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ABSTRACT 

The reactor coolant pump – vibration monitoring system 

(RCP-VMS) ensures the safe operation of nuclear power 

plants by detecting anomalies in the shaft and bearing 

components of reactor coolant pumps. While effective for 

known fault modes, conventional Artificial Intelligence (AI)-

based diagnostic models often fail to detect unseen faults, 

especially when labeled data are limited. To address this 

limitation, an open-set recognition approach based on class-

specific semantic reconstruction (CSSR), referred to as 

vibration displacement image CSSR (VDI-CSSR) in this 

study, is proposed. Vibration signals collected from RCP-

VMS are processed into orbit plot and recurrence plots, 

which serve as multi-channel image inputs to the model. The 

reconstruction errors are then used to distinguish both known 

and unknown fault conditions. Experimental results 

demonstrate that the proposed method achieves competitive 

closed-set accuracy while significantly enhancing open-set 

fault detection performance compared to baseline models. 

This approach enhances the reliability and robustness of fault 

diagnosis in safety-critical rotating machinery such as RCPs. 

1. INTRODUCTION 

The reactor coolant pump – vibration monitoring system 

(RCP-VMS) plays a vital role in ensuring the safe and stable 

operation of nuclear power plants. It continuously monitors 

the dynamic behavior of the RCP by analyzing vibration 

signals acquired from accelerometers and non-contact 

displacement sensors. The signals are used to detect early 

signs of shaft misalignment, bearing defects, and other 

mechanical anomalies (Choi et al., 2025; Hwang et al., 2025; 

Choi et al., 2025). While RCP-VMS is effective at identifying 

known fault conditions, real-world applications often involve 

a wide variety of fault modes, including previously unseen or 

evolving faults. Conventional artificial intelligence (AI)  

models for fault diagnosis typically rely on supervised 

learning, which require extensive labeled datasets and tend to 

perform poorly when encountering novel conditions outside  

 

the scope of the training data (Hu et al., 2025). This limitation 

becomes especially critical in safety-critical systems like 

RCPs. Collecting and labeling fault data in nuclear 

environments is extremely challenging, making it difficult to 

ensure sufficient coverage of all possible fault scenarios. Li 

et al. (2024) proposed an OSR framework for nuclear power 

plant fault diagnosis based on convolutional prototype 

learning (CPL). This approach enhanced inter-class 

separability and intra-class compactness, demonstrating 

higher discriminative power than conventional CNNs and 

improving unknown fault detection performance. However, 

CPL does not incorporate semantic reconstruction during 

training, and therefore cannot fully capture the latent 

semantic structure of high-dimensional, nonlinear industrial 

data. To address these challenges, this paper proposes an 

open-set recognition (OSR) framework based on class-

specific semantic reconstruction (CSSR) for robust fault 

diagnosis in RCP-VMS. Huang et al. (2022) proposed CSSR, 

which integrates class-specific feature extraction with 

semantic reconstruction. This approach complements the 

limitations of CPL and enables the learning of richer semantic 

representations, thereby allowing more effective 

discrimination of unknown fault conditions. In the proposed 

method, vibration signals are converted into multi-channel 

image representations—including orbit plot and recurrence 

plots (RPs)—which are used as input to the diagnostic model. 

The reconstruction error is then leveraged to differentiate 

between known and unknown fault modes. Through both the 

simulation study and the RK4 journal bearing testbed data, it 

was demonstrated that the proposed method not only 

achieves competitive closed-set classification accuracy, but 

also significantly improves the detection of unseen fault 

conditions, enhancing both the reliability and robustness of 

RCP-VMS. 
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(a) (b) 

Figure 1. Transition from closed-set classification to open-set 

recognition: (a) standard multi-class classification 

without unknown awareness; (b) open-set 

recognition with unknown rejection capability. 

2. THEORETICAL BACKGROUND 

Most classifiers assume a closed-set environment defined 

during the training phase, classifying every input at test time 

as belonging to one of the previously learned classes. 

However, in real-world scenarios, unknown classes that were 

not used during training may appear, and in such cases, 

closed-set classifiers inevitably assign them to one of the 

known classes. As discussed earlier, OSR can address this 

issue. OSR rejects inputs from classes not included in the 

training set, thereby preventing incorrect predictions. 

Scheirer et al. (2013) defined the notion of open space risk to 

formalize this problem. 

Conventional deep learning models utilize a softmax layer at 

the final stage to normalize class scores into probabilities, 

which leads to the limitation of assigning high probabilities 

to specific classes even for unknown classes. To address this 

issue, Bendale and Boult (2015) proposed OpenMax, which 

computes the distance between the input and class 

distributions using the activation vector (AV) and mean 

activation vector (MAV), and estimates the outlier 

probability through a Weibull distribution based on extreme 

value theory. 

Recently, Huang et al. (2022) proposed CSSR, which has 

attracted considerable attention. CSSR employs class-

specific autoencoders (AEs) to reconstruct semantic features 

and computes class membership probabilities based on 

reconstruction errors. This approach mitigates the issues of 

excessive distributional compression and boundary blurring 

in conventional methods, while enhancing class-related 

representations by reconstructing semantic features from the 

backbone network rather than raw pixels. The reconstruction 

error is defined as follows: 

 𝑑(𝒛, 𝐴𝑐) =∥ 𝒛 − 𝐴𝑐(𝒛) ∥1 ≈  max
𝒗∈𝑉𝑐

∥ 𝒛 − 𝒗 ∥1  (1) 

where z denotes the latent representation of an input sample 

x extracted via the encoder, Ac () represents the class-specific 

autoencoder corresponding to class c, and Vc denotes the set 

of prototypes (representative vectors) for class c. This 

measures the distance between a data point and the class-

specific manifold, thereby quantifying the otherness of the 

sample with respect to that manifold. Under the assumption 

that smaller errors indicate a higher likelihood of belonging 

to that class, the error is directly used as the classification 

logit. The equation for computing the class membership 

probability is expressed as follows: 

  

 𝑝(𝒚 = 𝒊|𝒛, 𝑨) =
exp(−𝛾 ⋅ 𝑑(𝒛,𝐴𝑖))

∑ exp(−𝛾 ⋅ 𝑑(𝒛,𝐴𝑖))𝑚
𝑗=1

  (2) 

where m denotes the total number of classes, and  is a 

hyperparameter that controls the sharpness or discriminative 

strength of the probability distribution. A larger  value 

amplifies the effect of small differences in reconstruction 

error on the probability values, resulting in a sharper, more 

class-discriminative probability distribution. In this approach, 

the autoencoder is trained to minimize the reconstruction 

error for data belonging to its corresponding class, while 

being encouraged to remain sufficiently distant from other 

class manifolds. The reconstruction error is measured using 

the mean absolute error (MAE) as the default metric. As 

training progresses, the known classes exhibit enhanced 

relevant features, whereas unknown classes generally show 

low feature activations.

 

Figure 2. Overview of the proposed method. 
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3. PROPOSED METHOD 

The proposed method, referred to as VDI-CSSR, consists of 

two stages including vibration displacement image 

processing and the CSSR model, as depicted in Fig. 2. 

3.1. Vibration Displacement Image Processing 

Fault signal data from the RCP-VMS operating in the field 

are difficult to collect, and their distribution tends to be highly 

imbalanced. To address this issue, this study utilized 

synthesized two-axis (X, Y) vibration displacement signals 

generated through physics-based simulation (Lee et al., 2025). 

In addition, the RK4 journal bearing dataset acquired from 

the GE Bently Nevada testbed (Jeon et al., 2015) was also 

utilized. The simulation data were produced using a model 

that incorporates the geometric characteristics and operating 

conditions of the rotor, as well as empirical physical 

knowledge. The RK4 dataset was collected under real 

experimental conditions, reflecting various practical factors 

such as sensor noise, environmental variations, and signal 

distortion. Compared to the simulation dataset, these 

characteristics provide a more realistic representation of field 

conditions, making RK4 an important reference for 

evaluating the practicality and robustness of the proposed 

method. In addition, both the simulation data and the RK4 

data were acquired at the same sampling rate of 8,500 Hz, and 

the same image conversion procedure was applied to both 

time-series datasets. 

The time-domain signals were transformed into two-

dimensional patterns such as orbit plot and RPs. Specifically, 

for the two-axis vibration displacement signals x(t) and y(t) 

acquired over the same time interval, the complex trajectory 

was defined as D(t) = x(t) + jy(t), and the orbit plot was 

generated by visualizing its temporal evolution. In addition, 

for each axis, the recurrence matrix was computed as Rij=( 

– x(ti) – x(tj)), and these matrices were used to generate the 

RP-X and RP-Y images. This conversion process projects the 

temporal dependencies and structural variations of the 

original time-domain signals into two-dimensional patterns, 

enabling the dynamic characteristics of vibration to be more 

effectively utilized as model inputs. 

An orbit plot represents the phase relationship between 

vibration displacements in the X and Y directions, illustrating 

changes in the shape of the vibration trajectory according to 

rotor conditions such as unbalance, eccentricity, and 

misalignment. For example, a perfectly circular orbit plot 

indicates a balanced state, whereas an elliptical or distorted 

orbit plot suggests unbalance or structural defects. An RP 

visualizes the recurrence patterns of a time series in its state-

space trajectory, revealing the periodicity, quasi-periodicity, 

nonstationarity, and nonlinear dynamical characteristics of 

the system (Eckmann et al., 1987). In an RP, distinct dot 

patterns and diagonal structures reflect the periodic behavior 

of normal operation, while irregular dot distributions indicate 

aperiodic behavior caused by faults or disturbances. 

The generated images are resampled to the same resolution 

(64×64) and normalized to the range [0, 1], then combined 

along the channel dimension to form a single 3-channel input 

tensor. This step, instead of using the raw signals directly, 

transforms the geometric and dynamic structures of the 

vibration signals into image patterns, enabling the model to 

capture fault indications more effectively through time-

feature-based learning. 

3.2. CSSR Model 

The CSSR architecture is adopted and combined with 

vibration displacement image processing to form the 

proposed VDI-CSSR method for vibration-based fault 

detection in an open-set environment. CSSR employs a 

dedicated autoencoder for each class, which reconstructs the 

semantic features of that class. This design naturally leads to 

low reconstruction errors for known classes and high 

reconstruction errors for unknown or different classes. Such 

a property aligns with the operational principle of the RCP-

VMS, which must make conservative rejection decisions for 

unknown inputs. In particular, CSSR offers several 

advantages: (1) it can maintain closed-set classification 

accuracy while also achieving strong unknown-class 

detection performance, (2) it allows direct formulation of a 

rejection criterion based on reconstruction error without 

requiring an additional anomaly detection module, and (3) it 

internalizes the semantic structure of each class, enabling 

effective discrimination of complex fault patterns. For these 

reasons, we determined that CSSR is a highly suitable model 

architecture for the multi-axis vibration data-based open-set 

fault detection problem addressed in this study. 

The generated input images are fed into a shared backbone 

encoder (i.e., ResNet-18) to produce latent representations 

(He et al., 2016). The orbit plot and RPs visually encode, 

respectively, the geometric trajectory changes of rotating 

machinery motion and the time-delay correlation structure. 

Under normal conditions, these representations form stable 

and repetitive patterns for each class. The backbone encoder 

extracts the shape, density, and periodicity of these patterns 

and maps them into class-specific distributions in a low-

dimensional latent space. This latent representation branches 

into two pathways: (1) one leading to a softmax classification 

head for identifying known classes, and (2) another directed 

to a set of class-specific decoders for reconstructing the input 

images. During training, classification and reconstruction are 

jointly optimized. For normal classes, the corresponding 

class-specific autoencoder learns to accurately reconstruct 

fine-grained details in the orbit plot and RP patterns (e.g., 

orbital curvature, RP dot distribution). In contrast, for inputs 

from unknown or different classes, a margin constraint is 

applied so that the reconstruction quality by the 

corresponding class decoder degrades sharply, thereby 
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reinforcing class boundaries. Through this process, CSSR 

internalizes the dynamic characteristics embedded in the orbit 

plot and RPs as class-dependent reconstructability. 

During inference, the reconstruction error for each class is 

computed, and the class with the smallest error is 

provisionally selected as the predicted class. At the same time, 

the maximum softmax probability from the classification 

head is obtained. For normal inputs, the learned orbit plot and 

RP patterns from training match well, resulting in both low 

reconstruction error and high classification probability. In 

contrast, unknown inputs show high reconstruction errors 

across all decoders due to pattern mismatches, and their 

classification probabilities are also low. Both values are 

standardized in advance using the validation set and then 

combined with equal weighting to form a single unknown 

score. If this score is smaller than the predefined threshold, 

the input is accepted as “known” for the predicted class; if it 

is greater, the input is rejected as “unknown”. 

4. EXPERIMENTAL SETUP 

The simulation dataset was constructed such that only known 

classes were used during the training phase. Specifically, as 

shown in Table 1, the training set consisted of four known 

classes: normal (NO), forced unbalance (FU), heavy preload 

(HP), and mild preload (MP). For the validation set, two 

additional classes—angular misalignment (AM) and oil whirl 

(OW)—were designated as unknown classes. For the test set, 

three different classes—combined misalignment (CM), oil 

whirl + heavy unbalance (OH), and oil whirl + mild 

unbalance (OM)—were used as unknowns to evaluate 

performance in the open-set scenario. As summarized in 

Table 1, the training split contained a total of 800 samples 

from the four known classes. The validation split included 

2,000 samples in total, consisting of the known classes plus 

AM and OW as unknowns. Likewise, the test split contained 

2,000 samples in total, with CM, OH, and OM serving as 

unknown classes not present in training.  

The RK4 dataset used three known classes (normal, 

unbalance, and misalignment) for training, as shown in Table 

2. The validation set additionally included Oil whirl as an 

unknown class, while the test set used Rubbing as another 

unknown class to evaluate generalization performance. The 

training set contained a total of 450 samples from the three 

known classes, and both the validation and test sets consisted 

of 800 samples each, containing a mixture of the known 

classes and their corresponding unknown classes. By 

intentionally keeping the unknown class combinations in the 

test set disjoint from those in the validation set, the reliability 

of the performance evaluation was enhanced. Accordingly, in 

both the simulation dataset and the RK4 dataset, only a 

minimal amount of labeled training data was intentionally 

used to simulate the data-scarce conditions commonly 

encountered in real industrial environments. 

 

 

All dataset splits were constructed without sample overlap, 

and threshold/hyperparameter selection was conducted using 

the validation dataset. For a fair comparison with the 

proposed method, all models were implemented using the 

same backbone network (ResNet-18), and the input layer of 

each method was modified to match the channel dimension 

of the input images. All methods were trained for 100 epochs, 

and the results after 100 epochs were used for comparison. 

Each class-specific autoencoder in the CSSR architecture was 

configured with hidden dimensions of [128, 64, 32] to 

enhance reconstruction performance. Stochastic gradient 

descent (SGD) was used as the optimizer. To minimize the 

loss of physical meaning, no data augmentation techniques 

were employed. Model selection during training was based 

primarily on minimizing the loss. The checkpoint 

corresponding to the minimum validation loss was stored as 

the final model, and its performance was evaluated on the test 

set containing a disjoint set of unseen fault modes, 

demonstrating that the model did not overfit to the limited 

validation unknown classes. For comparison, softmax 

thresholding and OpenMax were adopted as baseline 

methods. Softmax thresholding rejects an input as unknown 

if its maximum softmax probability falls below the threshold, 

with the threshold range explored from 0.5 to 0.95 (Table 2). 

OpenMax computes the class-specific MAV and distance 

distribution, fits a Weibull distribution to each class tail, and 

recalibrates/redistributes logits accordingly. The Weibull tail 

size was explored in the range of 20–400, alpha in the range 

of 1–min (10, number of classes), and the unknown rejection 

threshold in the range of 0.6–0.99 (Table 3). Hyperparameter 

search was performed using Optuna to maximize open-set 

detection accuracy on the validation split. 

 

Table 1. Configuration for the simulation dataset. 

Split Classes Total samples 

Train NO, FU, HP, MP 800 

Validation 
NO, FU, HP, MP 

+ Unknown (AM, OW) 
2,000 

Test 
NO, FU, HP, MP 

+ Unknown (CM, OH, OM) 
2,000 

 

Table 2. Configuration for the RK4 dataset. 

Split Classes Total samples 

Train NO, UB, MA 450 

Validation 
NO, UB, MA 

+ Unknown (OW) 
800 

Test 
NO, UB, MA 

+ Unknown (RB) 
800 

 

Table 3. Hyperparameter search space. 

Method Hyperparameter Search Range 

Softmax 

thresholding 
Softmax threshold 0.5 to 0.95 

OpenMax 

Weibull tail 20 to 400 

Weibull alpha 1 to 10 

Weibull threshold 0.6 to 0.99 
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5. RESULTS 

5.1. Simulation Datasets 

The proposed method was evaluated under two input 

configurations: orbit plot only and orbit plot with RPs. Using 

Optuna, hyperparameters were searched within the parameter 

ranges specified in Table 3 based on model accuracy, and the 

resulting optimal hyperparameters are summarized in Table 

4. Table 5 reports the mean accuracy and standard deviation 

obtained from five independent training runs. When using 

orbit plots only as input, CSSR achieved average validation 

and test accuracies of 82.8±0.015% and 85.6±0.032%, 

respectively. In comparison, OpenMax obtained 

67.4±0.024% and 67.8±0.024% for validation and test, while 

Softmax thresholding achieved 77.9±0.007% and 

76.6±0.021%, respectively. In other words, CSSR 

consistently showed superior performance to both baseline 

methods. In contrast, when orbit plots were combined with 

recurrence plots, CSSR achieved average validation and test 

accuracies of 96.9±0.040% and 99.7±0.004%, respectively. 

Based on the test dataset, adding recurrence plots improved 

the performance of CSSR by approximately 14.1% and 

improved OpenMax by approximately 23.8%, whereas 

Softmax thresholding slightly decreased by about 0.5%. In 

addition, as shown in Figure 3, the misclassification of 

unknown classes observed when using orbit plots alone was 

largely mitigated when both orbit and recurrence plots were 

used together. 

 

 

(a) 

(b) 

Figure 3. Performance improvement of CSSR with (a) orbit 

plot only and (b) orbit plot with RPs. 

5.2. RK4 Datasets 

Performance on the RK4 dataset was examined using the 

same two input configurations to evaluate whether the benefit 

of incorporating recurrence plots is consistently observed 

under real testbed conditions. The optimal hyperparameters 

were determined based on validation accuracy as shown in 

Table 6, and the final performance was obtained by averaging 

the results over five independent runs as summarized in Table 

7. When using orbit plots only, CSSR achieved average 

validation and test accuracies of 96.6±0.003% and 

97.1±0.030%, respectively. In comparison, OpenMax 

obtained 92.2±0.010% for both validation and test, and 

Softmax thresholding obtained 75.0±0.000% and 

86.4±0.034% for validation and test, respectively. When 

recurrence plots were additionally included, CSSR achieved 

average validation and test accuracies of 96.6±0.005% and 

99.0±0.012%, respectively. Based on the test dataset, adding 

recurrence plots improved the performance of OpenMax by 

approximately 4.8% and improved CSSR by approximately 

1.9%, whereas Softmax thresholding decreased by 

approximately 6.5%. Furthermore, as shown in Figure 4, the 

orbit-only configuration caused a degradation in the known-

class performance due to the influence of unknown classes, 

whereas such degradation did not occur when both plots were 

jointly considered. 

Table 4. Hyperparameter settings. 
Inputs Methods Hyperparameter Value 

Orbit 

Softmax 

thresholding 
Softmax threshold 0.76 

OpenMax 

Weibull tail 101 

Weibull alpha 4 

Weibull threshold 0.65 

CSSR Autoencoder latent 64 

Orbit and 
RPs 

Softmax 

thresholding 
Softmax threshold 0.55 

OpenMax 

Weibull tail 23 

Weibull alpha 2 

Weibull threshold 0.68 

CSSR 

(Proposed) 
Autoencoder latent 64 

 

Table 5. Fault diagnostic performance. 

Inputs Methods 

Accuracy 

(Validation/test) 

(%) 

Standard deviation 

(Validation/test) 

(%) 

Orbit 

Softmax 
thresholding 

77.9/76.6 0.007/0.021 

OpenMax 67.4/67.8 0.024/0.024 

CSSR 82.8/85.6 0.015/0.032 

Orbit 

and 
RPs 

Softmax 72.9/76.1 0.007/0.006 

OpenMax 89.3/91.6 0.015/0.012 

CSSR 

(Proposed) 
96.9/99.7 0.040/0.004 
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(a) 

 

(b) 

Figure 4. Performance improvement of CSSR with (a) orbit 

plot only and (b) orbit plot with RPs. 

6. CONCLUSION 

The proposed VDI-CSSR method was validated using both a 

simulation-based dataset and the RK4 journal bearing 

experimental dataset. Only a limited number of samples were 

intentionally used during training, and different combinations 

of unknown classes were assigned to the validation and test 

datasets to minimize the possibility of overfitting. 

Nevertheless, the model selected based on the validation 

dataset consistently showed strong performance on the test 

dataset, indicating that the proposed approach can generalize 

effectively even under limited-label conditions. Furthermore, 

the CSSR-based approach maintained closed-set 

classification accuracy while achieving significantly superior 

rejection capability for unknown faults compared to Softmax 

thresholding and OpenMax. In particular, the multi-channel 

input configuration that combines orbit plots with recurrence 

plots contributed to consistently improving open-set 

recognition performance compared to using orbit plots alone. 

These results demonstrate that the proposed VDI-CSSR 

method can effectively learn meaningful features even in 

data-constrained scenarios, and has high potential for 

generalization in safety-critical industrial environments 

where reliability and robustness are required. 

This study does not cover conditions that may occur in actual 

nuclear power plant environments. Future work will 

incorporate a practical diagnostic procedure that reflects real 

operational scenarios, applying a step-wise open-set 

diagnosis structure in which normal/abnormal discrimination 

is performed first, followed by detailed fault mode 

identification. In addition, the design of unknown classes will 

be redefined to focus on fault modes with higher diagnostic 

value than impeller unbalance, such as oil whirl, oil whip, and 

shaft-related defects. Real order-tracked data acquired during 

the cost-down period will also be utilized to perform 

validation at a field-deployable level. Based on this, DC 

components and order-based features will be incorporated 

into the diagnostic process, and domain adaptation 

techniques will be integrated to reduce dependence on 

labeled data and further improve unknown fault detection 

performance. 
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Table 7. Fault diagnostic performance. 

Inputs Methods 

Accuracy 

(Validation/test) 

(%) 

Standard 

deviation 

(Validation/test) 

(%) 

Orbit 

Softmax 
thresholding 

75.0/86.4 0.000/0.034 

OpenMax 92.2/92.2 0.010/0.010 

CSSR 96.6/97.1 0.003/0.030 

Orbit 

and 
RPs 

Softmax 75.0/79.9 0.000/0.042 

OpenMax 97.0/97.0 0.008/0.008 

CSSR 

(Proposed) 
96.6/99.0 0.005/0.012 

 

Table 6. Hyperparameter settings. 
Inputs Methods Hyperparameter Value 

Orbit 

Softmax 

thresholding 
Softmax threshold 0.72 

OpenMax 

Weibull tail 83 

Weibull alpha 3 

Weibull threshold 0.81 

CSSR Autoencoder latent 32 

Orbit 

and 

RPs 

Softmax 

thresholding 
Softmax threshold 0.61 

OpenMax 

Weibull tail 20 

Weibull alpha 3 

Weibull threshold 0.79 

CSSR 

(Proposed) 
Autoencoder latent 32 
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