecture is symmetric, composed of three dense
layers in both encoder and decoder (Figure 1). The layer
dimensions are defined as:

e diml = sequence_length - n_features

e dim2 = 0.7-diml

e dim3 = 0.7-dim2

e nf = 0.7 -dim3

The full structure of the model is summarized in Table 1 and
2. This architecture allows the model to learn compact
representations of normal sequences of radar sensor data. In
the following section, we evaluate how well the

reconstruction error can highlight deviations from expected
behaviour.

Dim1 Dim1
Input Output
Dim2 Dim2

DIM3  Comoresses  DIM3

representation

nf

Encoder Decoder

Figure 1: Fully connected autoencoder

3. SINGLE FEATURE ANALYSIS

This first stage of our framework focuses on analyzing each
sensor feature individually. The goal is to understand the
behavior of single variables over time, detect simple
anomalies, and identify which features may be most
informative.

This approach also helps validate our preprocessing pipeline
and test the performance of the autoencoder in a simplified
setting before moving to multi-feature analysis.

Compo- Operation Activa- Role
nent tion
Input [batch_size, —

sequence_length,
n_features] —

flatten

Input
sequence
reshaped into
a flat vector
for dense
processing.
Reduces
dimensionali-
ty; introduces
non-linearity
to learn
complex
relationships.

Further
compression
while
preserving
non-linear
dependencies.
Projects into
the latent
space; no
activation to
preserve full
representa-
tional range.
Most compact
form of the
input;
captures key
features of
the sequence.

Linear: diml —» ReLu

dim2

Encoder
Layer 1

Linear: dim2 — ReLu

dim3

Encoder
Layer 2

Encoder | Linear: dim3 — —
Layer 3 nf

Latent | Vector of size nf —

Space

Table 1 : Fully connected autoencoder architecture (1/2)

In this section, we describe the preprocessing steps, the
training and testing procedure, and present the main results
of this single-feature evaluation.
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3.1. Data Preprocessing

For this single-feature analysis, we extract one sensor signal
from radar unit “Bravo” — for  example,
actuator_1 pressure.

Compo- Operation Activa- Role
nent tion

Decoder Linear: nf — ReLu

Layer 1 dim3

Starts
reconstruc-
tion; ReLU
helps recover
complexity
from
compressed
data.
Progressive
reconstructio
n toward the
original
shape.

Final step;
sigmoid
constrains
output
between 0
and 1 for
stability.
Reconstructe
d sequence,
aligned with
the original
input format.

Linear: dim3 — RelLu

dim2

Decoder
Layer 2

Linear: dim2 —
diml

Decoder
Layer 3

Sigmoid

Output Reshaped —

Table 2 : Fully connected autoencoder architecture (2/2)

The preprocessing steps are as follows:

1. Remove NaN values from the dataset.

2. An outlier x is identified and removed if; |x —u| < a -
o with a setto a fixed value.

3. Removed values are then interpolated to maintain
continuity in the time series.

4. The dataset is split into two parts: a training set, taken
from a period considered representative of normal
behavior (e.g., up to March 1, 2024, for radar “Bravo™)
and a test set, covering the remaining data, useful for
evaluation on the same unit.

5.  Two new columns are added:

o delta_timestamp:  time
consecutive data points,

o session_id: groups data points into sessions. If the
time gap between two consecutive points is less than
N minutes, they belong to the same session, as shown
in Figure 2.

difference  between

6. The training data is scaled using a MinMaxScaler, and
the same scaler is applied to the test data.

Within each session, we generate sequences of 20
timestamps with an overlap of 10. Sequences that
cannot reach 20 timestamps (typically at session
boundaries) are discarded (Figure 3). This ensures that
sequences are composed of temporally consistent points
and avoids including data affected by sensor inactivity or
radar shutdowns.

8. The final output of this process is a set of sequences, each
structured as [sequence_length, n_feature]. This format
matches the expected input of our autoencoder model.

Seszion 2

Session 3

Sesszion 1

200

b Y
Nowv 1 +—— +— MNov 3
2023 =N min =N min
Figure 2: Session creation process
Session 1
Sequence 2 Sequence 3
Sequence 1 Dxopping paxt

Figure 3: Sequences creation within session boundaries

3.2. Training

To train our autoencoder on the single-feature sequences, we
use a 5-fold cross-validation strategy to ensure robust
performance evaluation.

The main hyperparameters are:

e Epochs: 20

e Batch size: 32

e Folds: 5 (using KFold() from scikit-learn)

Before training, the dataset is split into training and
validation folds. For each fold, the model is trained on four
subsets and validated on the fifth. This cross-validation setup

reduces the risk of overfitting and improves the model’s
generalization ability.

Each fold is transformed into a dataloader, a utility that
simplifies batch-wise loading and efficient iteration during
model training.
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The model is trained to minimize the Mean Squared Error
(MSE) between the input and its reconstruction. This loss
function penalizes larger deviations more strongly and is
well-suited for regression-based anomaly detection tasks like
ours.

After the five folds are completed, we retain the model
configuration that achieves the lowest average validation
MSE.

3.3. Anomaly Score

Once the model has been trained on the normal data, we
must define a metric to evaluate how well a new sequence is
reconstructed — and thus, to detect potential anomalies.

At this stage, we introduce the concept of an anomaly score,
which quantifies the degree of deviation between an input
sequence and its reconstruction. This score isn’t used for fold
selection as it relies on the distribution of reconstruction
errors observed on the training dataset.

To account for correlations across features (in multi-feature
extensions), we compute the Mahalanobis distance
(Ahmad, Rekowski, Nedelkoski, and Ka, 2020; Jin, Ma,
Cheng, and Pecht, 2012; Malhotra, Ramakrishnan, Anand,
Vig, Agarwal, and Shroff, 2016) between the reconstruction
error of a test sequence and the distribution of errors from the
training set.

In a multivariate space, the Mahalanobis distance measures
the distance of a point to the center of a data distribution,
considering its covariance structure — in other words, its
"shape". Unlike Euclidean distance, Mahalanobis distance
penalizes deviations based on how likely they are in the
context of the underlying distribution.

We calculate the reconstruction error vectors (i.e., the
absolute difference between input and output) for all training
sequences. This gives us a reference cloud of "normal” error
values. From this set, we estimate the parameters of the
underlying multivariate Gaussian distribution:

e u: the mean of the reconstruction errors,
e X the covariance matrix.

These parameters are estimated using Maximum Likelihood
Estimation (MLE).

Before using this Gaussian model to compute Mahalanobis
distances, we verify that the distribution of reconstruction
errors approximates a normal distribution. To do this, we plot
the error distributions for several features (e.g.,
actuator_1_pressure, actuator_2_pressure,
oil_tank_temperature) and visually inspect their Gaussianity.

This step is crucial, as the validity of Mahalanobis distance
relies on the assumption that errors follow a multivariate
Gaussian distribution. If this assumption holds, we can then

compute, for each test sequence, its anomaly score as the
Mahalanobis distance to the reference distribution.

As shown in Figure 4, Figure 5 and Figure 6, the
reconstruction error distribution is clearly NOT Gaussian but
right skewed. To eliminate the right-skewness, we apply a
Box-Cox transformation to the reconstruction error values.

Box-Cox function is defined as follow:
yt -1
fon,)) = J)
log(y)

if 10
if =0

Probability Density

0.08 o.08 0.1 0.12

Reconstruction Error Value

Figure 4: Reconstruction errors distribution for
actuator_1_pressure

Probability Density

Reconstruction Error Value

Figure 5: Reconstruction errors distribution for
actuator_2_pressure

Probability Density

Reconstruction Error Value

Figure 6: Reconstruction errors distribution for
oil_tank_temperature

Although the reconstruction error distributions were initially
right-skewed, applying a Box-Cox transformation allowed
us to normalize them, as shown in Figures 7 — 9, making it
coherent to estimate the parameters p and T of the resulting
Gaussian distribution:

We define N the number of sequences in the training dataset.

We define 4 = (41, ..., AF) the Box-Cox parameters for
each feature and f(.,1): x = f(x, A) the Box Cox function.
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Praobability Density

Reconstruction Error Value

Figure 7: Box-Cox transformed reconstruction errors
distribution for actuator_1_pressure

Probability Density

Reconstruction Error Value

Figure 8: Box-Cox transformed reconstruction errors
distribution for actuator_2_pressure

Probability Density

Reconstruction Error Value

Figure 9: Box-Cox transformed reconstruction errors
distribution for oil_tank_temperature

We define eif the mean over time for the i" sequence of the
reconstruction error and for the f£t" feature of the training
dataset

We can calculate the first parameter of our Gaussian
distribution:

1 N
“f=NZ- 1f(@if./lf) then p= (u,...,u")
i=

Then, we deduce X the covariance matrix of this distribution:

1 N
= Nzi:1(f(ei' D —w(fle, ) —wT

Then we compute the Mahalanobis score for the training
dataset and normalize this score. For the i" sequence:

. —_— -1 . —_— T —_— i .
_ (Fe A) = I (f (e, ) — )" — min (M)

M) — min (M,
,-éf[‘f‘;ﬁ]]( J féf[lll;rzlvu( /)

M;

3.4. Testing

To evaluate the model’s performance, we define a testing
procedure that mirrors the training pipeline while ensuring
that no overlap occurs with the training data:

1. We extract testing data either from:

2. A different radar unit than “BRAVO” (to evaluate
generalization),

3. Or from the last segment of radar “BRAVO” (e.g., the
remaining part of the data), which was not used during
training.

4. Remove NaN values.

5. Segment the data into sessions using the same
delta_timestamp and session_id logic as in training.

6. Build sequences of 20 timestamps with an overlap of 10,
as previously defined.

7. The trained autoencoder is applied to each test sequence
to compute the reconstruction error vector.

8. For each sequence, to stabilize the error distribution, we
apply a Box-Cox transformation f(e;, 4), and compute
the Mahalanobis distance for each sequence i as:

. — _1 . — T — i .

_ (flew M) — W= (fler, M) — ) jgllll;rllv]](l\’lj

[k (M) — mmin (M)

M;

where:

e f(e;, A) isthe Box-Cox transformed reconstruction
error of sequence i,

e uand X are the Gaussian parameters fitted on the
training reconstruction errors,

e The final score M; is normalized using training
scaler.

This procedure allows us to evaluate the model’s ability to
detect unusual behavior in new data, based solely on its
deviation from previously learned normal patterns.

3.5. Results & Interpretation

To evaluate the effectiveness of the proposed approach, we
analyze the Mahalanobis scores computed on the test data.
Our goal is to identify and interpret anomaly spikes, i.e.,
sharp increases in the anomaly score, by comparing them
directly to the original sensor signal.

This analysis focuses exclusively on radar “Delta”, allowing
us to visually inspect how well the anomaly score aligns with
potential abnormal patterns in the signal. Other radar units
will be reserved for a more in-depth evaluation in the multi-
feature analysis presented in the next section.

3.5.1. Actuator_1 pressure

In analyzing the Mahalanobis scores for the
actuator_1 pressure feature presented in Figure 10, two
distinct patterns emerge: sharp anomaly spikes and a growing
trend. These patterns provide valuable insight into the
underlying behavior of the system and its potential
deviations.



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2025

The sharp spikes in the Mahalanobis scores are particularly
noteworthy, as they indicate abrupt shifts in the system's
behavior. To better understand these anomalies, we focus on
two specific instances where these spikes occur: June 19,
2023 (Figure 11), and August 16, 2023 (Figure 12). By
comparing these spikes with the original sensor signal, we
gain a clearer view of the signal's state at those moments, as
well as the reconstructed signal provided by the model at the
same time.

aidsitlll L
&IMMM“““HN‘!(“!H |
L

a ‘ 1

\
Figure 10: Mahalanobis score and reconstructed signal for
actuator_1 pressure

Transit to position 2 Transit to position 2
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System in position 0
System in position 0

Figure 11: Mahalanobis spikes analysis on June 19, 2023 on
“Delta” radar

Transition fo
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Figure 12: Mahalanobis spikes analysis on August 16, 2023,
on “DELTA” radar

Upon closer inspection of the two anomaly spikes, we
observe that both June 19, 2023, and August 16, 2023, exhibit
similar behavior. These dates correspond to transition
moments, where the antenna mast shifts from one position to
another. Such abrupt transitions are particularly challenging
for the model to interpret, as they are characterized by more
violent changes compared to a stable, stationary phase. These
sharp transitions introduce complexity into the model's

System on position 0

ability to effectively capture and predict the system's
behavior during these moments.

The rapid and unpredictable nature of these transitions
creates a signal pattern that deviates significantly from the
typical behavior the model was trained on. This can lead to
higher Mahalanobis scores, as the model may not fully
comprehend the dynamics of such drastic movements.
However, upon further review of the maintenance data, it
appears that these rapid transition phases do not seem to
correlate with any reported failures by the maintenance team.
This lack of correlation suggests that the system might be
designed to withstand such transition behaviors without
resulting in failure, despite the apparent disruption they cause
in the sensor signals.

In conclusion, while the Mahalanobis score spikes on these
specific dates indicate significant signal shifts, the underlying
cause appears to be the system's transition from one state to
another, rather than any underlying failure. This observation
is further supported by the maintenance records, which do not
show any related failures, highlighting the resilience of the
system during these transition periods.

3.5.2. Actuator_2_pressure

The analysis of actuator_2_pressure reveals that spikes in the
Mahalanobis score are highly correlated with those observed
in actuator_1 pressure (Figure 13 and Figure 14). These
spikes appear to be caused by similar transition phases,
during which both actuators experience significant shifts in
their behavior. However, the decreasing trend observed in
actuator_1_pressure is not present in actuator_2_pressure.

|
huuan.Llli \n""-‘

-

Figure 13: Mahalanobis score for actuator_2_pressure on
“DELTA”

| | ~--|MM~JMIMIW"I- HII”;--- -

Figure 14: Mahalanobis score for actuator_1_pressure on
“DELTA”

Given the symmetry between the two actuators in their role
within the radar subsystem, it is not surprising that the
Mahalanobis score spikes for actuator 1 pressure and
actuator_2 pressure are closely aligned. The correlation
between these two features is expected, as both actuators
typically operate in tandem. Instead of focusing on the
individual spikes in each feature, it is more relevant to
examine the correlation between actuator_1 pressure and
actuator 2 pressure across all radar units (“ALPHA”,
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“BRAVO”, “CHARLIE”, and “DELTA”). This approach
will provide deeper insights into the system's overall
performance and the potential causes behind the observed
anomalies.

We performed a linear regression analysis of
actuator_2_pressure against actuator_1_pressure across four
different radar units. The results reveal a clear deviation in
the behavior of actuator 1 pressure relative to
actuator_2_pressure specifically on radar “DELTA” (Figure
15-18).

While a strong linear relationship is observed between the
two features on the other radar units (“ALPHA”, “BRAVQO?”,
and “CHARLIE”), the relationship between
actuator_1 pressure and actuator_2_pressure on radar
“DELTA” appears much less pronounced. This deviation
suggests that something unusual is occurring with the
actuator pressures on “DELTA”, and further investigation is
required to understand the underlying cause of this
discrepancy.

250 == Regression: y = 0.965x + 14.266 %,
X Max deviation: 50,673 -

N / I

2un uoissaibay wouy 3o}

" I
o 50 100 150 200 250
Actuator 1 Pressure

Figure 15: Linear Regression between actuator_1_pressure
and actuator_2 pressure on “DELTA”

~= Regression: y = 0967 + 2.047
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Figure 16: Linear Regression between actuator_1_pressure
and actuator 2 pressure on “BRAVO”

3.5.3. Actuator_3_pressure

Actuator_3_pressure behaves differently across the various
radar units, which leads to inconsistencies when the signal is
reconstructed. The model, which is trained to reconstruct the
signal based on data from radar “BRAVO”, struggles to
provide a meaningful reconstruction when applied to other
radar units, as the underlying behavior of
actuator_3 pressure differs significantly from one radar to
another.

This discrepancy suggests that the model may not fully
capture the unique operating conditions of actuator_3 across
all radars. A deeper understanding of the specific context and
operation of actuator_3 is needed to interpret why these
variations occur and how they affect the reconstructed signal.
Further investigation into the operating conditions and the
behavior of actuator_3 across the radar units will help clarify
this issue.

Actuator 2 Pressure vs Actuator 1 Pressure with Regression Line : 10K4
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Figure 17: Linear Regression between actuator_1_pressure
and actuator_2_ pressure on “ALPHA”
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Figure 18: Linear Regression between actuator_1_pressure
and actuator 2 pressure on “CHARLIE”
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3.5.4. Oil_tank_temperature

The Mahalanobis score for the oil_tank_temperature feature
reveals a single pronounced spike (Figure 19), which can be
directly linked to an unusually high value in the signal — a
temperature close to 110°C, compared to the normal
operating range around 40°C. In this case, the analysis is
straightforward: the model effectively flags this outlier,
indicating that it is clearly capable of identifying significant
deviations in the signal. This spike suggests an anomaly in
the oil tank temperature, and the model's ability to detect such
outliers demonstrates its robustness in recognizing abnormal
conditions.

A A g P M A | i A LA L !

Figure 19: Mahalanobis score and reconstructed signal for
oil_tank_temperature

3.5.5. Conclusion

In this initial stage of our framework, we have analyzed
individual sensor features to better understand their behavior
over time and detect simple anomalies. Our evaluation of
actuator_1 pressure revealed both transition-related
anomalies and an unexpected decreasing trend.
Actuator_2 pressure showed a clear correlation with
actuator_1 pressure across most radar units, except for
“DELTA”, where this correlation was less apparent.
Actuator_3_pressure exhibited distinct behaviors between
radar units, complicating the interpretation of whether the
observed variations are normal, it will require further
investigations. Finally, the oil _tank_temperature feature
flagged a clear outlier, which was easily identified by the
model.

This deeper understanding of individual sensor behaviors
lays the foundation for our next step: a multi-feature analysis.
By combining multiple features, we aim to capture more
complex interactions and refine the detection of anomalies,
ultimately improving the overall performance of our anomaly
detection framework.

4. MULTI-FEATURES ANALYSIS

In this phase of the analysis, we expand the scope to consider
multiple sensors features simultaneously, aiming to capture
more complex relationships and interactions between the
features. The global process remains like the single-feature
analysis, but with a few important adjustments to improve the
model’s accuracy and relevance.

4.1. Process Flow

From the previous analysis, we observed that
actuator_3 pressure behaves differently between radar units
“DELTA” and “BRAVO”, leading to a poorly reconstructed
signal. As a result, we decided not to include this feature in
the global analysis. Additionally, instead of extracting the
entire dataset, we filter the data based on the radar’s position.
We identified that the model flagged anomalies during the
transition phase, but these were not related to actual system
alerts. Therefore, we focus only on the data collected when
the radar is in its deployed position (position 2).

The preprocessing steps remain the same as in the single-
feature analysis. The goal is to prepare the data by handling
NaN values, scaling, creating sessions and sequences and
ensuring it is in the right format for the model.

We use the same model architecture as in the single-feature
analysis. The model is based on an autoencoder framework,
where the encoder compresses the input data and the decoder
reconstructs it to detect anomalies by comparing the
reconstruction error.

For the training process, we increase the number of epochs to
40 to ensure the model learns the features sufficiently. The
training will be performed on the first part of the “BRAVO”
dataset, using a 5-fold cross-validation technique.

Hyperparameters:
e Epochs: 40

e Batch size: 32
e Folds: 5

Once the model is trained, we compute the Mahalanobis
distance parameters (Z and p).

The model will be tested on several radar units: “ALPHA”,
“BRAVO” (last part), “CHARLIE”, and “DELTA”. This
allows us to evaluate the generalization performance of the
model across different radar units.

Finally, we compute the Mahalanobis score for each radar
unit. When dealing with multi-feature analysis, it’s not
always straightforward to determine where the fault
originates: Is ita combination of all features, or is it a specific
feature causing the issue? To address this, we need to break
down the Mahalanobis score to evaluate the contribution of
each individual feature.

We define a contribution matrix C € RF*F that captures the
interaction between all features. Each element represents the
contribution of feature f and feature | to the total Mahalanobis
score. This is calculated as:

Cru= (el — )z} (el — )’
By definition:
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This contribution matrix helps us understand the pairwise
relationships between features in terms of their contribution
to the Mahalanobis score by analyzing this matrix, we can
determine whether the anomaly is driven by a single feature
or a combination of features, providing a clearer
understanding of the source of the issue.

4.2. Results and Interpretation

In this section, we present the results of the multi-feature
analysis by plotting the Mahalanobis score alongside the
original and reconstructed signals for each feature, for each
radar unit. This comprehensive approach allows us to gain a
complete overview of the model's performance and better
understand the relationship between the original and
reconstructed signals.

4.2.1. “DELTA”

For radar unit “DELTA”, we observed the following key
results (Figure 20):

e No Spikes in the Mahalanobis Score: The spikes
corresponding to the transition phase, which were
previously observed, no longer appear in the analysis.
This indicates that by focusing only on the data collected
when the radar is in its deployed position (position 2),
we have successfully filtered out the anomalies caused
by the transition phase.

e Problem in actuator_1 pressure: The primary issue
with radar  “DELTA” stems  from the
actuator_1 pressure feature, which displays a decreasing
trend in the signal. This abnormal behavior, unlike what
is observed in other radar units, contributes to the high
Mahalanobis score and signals an anomaly in the
actuator's performance.

During our analysis, we highlighted an abnormal decreasing
pattern in actuator_1_pressure for radar unit “DELTA”. This
anomaly was found to be related to issues with the
DRS/MCF, which correspond to real system failures, as in
Figure 21.

Upon further investigation, we found that this abnormal
behavior was noted in the DRS record sheet, specifically in
the intervention section. The following entry was made:

"Abnormal pressure was found on the telescopic pressure
which may cause the mast failure. [...] Require investigating
the drastic drop of hydraulic pressure for both telescopic and
drive actuators.” — DRS 62213982 record sheet

This aligns with the decreasing trend observed in the
Mahalanobis score, confirming that the anomaly flagged by

the model corresponds to a real failure event, which could
result in system malfunction if not addressed.

The increasing Mahalanobis score suggests that condition-
based monitoring could be an effective method for detecting
such anomalies in future cases. By continuously tracking
changes in the Mahalanobis score, it may be possible to
identify potential issues early and trigger maintenance
actions before a failure occurs.

To understand the specific contribution of each feature to the
high Mahalanobis score for radar unit “DELTA”, we
performed a breakdown of the Mahalanobis score using the
contribution matrix for the sequence with the highest score.
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Figure 20: Mahalanobis score, signals and all reconstructed
signals for "DELTA"
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Figure 21: Mahalanobis score and alerts for “DELTA”
The analysis revealed the following key findings:

e Actuator_1 pressure: This feature is clearly the
primary source of the anomaly. The contribution from
actuator_1 pressure is significant, and its abnormal
decreasing trend is driving the high Mahalanobis score.

e Oil_tank_temperature: In addition to
actuator_1 pressure, oil_tank_temperature also appears
to be problematic. While its contribution is not as
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pronounced as actuator_1_pressure, it still plays a role in
the overall deviation of the system from normal
behavior.

This contribution matrix (Figure 22) allows us to pinpoint the
specific features that contribute most to the anomalies,
providing a clearer understanding of the source of the
problem and guiding the next steps for further investigation.

4.2.2. “CHARLIE”

For radar unit “CHARLIE”, we observed the following
(Figure 23):

e Qutlier: At first glance, the Mahalanobis score shows a
single pronounced spike, which clearly flags an outlier
in the oil_tank_temperature feature. This spike indicates
a significant deviation from normal behavior, suggesting
an anomaly.

e High Oil Tank Temperature: This behavior is not
considered "normal,” as it coincides with a bite alert
indicating a high oil tank temperature issue. The
alignment of the Mahalanobis spike with the alert
reinforces the model's ability to flag actual system issues.

The anomaly detected in the oil_tank_temperature feature in
“CHARLIE” suggests a potential issue that should be further
investigated, as the model's output corresponds with the alert
triggered by the system (Figure 24).

This anomaly was found to be related to issues with the
DRS/MCEF, which correspond to real system failures.

Upon further investigation, we found that this abnormal
behavior was noted in the DRS and MCF as a sensor fault
(Figure 25). The feature contribution analysis has also
validated our point: Oil_tank_temperature is clearly
problematic, and this result is coherent with what we’ve seen
in the signal.

4.2.3. “BRAVO”

For radar unit “BRAVO”, we observed the following (Figure
26):

e Qutlier: At first glance, the Mahalanobis score shows a
single pronounced spike, which clearly flags an outlier
in the oil_tank_temperature feature. This spike indicates
a significant deviation from normal behavior, suggesting
an anomaly.In reality, this outlier is clearly due to sensor
default as it displayed a temperature above 60k degrees
Celsius.

e Scaling challenge: This outlier is very far from the usual
range of values, which results in the Mahalanobis score
also being very high at this level. Therefore, due to scale
issues, the rest of the scores become barely discernible,
so we decide to zoom in to overcome these scale
problems:

Figure 22: Mahalanobis breakdown matrix from sequence
on 28/01/2024 for "DELTA"

Figure 23: Mahalanobis score, signals and all reconstructed
signals for "CHARLIE"

Mahalanobis Anomaly Scores for 3 features: Charlie

Figure 24: Mahalanobis score ahd alerts for “CHARLIE”

Figure 25: Mahalanobis breakdown matrix from sequence
on 11/09/2024 for "CHARLIE"
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Most of the anomalies flagged by the model are found to
correlate with existing DRS/MCF alerts and BITE alerts
(Figure 27). However, the model also detects a spike that
does not appear to be associated with any known alert. For
DRS A69333, the failure description indicates operation
ranges exceeding radar limits:

~—— Mahalanobis Score
—— actuator_1_pres:

reccnstructed oil_tank_temperature

Figure 26: Mahalanobis score, signals and all reconstructed
signals for "BRAVO"

I
; No direct alert/failure related

I

]

. i |
V1 |
Figure 27: Zoomed Mahalanobis score and alerts for

“BRAVO”

"MAST: OIL LOW TEMPERATURE FAILURE; MAST:
ACTUATOR 3 PRESSURE OUT OF RANGE; MAST:
ACTUATOR 2 PRESSURE OUT OF RANGE; MAST:
ACTUATOR 1 PRESSURE OUT OF RANGE."
The Bite alert 10f0100_461 is less straightforward and refers
to an "ANTENNA DELTA PRESSURE FAULT."
The analysis of feature contribution highlights the specific
features responsible for each alert, providing better

interpretability and insights into the model’s decision-making
process :

The first matrix (Figure 28) clearly highlights an outlier in
the oil_tank_temperature feature, with a value exceeding
60,000°C. This result is consistent with the anomaly observed
in the raw signal.

| Malrix Sum: 59515470 1 Date o sequence: 2024-05-17109,12:27.000000000 - 2024-05+17T08:13:57,000000000

Figure 28: Mahalanobis breakdown matrix from sequence
on 17/05/2024 for "BRAVO"

The second matrix (Figure 29) corresponds to the DRS and
MCEF alerts, which reference features operating out of their
expected range. In this case, the matrix indicates that multiple
features contribute to the anomaly. A closer inspection of the

signal reveals a significantly high value for
actuator_2_pressure, creating a noticeable pressure
difference  with  actuator_1 pressure. In  contrast,

oil_tank_temperature does not appear abnormal when
examined directly in the signal.

“Total Matrx Sum: L6347 Date of sequence: 2024-05-2 ‘202405 24T07:20:51. 500000000

ok ot 1305

Figure 29: Mahalanobis breakdown matrix from sequence
on 24/05/2024 for "BRAVO"

Finally, the third matrix (Figure 30) relates to the BITE alert
labeled "ANTENNA DELTA PRESSURE FAULT." Here,
oil_tank_temperature appears as a significant contributing
feature. However, the link between this variable and the alert
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is not straightforward. The correlation between the
oil_tank_temperature anomaly and the antenna delta pressure
fault remains unclear, highlighting the need for further
investigation.

4.24. “ALPHA”

For radar unit “ALPHA”, the Mahalanobis score is
significantly lower compared to the scores observed for
“DELTA” and “CHARLIE”. No anomalies or outliers stand
out in these radar units, indicating that the system's behavior
is relatively stable and within expected parameters.

This radar unit exhibits normal signal patterns without any
notable deviations, suggesting that no major issues are
detected for these units in this analysis.

5. CONCLUSION

We have developed a model capable of flagging outliers and
abnormal patterns, evaluating them through the Mahalanobis
score. While the model proves effective in identifying
anomalies, the next step is to determine an appropriate
threshold to fully automate the anomaly detection system.
This remains a challenge due to the lack of clearly faulty data,
such as DRS or MCF, which makes it difficult to define a
precise threshold based on observable failures.

One of the key considerations in our approach is the filtering
of data based solely on the radar's deployed position (position
2). This filtering excludes data from the transition phase and
when the radar is in position 0, which may result in the loss
of valuable information and potentially missing anomalies.
This decision raises the question of whether we should
develop a model to handle these cases, as filtering restricts
the scope of data available for analysis. Additionally, the
model faces challenges in characterizing what constitutes an
anomaly. The difficulty arises from the variety of anomaly
types, including outliers and abnormal patterns, which are not
always easy to define. The absence of clearly defined failure
data, such as DRS or MCF, further complicates the detection
process.

Future exploration should focus on testing the model with
other sub-systems. This would provide a broader
understanding of the system’s behavior, but it is essential to
consider the relationships between sub-systems, especially
since the data sampling rates differ across them. Furthermore,
exploring alternative models and fine-tuning their
hyperparameters could lead to improved performance,
although this remains challenging given the uncertainty in
defining anomalies. Lastly, while the current model only uses
numerical features, incorporating binary features could add
significant value. By integrating binary data, we could
enhance the model's ability to detect anomalies, as this type
of feature may provide useful additional insights.

Figure 30: Mahalanobis breakdown matrix from sequence
on 05/05/2024 for "BRAVO"
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