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ABSTRACT 

Predictive maintenance has emerged as a crucial strategy in 

complex systems management, leveraging machine learning 

and data-driven health monitoring to anticipate failures and 

optimize operational uptime. While significant progress has 

been made in developing general-purpose models for 

anomaly detection and condition-based maintenance, their 

effectiveness often diminishes when applied to highly 

specialized systems such as radar platforms. These systems 

exhibit unique operational behaviours and failure modes, 

necessitating tailored monitoring solutions. This paper 

presents a methodology for anomaly detection tailored to 

radar systems, addressing the inherent challenge of limited 

labeled data and the ambiguity surrounding the definition of 

anomalies. We employ a reconstruction-based approach 

using autoencoders in conjunction with Mahalanobis distance 

to generate anomaly scores, enabling the detection of subtle 

deviations from normal system behavior without requiring 

explicit failure labels. The proposed approach has been 

applied to real sensor data collected from multiple radar units, 

specifically from sensors located on the antenna mast. For 

confidentiality, the data has been anonymized. Experimental 

results demonstrate that the method effectively highlights 

outliers and identifies the contributing features responsible 

for anomalies. Furthermore, the model reveals interpretable 

abnormal patterns and provides early indications that 

condition-based monitoring can be a viable strategy for 

identifying potential issues in radar operations. 

1. INTRODUCTION 

Condition-based maintenance (CBM) and predictive 

maintenance strategies are attracting growing interest in 

various industrial sectors, driven by the increasing 

availability of sensor data and advances in machine learning 

(Leukel, Gonzalez, and Riekert, 2021). These approaches 

enable health monitoring systems to move from reactive to 

proactive paradigms, identifying signs of degradation or 

failure before they lead to critical issues. In particular, data-

driven models now offer promising capabilities for detecting 

anomalies and tracking equipment health in real-time. 

However, the performance of such models is highly 

dependent on the quality and completeness of the available 

data. In practical settings, and especially in complex systems 

like radar platforms, sensor data can be partial, noisy, or 

missing altogether — whether due to sensor failures, 

intermittent system operation, or logging constraints. This 

makes it difficult to build purely statistical models or to 

assign simple health status labels with confidence. 

Given this challenge, our goal is to develop a robust anomaly 

detection framework tailored to the specificities of radar 

systems. Rather than addressing the system as a whole, we 

focus our work on a particular subsystem: the antenna mast, 

a critical mechanical component monitored by several 

sensors. 

Our proposed methodology follows a two-stage approach. 

The first stage involves a single-feature analysis, where we 

analyze each sensor variable individually to understand its 

behavior over time, detect basic anomalies, and prepare the 

ground for a more complex analysis. The second stage 

consists of a multi-feature analysis, integrating signals from 

multiple sensors into a unified detection model, allowing for 

more refined and context-aware anomaly detection. 

Both stages require careful preprocessing to address the 

imperfect nature of the dataset, including handling of missing 

data, normalization, and segmentation of sensor logs. This 

paper is organized as follows: we first describe the radar 

system, the collected data, and the machine learning 

architecture used. We then present the single-feature analysis 

methodology and results, followed by the development and 

evaluation of our complete multi-feature anomaly detection 

framework. 
Jean-Marc Divanon et al. This is an open-access article distributed under 

the terms of the Creative Commons Attribution 3.0 United States License, 

which permits unrestricted use, distribution, and reproduction in any 

medium, provided the original author and source are credited. 
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2. SYSTEM, DATA & MODEL DESCRIPTION 

In this section, we describe the radar systems and the specific 

subsystem we analyse: the antenna mast. Sensor data is 

collected from this subsystem and includes both numerical 

features (such as sensor measurements) and binary signals 

(status indicators, position states, etc.). 

We use data from four radars, anonymized as Alpha, Bravo, 

Charlie and Delta. These units provide enough data for 

training and testing our anomaly detection models. In 

addition to sensor data, we also include maintenance records, 

which indicate whether an intervention has taken place. 

However, these logs are limited and do not offer detailed 

labeling of the system’s health. 

We will also study the structure of the dataset, the types of 

features used, and the model architecture designed for 

anomaly detection. 

2.1. System Description 

The antenna mast is the mechanical structure that connects 

the equipped platform to the fixed part of the drive 

mechanism on which the antenna is mounted. Its role is to 

raise and lower the antenna between multiple predefined 

configurations, depending on the operational needs. 

The mast can be in one of the following positions: 

• Position 0: The antenna is fully folded down. It is in a 

non-operational state, fully retracted for transport or 

storage. Both the drive actuator and the telescopic 

actuators are retracted. 

• Position 1: The antenna is raised just above the shelter 

roof, allowing access for maintenance or operation. The 

drive actuator is deployed, while the telescopic actuators 

remain retracted. 

• Position 2: The antenna is fully deployed, positioned 

approximately 8 meters above ground level. In this 

configuration, the telescopic actuators are deployed, and 

the drive actuator is retracted. 

Based on the mast’s mechanical architecture, we collect the 

following data from the system at a sampling rate of every 10 

seconds: 

• Pressure values from two telescopic actuators 

(actuator_1 and actuator_2), 

• Pressure from the drive actuator (actuator_3), 

• Oil temperature from the hydraulic tank, 

• Binary indicators reflecting the current position of the 

antenna mast (positions 0, 1, or 2). 

These features form the basis of our analysis in the next 

sections. 

2.2. Maintenance Data  

For each radar unit, we have access to three types of 

maintenance records: 

• Defect Record Sheets (DRS) – These report faults that 

were serious enough to require sending the radar system 

for repair. 

• Maintenance Check Flights (MCF) – These list minor 

issues that were fixed directly on-site and did not require 

the system to be removed from operation. 

• Bite Alerts: A log of alerts triggered by events, which 

can range from routine occurrences (such as completing 

the deployment of the mast antenna) to more significant 

failures. 

Each datasets include useful information such as the date of 

the event and a textual description of the failure. When 

possible, we manually analyze these descriptions to 

determine whether a failure can be associated with the 

antenna mast subsystem. 

However, for each radar unit, only a few failure events are 

clearly linked to the antenna mast. This sparse and weakly 

labeled information makes it difficult to train supervised 

models for anomaly detection or health assessment. 

To address this limitation, we rely on an unsupervised 

approach based on autoencoders (Lee., Jung, Song, and 

Choo, 2020), which allows us to learn the system’s normal 

behavior directly from the data. Deviations from this learned 

behavior can then be interpreted as potential anomalies. The 

next section details the dataset structure, and the model 

architecture used in our framework. 

2.3. Model Architecture 

As discussed in the previous section, the lack of sufficient 

labeled failure data — especially for the antenna mast — 

makes supervised learning unsuitable. We instead adopt an 

unsupervised anomaly detection approach based on a fully 

connected autoencoder (FCAE) (Basora, Bry, Olive, and 

Freeman, 2021). Autoencoders are neural networks trained to 

reconstruct their input. When trained only on normal data, 

they can later identify anomalies by measuring reconstruction 

errors. 

An autoencoder consists of two functions: 

• The encoder, which maps an input vector 𝑥 ∈ R𝒅 to a 

hidden (latent) representation y ∈ R𝒉 , through a non-

linear transformation: 

𝑦 = 𝑔(𝑊 ⋅  𝑠 + 𝑏) 

• The decoder, which reconstructs the original input from 

the latent representation: 

𝑥̂ = 𝑔(𝑊′ ⋅  𝑦 + 𝑏′) 

In our case: 
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• 𝑑 corresponds to the input dimension after flattening a 

sequence (i.e. 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝑙𝑒𝑛𝑔𝑡ℎ ⋅ 𝑛_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠), 

• ℎ corresponds to the size of the latent space, i.e., the 

most compact representation of the sequence, 

• 𝑔(⋅)  is a non-linear activation function, used to 

introduce non-linearity into the model. We use ReLU 

(Rectified Linear Unit) in the hidden layers to enable the 

model to capture complex patterns and sparsity in the 

representation. A Sigmoid activation is used in the final 

layer to ensure the outputs remain within a stable 

numeric range [0, 1], compatible with normalized input 

data. 

The model is trained to minimize the reconstruction loss 

between the input 𝑥  and the output 𝑥̂ , using the mean 

squared error (MSE) loss: 

𝑀𝑆𝐸(𝑥, 𝑥̂) =
1

𝑁
∑‖𝑥𝑖 − 𝑥𝑖̂‖

2

𝑁

𝑖=1

 

The architecture is symmetric, composed of three dense 

layers in both encoder and decoder (Figure 1). The layer 

dimensions are defined as: 

• 𝑑𝑖𝑚1 =  𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝑙𝑒𝑛𝑔𝑡ℎ ⋅ 𝑛_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 

• 𝑑𝑖𝑚2 =  0.7 ⋅ 𝑑𝑖𝑚1 

• 𝑑𝑖𝑚3 =  0.7 ⋅ 𝑑𝑖𝑚2 

• 𝑛𝑓 =  0.7 ⋅ 𝑑𝑖𝑚3 

The full structure of the model is summarized in Table 1 and 

2. This architecture allows the model to learn compact 

representations of normal sequences of radar sensor data. In 

the following section, we evaluate how well the 

reconstruction error can highlight deviations from expected 

behaviour. 

 

Figure 1: Fully connected autoencoder 

3. SINGLE FEATURE ANALYSIS  

This first stage of our framework focuses on analyzing each 

sensor feature individually. The goal is to understand the 

behavior of single variables over time, detect simple 

anomalies, and identify which features may be most 

informative. 

This approach also helps validate our preprocessing pipeline 

and test the performance of the autoencoder in a simplified 

setting before moving to multi-feature analysis. 

 

In this section, we describe the preprocessing steps, the 

training and testing procedure, and present the main results 

of this single-feature evaluation. 

Compo-

nent 

Operation Activa-

tion 

Role 

Input [batch_size, 

sequence_length, 

n_features] → 

flatten 

— Input 

sequence 

reshaped into 

a flat vector 

for dense 

processing. 

Encoder 

Layer 1 

Linear: dim1 → 

dim2 

ReLu Reduces 

dimensionali-

ty; introduces 

non-linearity 

to learn 

complex 

relationships. 

Encoder 

Layer 2 

Linear: dim2 → 

dim3 

ReLu 
Further 

compression 

while 

preserving 

non-linear 

dependencies. 

Encoder 

Layer 3 

Linear: dim3 → 

nf 

— Projects into 

the latent 

space; no 

activation to 

preserve full 

representa-

tional range. 

Latent 

Space 

Vector of size nf — Most compact 

form of the 

input; 

captures key 

features of 

the sequence. 

 

Table 1 : Fully connected autoencoder architecture (1/2) 
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3.1. Data Preprocessing  

For this single-feature analysis, we extract one sensor signal 

from radar unit “Bravo” — for example, 

actuator_1_pressure. 

 

The preprocessing steps are as follows: 

1. Remove NaN values from the dataset. 

2. An outlier 𝑥 is identified and removed if: |𝑥 − 𝜇| < 𝛼 ⋅
𝜎   𝑤𝑖𝑡ℎ  𝛼  set to a fixed value. 

3. Removed values are then interpolated to maintain 

continuity in the time series. 

4. The dataset is split into two parts: a training set, taken 

from a period considered representative of normal 

behavior (e.g., up to March 1, 2024, for radar “Bravo”) 

and a test set, covering the remaining data, useful for 

evaluation on the same unit. 

5. Two new columns are added: 

o delta_timestamp: time difference between 

consecutive data points, 

o session_id: groups data points into sessions. If the 

time gap between two consecutive points is less than 

N minutes, they belong to the same session, as shown 

in Figure 2. 

6. The training data is scaled using a MinMaxScaler, and 

the same scaler is applied to the test data. 

7. Within each session, we generate sequences of 20 

timestamps with an overlap of 10. Sequences that 

cannot reach 20 timestamps (typically at session 

boundaries) are discarded (Figure 3). This ensures that 

sequences are composed of temporally consistent points 

and avoids including data affected by sensor inactivity or 

radar shutdowns. 

8. The final output of this process is a set of sequences, each 

structured as [sequence_length, n_feature]. This format 

matches the expected input of our autoencoder model. 

 

Figure 2: Session creation process 

 

Figure 3: Sequences creation within session boundaries 

3.2. Training  

To train our autoencoder on the single-feature sequences, we 

use a 5-fold cross-validation strategy to ensure robust 

performance evaluation. 

The main hyperparameters are: 

• Epochs: 20 

• Batch size: 32 

• Folds: 5 (using KFold() from scikit-learn) 

Before training, the dataset is split into training and 

validation folds. For each fold, the model is trained on four 

subsets and validated on the fifth. This cross-validation setup 

reduces the risk of overfitting and improves the model’s 

generalization ability. 

Each fold is transformed into a dataloader, a utility that 

simplifies batch-wise loading and efficient iteration during 

model training. 

Compo-

nent 

Operation Activa-

tion 

Role 

Decoder 

Layer 1 

Linear: nf → 

dim3 

ReLu Starts 

reconstruc-

tion; ReLU 

helps recover 

complexity 

from 

compressed 

data. 

Decoder 

Layer 2 

Linear: dim3 → 

dim2 

ReLu Progressive 

reconstructio

n toward the 

original 

shape. 

Decoder 

Layer 3 

Linear: dim2 → 

dim1 

Sigmoid Final step; 

sigmoid 

constrains 

output 

between 0 

and 1 for 

stability. 

Output Reshaped — Reconstructe

d sequence, 

aligned with 

the original 

input format. 

 

Table 2 : Fully connected autoencoder architecture (2/2) 
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The model is trained to minimize the Mean Squared Error 

(MSE) between the input and its reconstruction. This loss 

function penalizes larger deviations more strongly and is 

well-suited for regression-based anomaly detection tasks like 

ours. 

After the five folds are completed, we retain the model 

configuration that achieves the lowest average validation 

MSE. 

3.3. Anomaly Score  

Once the model has been trained on the normal data, we 

must define a metric to evaluate how well a new sequence is 

reconstructed — and thus, to detect potential anomalies. 

At this stage, we introduce the concept of an anomaly score, 

which quantifies the degree of deviation between an input 

sequence and its reconstruction. This score isn’t used for fold 

selection as it relies on the distribution of reconstruction 

errors observed on the training dataset. 

To account for correlations across features (in multi-feature 

extensions), we compute the Mahalanobis distance 

(Ahmad, Rekowski, Nedelkoski, and Ka, 2020; Jin, Ma, 

Cheng, and Pecht, 2012; Malhotra, Ramakrishnan, Anand, 

Vig, Agarwal, and Shroff, 2016) between the reconstruction 

error of a test sequence and the distribution of errors from the 

training set. 

In a multivariate space, the Mahalanobis distance measures 

the distance of a point to the center of a data distribution, 

considering its covariance structure — in other words, its 

"shape". Unlike Euclidean distance, Mahalanobis distance 

penalizes deviations based on how likely they are in the 

context of the underlying distribution. 

We calculate the reconstruction error vectors (i.e., the 

absolute difference between input and output) for all training 

sequences. This gives us a reference cloud of "normal" error 

values. From this set, we estimate the parameters of the 

underlying multivariate Gaussian distribution: 

• 𝜇: the mean of the reconstruction errors, 

• 𝛴: the covariance matrix. 

These parameters are estimated using Maximum Likelihood 

Estimation (MLE). 

Before using this Gaussian model to compute Mahalanobis 

distances, we verify that the distribution of reconstruction 

errors approximates a normal distribution. To do this, we plot 

the error distributions for several features (e.g., 

actuator_1_pressure, actuator_2_pressure, 

oil_tank_temperature) and visually inspect their Gaussianity. 

This step is crucial, as the validity of Mahalanobis distance 

relies on the assumption that errors follow a multivariate 

Gaussian distribution. If this assumption holds, we can then 

compute, for each test sequence, its anomaly score as the 

Mahalanobis distance to the reference distribution. 

As shown in Figure 4, Figure 5 and Figure 6, the 

reconstruction error distribution is clearly NOT Gaussian but 

right skewed. To eliminate the right-skewness, we apply a 

Box-Cox transformation to the reconstruction error values. 

Box-Cox function is defined as follow: 

𝑓(𝑦, 𝜆) = {
𝑦𝜆 − 1

𝜆
    𝑖𝑓  𝜆 ≠ 0

𝑙𝑜𝑔(𝑦)      𝑖𝑓   𝜆 = 0

 

 

Figure 4: Reconstruction errors distribution for 

actuator_1_pressure 

 

Figure 5: Reconstruction errors distribution for 

actuator_2_pressure 

 

Figure 6: Reconstruction errors distribution for 

oil_tank_temperature 

Although the reconstruction error distributions were initially 

right-skewed, applying a Box-Cox transformation allowed 

us to normalize them, as shown in Figures 7 – 9, making it 

coherent to estimate the parameters μ and Σ of the resulting 

Gaussian distribution: 

We define N the number of sequences in the training dataset. 

We define 𝝀 = (𝝀𝟏, … , 𝝀𝑭)  the Box-Cox parameters for 

each feature and 𝑓(. , 𝜆): 𝑥 ↦ 𝑓(𝑥, 𝜆) the Box Cox function. 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2025 

6 

  

 

Figure 7: Box-Cox transformed reconstruction errors 

distribution for actuator_1_pressure 

 

Figure 8: Box-Cox transformed reconstruction errors 

distribution for actuator_2_pressure 

 

Figure 9: Box-Cox transformed reconstruction errors 

distribution for oil_tank_temperature 

We define 𝑒𝑖
𝑓

 the mean over time for the 𝑖𝑡ℎ sequence of the 

reconstruction error and for the 𝑓𝑡ℎ  feature of the training 

dataset 

We can calculate the first parameter of our Gaussian 

distribution: 

𝜇 𝑓 =
1

𝑁
∑ 𝑓(𝑒𝑖

𝑓
, 𝜆𝑓)

𝑁

𝑖=1
      𝑡ℎ𝑒𝑛     𝜇 = (𝜇1, … , 𝜇𝐹) 

Then, we deduce Σ the covariance matrix of this distribution: 

Σ =
1

𝑁
∑ (𝑓(𝑒𝑖,  𝜆) − 𝜇)(𝑓(𝑒𝑖,  𝜆) − 𝜇)𝑇 

𝑁

𝑖=1
 

Then we compute the Mahalanobis score for the training 

dataset and normalize this score. For the 𝑖𝑡ℎ sequence: 

𝑀𝑖 =
(𝑓(𝑒𝑖 ,  𝜆) − 𝜇)Σ−1(𝑓(𝑒𝑖 ,  𝜆) − 𝜇)𝑇 − min

𝑗∈⟦1;𝑁⟧
(𝑀𝑗)

max
𝑗∈⟦1;𝑁⟧

(𝑀𝑗) − min
𝑗∈⟦1;𝑁⟧

(𝑀𝑗)
 

3.4. Testing  

To evaluate the model’s performance, we define a testing 

procedure that mirrors the training pipeline while ensuring 

that no overlap occurs with the training data:  

1. We extract testing data either from: 

2. A different radar unit than “BRAVO” (to evaluate 

generalization), 

3. Or from the last segment of radar “BRAVO” (e.g., the 

remaining part of the data), which was not used during 

training. 

4. Remove NaN values. 

5. Segment the data into sessions using the same 

delta_timestamp and session_id logic as in training. 

6. Build sequences of 20 timestamps with an overlap of 10, 

as previously defined. 

7. The trained autoencoder is applied to each test sequence 

to compute the reconstruction error vector. 

8. For each sequence, to stabilize the error distribution, we 

apply a Box-Cox transformation 𝑓(𝑒𝑖 ,  𝜆), and compute 

the Mahalanobis distance for each sequence 𝑖 as: 

𝑀𝑖 =
(𝑓(𝑒𝑖 ,  𝜆) − 𝜇)Σ−1(𝑓(𝑒𝑖 ,  𝜆) − 𝜇)𝑇 − min

𝑗∈⟦1;𝑁⟧
(𝑀𝑗)

max
𝑗∈⟦1;𝑁⟧

(𝑀𝑗) − min
𝑗∈⟦1;𝑁⟧

(𝑀𝑗)
 

where: 

• 𝑓(𝑒𝑖 ,  𝜆) is the Box-Cox transformed reconstruction 

error of sequence i, 

• 𝜇  and Σ are the Gaussian parameters fitted on the 

training reconstruction errors, 

• The final score 𝑀𝑖  is normalized using training 

scaler. 

This procedure allows us to evaluate the model’s ability to 

detect unusual behavior in new data, based solely on its 

deviation from previously learned normal patterns. 

3.5. Results & Interpretation  

To evaluate the effectiveness of the proposed approach, we 

analyze the Mahalanobis scores computed on the test data. 

Our goal is to identify and interpret anomaly spikes, i.e., 

sharp increases in the anomaly score, by comparing them 

directly to the original sensor signal. 

This analysis focuses exclusively on radar “Delta”, allowing 

us to visually inspect how well the anomaly score aligns with 

potential abnormal patterns in the signal. Other radar units 

will be reserved for a more in-depth evaluation in the multi-

feature analysis presented in the next section. 

3.5.1. Actuator_1_pressure 

In analyzing the Mahalanobis scores for the 

actuator_1_pressure feature presented in Figure 10, two 

distinct patterns emerge: sharp anomaly spikes and a growing 

trend. These patterns provide valuable insight into the 

underlying behavior of the system and its potential 

deviations. 
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The sharp spikes in the Mahalanobis scores are particularly 

noteworthy, as they indicate abrupt shifts in the system's 

behavior. To better understand these anomalies, we focus on 

two specific instances where these spikes occur: June 19, 

2023 (Figure 11), and August 16, 2023 (Figure 12). By 

comparing these spikes with the original sensor signal, we 

gain a clearer view of the signal's state at those moments, as 

well as the reconstructed signal provided by the model at the 

same time. 

 

Figure 10: Mahalanobis score and reconstructed signal for 

actuator_1_pressure

 

Figure 11: Mahalanobis spikes analysis on June 19, 2023 on 

“Delta” radar 

 

Figure 12: Mahalanobis spikes analysis on August 16, 2023, 

on “DELTA” radar 

Upon closer inspection of the two anomaly spikes, we 

observe that both June 19, 2023, and August 16, 2023, exhibit 

similar behavior. These dates correspond to transition 

moments, where the antenna mast shifts from one position to 

another. Such abrupt transitions are particularly challenging 

for the model to interpret, as they are characterized by more 

violent changes compared to a stable, stationary phase. These 

sharp transitions introduce complexity into the model's 

ability to effectively capture and predict the system's 

behavior during these moments. 

The rapid and unpredictable nature of these transitions 

creates a signal pattern that deviates significantly from the 

typical behavior the model was trained on. This can lead to 

higher Mahalanobis scores, as the model may not fully 

comprehend the dynamics of such drastic movements. 

However, upon further review of the maintenance data, it 

appears that these rapid transition phases do not seem to 

correlate with any reported failures by the maintenance team. 

This lack of correlation suggests that the system might be 

designed to withstand such transition behaviors without 

resulting in failure, despite the apparent disruption they cause 

in the sensor signals. 

In conclusion, while the Mahalanobis score spikes on these 

specific dates indicate significant signal shifts, the underlying 

cause appears to be the system's transition from one state to 

another, rather than any underlying failure. This observation 

is further supported by the maintenance records, which do not 

show any related failures, highlighting the resilience of the 

system during these transition periods. 

3.5.2. Actuator_2_pressure  

The analysis of actuator_2_pressure reveals that spikes in the 

Mahalanobis score are highly correlated with those observed 

in actuator_1_pressure (Figure 13 and Figure 14). These 

spikes appear to be caused by similar transition phases, 

during which both actuators experience significant shifts in 

their behavior. However, the decreasing trend observed in 

actuator_1_pressure is not present in actuator_2_pressure. 

 

Figure 13: Mahalanobis score for actuator_2_pressure on 

“DELTA” 

 

Figure 14: Mahalanobis score for actuator_1_pressure on 

“DELTA” 

Given the symmetry between the two actuators in their role 

within the radar subsystem, it is not surprising that the 

Mahalanobis score spikes for actuator_1_pressure and 

actuator_2_pressure are closely aligned. The correlation 

between these two features is expected, as both actuators 

typically operate in tandem. Instead of focusing on the 

individual spikes in each feature, it is more relevant to 

examine the correlation between actuator_1_pressure and 

actuator_2_pressure across all radar units (“ALPHA”, 
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“BRAVO”, “CHARLIE”, and “DELTA”). This approach 

will provide deeper insights into the system's overall 

performance and the potential causes behind the observed 

anomalies. 

We performed a linear regression analysis of 

actuator_2_pressure against actuator_1_pressure across four 

different radar units. The results reveal a clear deviation in 

the behavior of actuator_1_pressure relative to 

actuator_2_pressure specifically on radar “DELTA” (Figure 

15 – 18). 

While a strong linear relationship is observed between the 

two features on the other radar units (“ALPHA”, “BRAVO”, 

and “CHARLIE”), the relationship between 

actuator_1_pressure and actuator_2_pressure on radar 

“DELTA” appears much less pronounced. This deviation 

suggests that something unusual is occurring with the 

actuator pressures on “DELTA”, and further investigation is 

required to understand the underlying cause of this 

discrepancy. 

 

Figure 15: Linear Regression between actuator_1_pressure 

and actuator_2_pressure on “DELTA” 

 

Figure 16: Linear Regression between actuator_1_pressure 

and actuator_2_pressure on “BRAVO” 

3.5.3. Actuator_3_pressure  

Actuator_3_pressure behaves differently across the various 

radar units, which leads to inconsistencies when the signal is 

reconstructed. The model, which is trained to reconstruct the 

signal based on data from radar “BRAVO”, struggles to 

provide a meaningful reconstruction when applied to other 

radar units, as the underlying behavior of 

actuator_3_pressure differs significantly from one radar to 

another. 

This discrepancy suggests that the model may not fully 

capture the unique operating conditions of actuator_3 across 

all radars. A deeper understanding of the specific context and 

operation of actuator_3 is needed to interpret why these 

variations occur and how they affect the reconstructed signal. 

Further investigation into the operating conditions and the 

behavior of actuator_3 across the radar units will help clarify 

this issue. 

 

Figure 17: Linear Regression between actuator_1_pressure 

and actuator_2_pressure on “ALPHA” 

 

Figure 18: Linear Regression between actuator_1_pressure 

and actuator_2_pressure on “CHARLIE” 
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3.5.4. Oil_tank_temperature 

The Mahalanobis score for the oil_tank_temperature feature 

reveals a single pronounced spike (Figure 19), which can be 

directly linked to an unusually high value in the signal — a 

temperature close to 110°C, compared to the normal 

operating range around 40°C. In this case, the analysis is 

straightforward: the model effectively flags this outlier, 

indicating that it is clearly capable of identifying significant 

deviations in the signal. This spike suggests an anomaly in 

the oil tank temperature, and the model's ability to detect such 

outliers demonstrates its robustness in recognizing abnormal 

conditions. 

 

Figure 19: Mahalanobis score and reconstructed signal for 

oil_tank_temperature 

3.5.5. Conclusion  

In this initial stage of our framework, we have analyzed 

individual sensor features to better understand their behavior 

over time and detect simple anomalies. Our evaluation of 

actuator_1_pressure revealed both transition-related 

anomalies and an unexpected decreasing trend. 

Actuator_2_pressure showed a clear correlation with 

actuator_1_pressure across most radar units, except for 

“DELTA”, where this correlation was less apparent. 

Actuator_3_pressure exhibited distinct behaviors between 

radar units, complicating the interpretation of whether the 

observed variations are normal, it will require further 

investigations. Finally, the oil_tank_temperature feature 

flagged a clear outlier, which was easily identified by the 

model. 

This deeper understanding of individual sensor behaviors 

lays the foundation for our next step: a multi-feature analysis. 

By combining multiple features, we aim to capture more 

complex interactions and refine the detection of anomalies, 

ultimately improving the overall performance of our anomaly 

detection framework. 

4. MULTI-FEATURES ANALYSIS 

In this phase of the analysis, we expand the scope to consider 

multiple sensors features simultaneously, aiming to capture 

more complex relationships and interactions between the 

features. The global process remains like the single-feature 

analysis, but with a few important adjustments to improve the 

model’s accuracy and relevance. 

4.1. Process Flow 

From the previous analysis, we observed that 

actuator_3_pressure behaves differently between radar units 

“DELTA” and “BRAVO”, leading to a poorly reconstructed 

signal. As a result, we decided not to include this feature in 

the global analysis. Additionally, instead of extracting the 

entire dataset, we filter the data based on the radar’s position. 

We identified that the model flagged anomalies during the 

transition phase, but these were not related to actual system 

alerts. Therefore, we focus only on the data collected when 

the radar is in its deployed position (position 2). 

The preprocessing steps remain the same as in the single-

feature analysis. The goal is to prepare the data by handling 

NaN values, scaling, creating sessions and sequences and 

ensuring it is in the right format for the model. 

We use the same model architecture as in the single-feature 

analysis. The model is based on an autoencoder framework, 

where the encoder compresses the input data and the decoder 

reconstructs it to detect anomalies by comparing the 

reconstruction error. 

For the training process, we increase the number of epochs to 

40 to ensure the model learns the features sufficiently. The 

training will be performed on the first part of the “BRAVO” 

dataset, using a 5-fold cross-validation technique. 

Hyperparameters: 

• Epochs: 40 

• Batch size: 32 

• Folds: 5 

Once the model is trained, we compute the Mahalanobis 

distance parameters (Σ and 𝜇). 

The model will be tested on several radar units: “ALPHA”, 

“BRAVO” (last part), “CHARLIE”, and “DELTA”. This 

allows us to evaluate the generalization performance of the 

model across different radar units. 

Finally, we compute the Mahalanobis score for each radar 

unit. When dealing with multi-feature analysis, it’s not 

always straightforward to determine where the fault 

originates: Is it a combination of all features, or is it a specific 

feature causing the issue? To address this, we need to break 

down the Mahalanobis score to evaluate the contribution of 

each individual feature. 

We define a contribution matrix C Є R𝑭∗𝑭 that captures the 

interaction between all features. Each element represents the 

contribution of feature f and feature l to the total Mahalanobis 

score. This is calculated as: 

𝑪𝑓,𝑙 = (𝒆𝑖
𝒇
 −  𝝁𝑓 )𝚺𝑙,𝑓

−1 (𝒆𝑖
𝒍 −  𝝁𝑙  )

𝑇
 

By definition:  
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𝑀𝑖 =  ∑ ∑ 𝐶𝑓,𝑙  

𝐹

𝑙=1

𝐹

𝑓=1

 

This contribution matrix helps us understand the pairwise 

relationships between features in terms of their contribution 

to the Mahalanobis score by analyzing this matrix, we can 

determine whether the anomaly is driven by a single feature 

or a combination of features, providing a clearer 

understanding of the source of the issue. 

4.2. Results and Interpretation 

In this section, we present the results of the multi-feature 

analysis by plotting the Mahalanobis score alongside the 

original and reconstructed signals for each feature, for each 

radar unit. This comprehensive approach allows us to gain a 

complete overview of the model's performance and better 

understand the relationship between the original and 

reconstructed signals.  

4.2.1. “DELTA”  

For radar unit “DELTA”, we observed the following key 

results (Figure 20): 

• No Spikes in the Mahalanobis Score: The spikes 

corresponding to the transition phase, which were 

previously observed, no longer appear in the analysis. 

This indicates that by focusing only on the data collected 

when the radar is in its deployed position (position 2), 

we have successfully filtered out the anomalies caused 

by the transition phase. 

• Problem in actuator_1_pressure: The primary issue 

with radar “DELTA” stems from the 

actuator_1_pressure feature, which displays a decreasing 

trend in the signal. This abnormal behavior, unlike what 

is observed in other radar units, contributes to the high 

Mahalanobis score and signals an anomaly in the 

actuator's performance. 

During our analysis, we highlighted an abnormal decreasing 

pattern in actuator_1_pressure for radar unit “DELTA”. This 

anomaly was found to be related to issues with the 

DRS/MCF, which correspond to real system failures, as in  

Figure 21. 

Upon further investigation, we found that this abnormal 

behavior was noted in the DRS record sheet, specifically in 

the intervention section. The following entry was made: 

"Abnormal pressure was found on the telescopic pressure 

which may cause the mast failure. […] Require investigating 

the drastic drop of hydraulic pressure for both telescopic and 

drive actuators.” – DRS 62213982 record sheet 

This aligns with the decreasing trend observed in the 

Mahalanobis score, confirming that the anomaly flagged by 

the model corresponds to a real failure event, which could 

result in system malfunction if not addressed. 

The increasing Mahalanobis score suggests that condition-

based monitoring could be an effective method for detecting 

such anomalies in future cases. By continuously tracking 

changes in the Mahalanobis score, it may be possible to 

identify potential issues early and trigger maintenance 

actions before a failure occurs. 

To understand the specific contribution of each feature to the 

high Mahalanobis score for radar unit “DELTA”, we 

performed a breakdown of the Mahalanobis score using the 

contribution matrix for the sequence with the highest score. 

 

Figure 20: Mahalanobis score, signals and all reconstructed 

signals for "DELTA" 

 

Figure 21: Mahalanobis score and alerts for “DELTA” 

The analysis revealed the following key findings: 

• Actuator_1_pressure: This feature is clearly the 

primary source of the anomaly. The contribution from 

actuator_1_pressure is significant, and its abnormal 

decreasing trend is driving the high Mahalanobis score. 

• Oil_tank_temperature: In addition to 

actuator_1_pressure, oil_tank_temperature also appears 

to be problematic. While its contribution is not as 
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pronounced as actuator_1_pressure, it still plays a role in 

the overall deviation of the system from normal 

behavior. 

This contribution matrix (Figure 22) allows us to pinpoint the 

specific features that contribute most to the anomalies, 

providing a clearer understanding of the source of the 

problem and guiding the next steps for further investigation. 

4.2.2. “CHARLIE”  

For radar unit “CHARLIE”, we observed the following 

(Figure 23): 

• Outlier: At first glance, the Mahalanobis score shows a 

single pronounced spike, which clearly flags an outlier 

in the oil_tank_temperature feature. This spike indicates 

a significant deviation from normal behavior, suggesting 

an anomaly. 

• High Oil Tank Temperature: This behavior is not 

considered "normal," as it coincides with a bite alert 

indicating a high oil tank temperature issue. The 

alignment of the Mahalanobis spike with the alert 

reinforces the model's ability to flag actual system issues. 

The anomaly detected in the oil_tank_temperature feature in 

“CHARLIE” suggests a potential issue that should be further 

investigated, as the model's output corresponds with the alert 

triggered by the system (Figure 24). 

This anomaly was found to be related to issues with the 

DRS/MCF, which correspond to real system failures. 

Upon further investigation, we found that this abnormal 

behavior was noted in the DRS and MCF as a sensor fault 

(Figure 25). The feature contribution analysis has also 

validated our point: Oil_tank_temperature is clearly 

problematic, and this result is coherent with what we’ve seen 

in the signal. 

4.2.3. “BRAVO”  

For radar unit “BRAVO”, we observed the following (Figure 

26): 

• Outlier: At first glance, the Mahalanobis score shows a 

single pronounced spike, which clearly flags an outlier 

in the oil_tank_temperature feature. This spike indicates 

a significant deviation from normal behavior, suggesting 

an anomaly.In reality, this outlier is clearly due to sensor 

default as it displayed a temperature above 60k degrees 

Celsius. 

• Scaling challenge: This outlier is very far from the usual 

range of values, which results in the Mahalanobis score 

also being very high at this level. Therefore, due to scale 

issues, the rest of the scores become barely discernible, 

so we decide to zoom in to overcome these scale 

problems: 

 

Figure 22: Mahalanobis breakdown matrix from sequence 

on 28/01/2024 for "DELTA" 

 

Figure 23: Mahalanobis score, signals and all reconstructed 

signals for "CHARLIE" 

Figure 24: Mahalanobis score and alerts for “CHARLIE” 

 

Figure 25: Mahalanobis breakdown matrix from sequence 

on 11/09/2024 for "CHARLIE" 
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Most of the anomalies flagged by the model are found to 

correlate with existing DRS/MCF alerts and BITE alerts 

(Figure 27). However, the model also detects a spike that 

does not appear to be associated with any known alert. For 

DRS A69333, the failure description indicates operation 

ranges exceeding radar limits: 

 

Figure 26: Mahalanobis score, signals and all reconstructed 

signals for "BRAVO" 

 

 

Figure 27: Zoomed Mahalanobis score and alerts for 

“BRAVO” 

"MAST: OIL LOW TEMPERATURE FAILURE; MAST: 

ACTUATOR 3 PRESSURE OUT OF RANGE; MAST: 

ACTUATOR 2 PRESSURE OUT OF RANGE; MAST: 

ACTUATOR 1 PRESSURE OUT OF RANGE." 

The Bite alert 10f0100_461 is less straightforward and refers 

to an "ANTENNA DELTA PRESSURE FAULT." 

The analysis of feature contribution highlights the specific 

features responsible for each alert, providing better 

interpretability and insights into the model’s decision-making 

process : 

The first matrix (Figure 28) clearly highlights an outlier in 

the oil_tank_temperature feature, with a value exceeding 

60,000°C. This result is consistent with the anomaly observed 

in the raw signal.  

 

Figure 28: Mahalanobis breakdown matrix from sequence 

on 17/05/2024 for "BRAVO" 

The second matrix (Figure 29) corresponds to the DRS and 

MCF alerts, which reference features operating out of their 

expected range. In this case, the matrix indicates that multiple 

features contribute to the anomaly. A closer inspection of the 

signal reveals a significantly high value for 

actuator_2_pressure, creating a noticeable pressure 

difference with actuator_1_pressure. In contrast, 

oil_tank_temperature does not appear abnormal when 

examined directly in the signal. 

 

Figure 29: Mahalanobis breakdown matrix from sequence 

on 24/05/2024 for "BRAVO" 

Finally, the third matrix (Figure 30) relates to the BITE alert 

labeled "ANTENNA DELTA PRESSURE FAULT." Here, 

oil_tank_temperature appears as a significant contributing 

feature. However, the link between this variable and the alert 
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is not straightforward. The correlation between the 

oil_tank_temperature anomaly and the antenna delta pressure 

fault remains unclear, highlighting the need for further 

investigation. 

4.2.4. “ALPHA”  

For radar unit “ALPHA”, the Mahalanobis score is 

significantly lower compared to the scores observed for 

“DELTA” and “CHARLIE”. No anomalies or outliers stand 

out in these radar units, indicating that the system's behavior 

is relatively stable and within expected parameters. 

This radar unit exhibits normal signal patterns without any 

notable deviations, suggesting that no major issues are 

detected for these units in this analysis. 

5. CONCLUSION 

We have developed a model capable of flagging outliers and 

abnormal patterns, evaluating them through the Mahalanobis 

score. While the model proves effective in identifying 

anomalies, the next step is to determine an appropriate 

threshold to fully automate the anomaly detection system. 

This remains a challenge due to the lack of clearly faulty data, 

such as DRS or MCF, which makes it difficult to define a 

precise threshold based on observable failures. 

One of the key considerations in our approach is the filtering 

of data based solely on the radar's deployed position (position 

2). This filtering excludes data from the transition phase and 

when the radar is in position 0, which may result in the loss 

of valuable information and potentially missing anomalies. 

This decision raises the question of whether we should 

develop a model to handle these cases, as filtering restricts 

the scope of data available for analysis. Additionally, the 

model faces challenges in characterizing what constitutes an 

anomaly. The difficulty arises from the variety of anomaly 

types, including outliers and abnormal patterns, which are not 

always easy to define. The absence of clearly defined failure 

data, such as DRS or MCF, further complicates the detection 

process. 

Future exploration should focus on testing the model with 

other sub-systems. This would provide a broader 

understanding of the system’s behavior, but it is essential to 

consider the relationships between sub-systems, especially 

since the data sampling rates differ across them. Furthermore, 

exploring alternative models and fine-tuning their 

hyperparameters could lead to improved performance, 

although this remains challenging given the uncertainty in 

defining anomalies. Lastly, while the current model only uses 

numerical features, incorporating binary features could add 

significant value. By integrating binary data, we could 

enhance the model's ability to detect anomalies, as this type 

of feature may provide useful additional insights. 

 

Figure 30: Mahalanobis breakdown matrix from sequence 

on 05/05/2024 for "BRAVO" 
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