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ABSTRACT

The reactor coolant pump — vibration monitoring system
(RCP-VMS) ensures the safe operation of nuclear power
plants by detecting anomalies in the shaft and bearing
components of reactor coolant pumps. While effective for
known fault modes, conventional Artificial Intelligence (Al)-
based diagnostic models often fail to detect unseen faults,
especially when labeled data are limited. To address this
limitation, an open-set recognition approach based on class-
specific semantic reconstruction (CSSR), referred to as
vibration displacement image CSSR (VDI-CSSR) in this
study, is proposed. Vibration signals collected from RCP-
VMS are processed into orbit plot and recurrence plots,
which serve as multi-channel image inputs to the model. The
reconstruction errors are then used to distinguish both known
and unknown fault conditions. Experimental results
demonstrate that the proposed method achieves competitive
closed-set accuracy while significantly enhancing open-set
fault detection performance compared to baseline models.
This approach enhances the reliability and robustness of fault
diagnosis in safety-critical rotating machinery such as RCPs.

1. INTRODUCTION

The reactor coolant pump — vibration monitoring system
(RCP-VMS) plays a vital role in ensuring the safe and stable
operation of nuclear power plants. It continuously monitors
the dynamic behavior of the RCP by analyzing vibration
signals acquired from accelerometers and non-contact
displacement sensors. The signals are used to detect early
signs of shaft misalignment, bearing defects, and other
mechanical anomalies (Choi et al., 2025; Hwang et al., 2025;
Choi et al., 2025). While RCP-VMS is effective at identifying
known fault conditions, real-world applications often involve
a wide variety of fault modes, including previously unseen or
evolving faults. Conventional artificial intelligence (Al)
models for fault diagnosis typically rely on supervised
learning, which require extensive labeled datasets and tend to
perform poorly when encountering novel conditions outside

the scope of the training data (Hu et al., 2025). This limitation
becomes especially critical in safety-critical systems like
RCPs. Collecting and labeling fault data in nuclear
environments is extremely challenging, making it difficult to
ensure sufficient coverage of all possible fault scenarios. Li
et al. (2024) proposed an OSR framework for nuclear power
plant fault diagnosis based on convolutional prototype
learning (CPL). This approach enhanced inter-class
separability and intra-class compactness, demonstrating
higher discriminative power than conventional CNNs and
improving unknown fault detection performance. However,
CPL does not incorporate semantic reconstruction during
training, and therefore cannot fully capture the latent
semantic structure of high-dimensional, nonlinear industrial
data. To address these challenges, this paper proposes an
open-set recognition (OSR) framework based on class-
specific semantic reconstruction (CSSR) for robust fault
diagnosis in RCP-VMS. Huang et al. (2022) proposed CSSR,
which integrates class-specific feature extraction with
semantic reconstruction. This approach complements the
limitations of CPL and enables the learning of richer semantic
representations,  thereby allowing more  effective
discrimination of unknown fault conditions. In the proposed
method, vibration signals are converted into multi-channel
image representations—including orbit plot and recurrence
plots (RPs)—which are used as input to the diagnostic model.
The reconstruction error is then leveraged to differentiate
between known and unknown fault modes. Through both the
simulation study and the RK4 journal bearing testbed data, it
was demonstrated that the proposed method not only
achieves competitive closed-set classification accuracy, but
also significantly improves the detection of unseen fault
conditions, enhancing both the reliability and robustness of
RCP-VMS.
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Figure 1. Transition from closed-set classification to open-set
recognition: (a) standard multi-class classification
without unknown awareness; (b) open-set
recognition with unknown rejection capability.

2. THEORETICAL BACKGROUND

Most classifiers assume a closed-set environment defined
during the training phase, classifying every input at test time
as belonging to one of the previously learned classes.
However, in real-world scenarios, unknown classes that were
not used during training may appear, and in such cases,
closed-set classifiers inevitably assign them to one of the
known classes. As discussed earlier, OSR can address this
issue. OSR rejects inputs from classes not included in the
training set, thereby preventing incorrect predictions.
Scheirer et al. (2013) defined the notion of open space risk to
formalize this problem.

Conventional deep learning models utilize a softmax layer at
the final stage to normalize class scores into probabilities,
which leads to the limitation of assigning high probabilities
to specific classes even for unknown classes. To address this
issue, Bendale and Boult (2015) proposed OpenMax, which
computes the distance between the input and class
distributions using the activation vector (AV) and mean
activation vector (MAV), and estimates the outlier
probability through a Weibull distribution based on extreme
value theory.

Recently, Huang et al. (2022) proposed CSSR, which has
attracted considerable attention. CSSR employs class-
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specific autoencoders (AES) to reconstruct semantic features
and computes class membership probabilities based on
reconstruction errors. This approach mitigates the issues of
excessive distributional compression and boundary blurring
in conventional methods, while enhancing class-related
representations by reconstructing semantic features from the
backbone network rather than raw pixels. The reconstruction
error is defined as follows:

d(z,A) =llz—A,(2) I, = maxlz—v I, Q)
VEV,

where z denotes the latent representation of an input sample
x extracted via the encoder, A. (-) represents the class-specific
autoencoder corresponding to class c, and V. denotes the set
of prototypes (representative vectors) for class c. This
measures the distance between a data point and the class-
specific manifold, thereby quantifying the otherness of the
sample with respect to that manifold. Under the assumption
that smaller errors indicate a higher likelihood of belonging
to that class, the error is directly used as the classification
logit. The equation for computing the class membership
probability is expressed as follows:

exp(—y - d(Z‘Ai)) (2)

=i|z,A) =
p(y =i|z, A) Iy exp(—y - d(z,4))

where m denotes the total number of classes, and y is a
hyperparameter that controls the sharpness or discriminative
strength of the probability distribution. A larger » value
amplifies the effect of small differences in reconstruction
error on the probability values, resulting in a sharper, more
class-discriminative probability distribution. In this approach,
the autoencoder is trained to minimize the reconstruction
error for data belonging to its corresponding class, while
being encouraged to remain sufficiently distant from other
class manifolds. The reconstruction error is measured using
the mean absolute error (MAE) as the default metric. As
training progresses, the known classes exhibit enhanced
relevant features, whereas unknown classes generally show
low feature activations.
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Figure 2. Overview of the proposed method.

Baker Hughes Confidential



Asia Pacific Conference of the Prognostics and Health Management Society 2025

3. PROPOSED METHOD

The proposed method, referred to as VDI-CSSR, consists of
two stages including vibration displacement image
processing and the CSSR model, as depicted in Fig. 2.

3.1. Vibration Displacement Image Processing

Fault signal data from the RCP-VMS operating in the field
are difficult to collect, and their distribution tends to be highly
imbalanced. To address this issue, this study utilized
synthesized two-axis (X, Y) vibration displacement signals

generated through physics-based simulation (Lee et al., 2025).

In addition, the RK4 journal bearing dataset acquired from
the GE Bently Nevada testbed (Jeon et al., 2015) was also
utilized. The simulation data were produced using a model
that incorporates the geometric characteristics and operating
conditions of the rotor, as well as empirical physical
knowledge. The RK4 dataset was collected under real
experimental conditions, reflecting various practical factors
such as sensor noise, environmental variations, and signal
distortion. Compared to the simulation dataset, these
characteristics provide a more realistic representation of field
conditions, making RK4 an important reference for
evaluating the practicality and robustness of the proposed
method. In addition, both the simulation data and the RK4
data were acquired at the same sampling rate of 8,500 Hz, and
the same image conversion procedure was applied to both
time-series datasets.

The time-domain signals were transformed into two-
dimensional patterns such as orbit plot and RPs. Specifically,
for the two-axis vibration displacement signals x(t) and y(t)
acquired over the same time interval, the complex trajectory
was defined as D(t) = x(t) + jy(t), and the orbit plot was
generated by visualizing its temporal evolution. In addition,
for each axis, the recurrence matrix was computed as Rij=&(e
— |Ix(t) — x(t)|]), and these matrices were used to generate the
RP-X and RP-Y images. This conversion process projects the
temporal dependencies and structural variations of the
original time-domain signals into two-dimensional patterns,
enabling the dynamic characteristics of vibration to be more
effectively utilized as model inputs.

An orbit plot represents the phase relationship between
vibration displacements in the X and Y directions, illustrating
changes in the shape of the vibration trajectory according to
rotor conditions such as unbalance, eccentricity, and
misalignment. For example, a perfectly circular orbit plot
indicates a balanced state, whereas an elliptical or distorted
orbit plot suggests unbalance or structural defects. An RP
visualizes the recurrence patterns of a time series in its state-
space trajectory, revealing the periodicity, quasi-periodicity,
nonstationarity, and nonlinear dynamical characteristics of
the system (Eckmann et al., 1987). In an RP, distinct dot
patterns and diagonal structures reflect the periodic behavior

of normal operation, while irregular dot distributions indicate
aperiodic behavior caused by faults or disturbances.

The generated images are resampled to the same resolution
(64x64) and normalized to the range [0, 1], then combined
along the channel dimension to form a single 3-channel input
tensor. This step, instead of using the raw signals directly,
transforms the geometric and dynamic structures of the
vibration signals into image patterns, enabling the model to
capture fault indications more effectively through time-
feature-based learning.

3.2. CSSR Model

The CSSR architecture is adopted and combined with
vibration displacement image processing to form the
proposed VDI-CSSR method for vibration-based fault
detection in an open-set environment. CSSR employs a
dedicated autoencoder for each class, which reconstructs the
semantic features of that class. This design naturally leads to
low reconstruction errors for known classes and high
reconstruction errors for unknown or different classes. Such
a property aligns with the operational principle of the RCP-
VMS, which must make conservative rejection decisions for
unknown inputs. In particular, CSSR offers several
advantages: (1) it can maintain closed-set classification
accuracy while also achieving strong unknown-class
detection performance, (2) it allows direct formulation of a
rejection criterion based on reconstruction error without
requiring an additional anomaly detection module, and (3) it
internalizes the semantic structure of each class, enabling
effective discrimination of complex fault patterns. For these
reasons, we determined that CSSR is a highly suitable model
architecture for the multi-axis vibration data-based open-set
fault detection problem addressed in this study.

The generated input images are fed into a shared backbone
encoder (i.e., ResNet-18) to produce latent representations
(He et al., 2016). The orbit plot and RPs visually encode,
respectively, the geometric trajectory changes of rotating
machinery motion and the time-delay correlation structure.
Under normal conditions, these representations form stable
and repetitive patterns for each class. The backbone encoder
extracts the shape, density, and periodicity of these patterns
and maps them into class-specific distributions in a low-
dimensional latent space. This latent representation branches
into two pathways: (1) one leading to a softmax classification
head for identifying known classes, and (2) another directed
to a set of class-specific decoders for reconstructing the input
images. During training, classification and reconstruction are
jointly optimized. For normal classes, the corresponding
class-specific autoencoder learns to accurately reconstruct
fine-grained details in the orbit plot and RP patterns (e.g.,
orbital curvature, RP dot distribution). In contrast, for inputs
from unknown or different classes, a margin constraint is
applied so that the reconstruction quality by the
corresponding class decoder degrades sharply, thereby
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reinforcing class boundaries. Through this process, CSSR
internalizes the dynamic characteristics embedded in the orbit
plot and RPs as class-dependent reconstructability.

During inference, the reconstruction error for each class is
computed, and the class with the smallest error is
provisionally selected as the predicted class. At the same time,
the maximum softmax probability from the classification
head is obtained. For normal inputs, the learned orbit plot and
RP patterns from training match well, resulting in both low
reconstruction error and high classification probability. In
contrast, unknown inputs show high reconstruction errors
across all decoders due to pattern mismatches, and their
classification probabilities are also low. Both values are
standardized in advance using the validation set and then
combined with equal weighting to form a single unknown
score. If this score is smaller than the predefined threshold,
the input is accepted as “known” for the predicted class; if it
is greater, the input is rejected as “unknown”.

4, EXPERIMENTAL SETUP

The simulation dataset was constructed such that only known
classes were used during the training phase. Specifically, as
shown in Table 1, the training set consisted of four known
classes: normal (NO), forced unbalance (FU), heavy preload
(HP), and mild preload (MP). For the validation set, two
additional classes—angular misalignment (AM) and oil whirl
(OW)—were designated as unknown classes. For the test set,
three different classes—combined misalignment (CM), oil
whirl + heavy unbalance (OH), and oil whirl + mild
unbalance (OM)—were used as unknowns to evaluate
performance in the open-set scenario. As summarized in
Table 1, the training split contained a total of 800 samples
from the four known classes. The validation split included
2,000 samples in total, consisting of the known classes plus
AM and OW as unknowns. Likewise, the test split contained
2,000 samples in total, with CM, OH, and OM serving as
unknown classes not present in training.

The RK4 dataset used three known classes (normal,
unbalance, and misalignment) for training, as shown in Table
2. The validation set additionally included Qil whirl as an
unknown class, while the test set used Rubbing as another
unknown class to evaluate generalization performance. The
training set contained a total of 450 samples from the three
known classes, and both the validation and test sets consisted
of 800 samples each, containing a mixture of the known
classes and their corresponding unknown classes. By
intentionally keeping the unknown class combinations in the
test set disjoint from those in the validation set, the reliability
of the performance evaluation was enhanced. Accordingly, in
both the simulation dataset and the RK4 dataset, only a
minimal amount of labeled training data was intentionally
used to simulate the data-scarce conditions commonly
encountered in real industrial environments.

Table 1. Configuration for the simulation dataset.

Split Classes Total samples
Train NO, FU, HP, MP 800
S NO, FU, HP, MP
Validation + Unknown (AM, OW) 2,000
NO, FU, HP, MP
Test | | Unknown (CM, OH, OM) 2,000

Table 2. Configuration for the RK4 dataset.

Split Classes Total samples
Train NO, UB, MA 450
_— NO, UB, MA
Validation + Unknown (OW) 800
NO, UB, MA
Test + Unknown (RB) 800

All dataset splits were constructed without sample overlap,
and threshold/hyperparameter selection was conducted using
the validation dataset. For a fair comparison with the
proposed method, all models were implemented using the
same backbone network (ResNet-18), and the input layer of
each method was modified to match the channel dimension
of the input images. All methods were trained for 100 epochs,
and the results after 100 epochs were used for comparison.
Each class-specific autoencoder in the CSSR architecture was
configured with hidden dimensions of [128, 64, 32] to
enhance reconstruction performance. Stochastic gradient
descent (SGD) was used as the optimizer. To minimize the
loss of physical meaning, no data augmentation techniques
were employed. Model selection during training was based
primarily on minimizing the loss. The checkpoint
corresponding to the minimum validation loss was stored as
the final model, and its performance was evaluated on the test
set containing a disjoint set of unseen fault modes,
demonstrating that the model did not overfit to the limited
validation unknown classes. For comparison, softmax
thresholding and OpenMax were adopted as baseline
methods. Softmax thresholding rejects an input as unknown
if its maximum softmax probability falls below the threshold,
with the threshold range explored from 0.5 to 0.95 (Table 2).
OpenMax computes the class-specific MAV and distance
distribution, fits a Weibull distribution to each class tail, and
recalibrates/redistributes logits accordingly. The Weibull tail
size was explored in the range of 20—400, alpha in the range
of 1-min (10, number of classes), and the unknown rejection
threshold in the range of 0.6-0.99 (Table 3). Hyperparameter
search was performed using Optuna to maximize open-set
detection accuracy on the validation split.

Table 3. Hyperparameter search space.

Method Hyperparameter Search Range
Softma>_< Softmax threshold 0.5t00.95
thresholding
Weibull tail 20 to 400
OpenMax Weibull alpha 1t010
Weibull threshold 0.6 t0 0.99
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5. RESULTS

5.1. Simulation Datasets

The proposed method was evaluated under two input
configurations: orbit plot only and orbit plot with RPs. Using
Optuna, hyperparameters were searched within the parameter
ranges specified in Table 3 based on model accuracy, and the
resulting optimal hyperparameters are summarized in Table
4. Table 5 reports the mean accuracy and standard deviation
obtained from five independent training runs. When using
orbit plots only as input, CSSR achieved average validation
and test accuracies of 82.8+0.015% and 85.6+0.032%,
respectively.  In comparison, OpenMax  obtained
67.4+0.024% and 67.8+0.024% for validation and test, while
Softmax  thresholding achieved 77.9+0.007% and
76.6+0.021%, respectively. In other words, CSSR
consistently showed superior performance to both baseline
methods. In contrast, when orbit plots were combined with
recurrence plots, CSSR achieved average validation and test
accuracies of 96.9+0.040% and 99.7+0.004%, respectively.
Based on the test dataset, adding recurrence plots improved
the performance of CSSR by approximately 14.1% and
improved OpenMax by approximately 23.8%, whereas
Softmax thresholding slightly decreased by about 0.5%. In
addition, as shown in Figure 3, the misclassification of
unknown classes observed when using orbit plots alone was
largely mitigated when both orbit and recurrence plots were
used together.

Table 4. Hyperparameter settings.

Inputs Methods Hyperparameter Value
Softmag Softmax threshold 0.76
thresholding
Orbit Weibull tail 101
rbi
OpenMax Weibull alpha 4
Weibull threshold 0.65
CSSR Autoencoder latent 64
Softmax
thresholding Softmax threshold 0.55
) Weibull tail 23
Ork;ltasnd OpenMax Weibull alpha 2
Weibull threshold 0.68
CSSR
(Proposed) Autoencoder latent 64

Table 5. Fault diagnostic performance.

Accuracy Standard deviation
Inputs | Methods | (Validation/test) | (Validation/test)
(%) (%)
thrseosmg’i‘ng 77.9176.6 0.007/0.021
Orbit | openMax 67.4/67.8 0.024/0.024
CSSR 82.8/85.6 0.015/0.032
. Softmax 72.9/76.1 0.007/0.006
Oarnkyt OpenMax 89.3/91.6 0.015/0.012
RPs CSSR 96.9/99.7 0.040/0.004
(Proposed)
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Figure 3. Performance improvement of CSSR with () orbit
plot only and (b) orbit plot with RPs.

5.2. RK4 Datasets

Performance on the RK4 dataset was examined using the
same two input configurations to evaluate whether the benefit
of incorporating recurrence plots is consistently observed
under real testbed conditions. The optimal hyperparameters
were determined based on validation accuracy as shown in
Table 6, and the final performance was obtained by averaging
the results over five independent runs as summarized in Table
7. When using orbit plots only, CSSR achieved average
validation and test accuracies of 96.6+0.003% and
97.1+0.030%, respectively. In comparison, OpenMax
obtained 92.2+0.010% for both validation and test, and
Softmax  thresholding obtained  75.0+0.000% and
86.4+0.034% for validation and test, respectively. When
recurrence plots were additionally included, CSSR achieved
average validation and test accuracies of 96.6+0.005% and
99.0+0.012%, respectively. Based on the test dataset, adding
recurrence plots improved the performance of OpenMax by
approximately 4.8% and improved CSSR by approximately
1.9%, whereas Softmax thresholding decreased by
approximately 6.5%. Furthermore, as shown in Figure 4, the
orbit-only configuration caused a degradation in the known-
class performance due to the influence of unknown classes,
whereas such degradation did not occur when both plots were
jointly considered.
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Table 6. Hyperparameter settings.

Inputs Methods Hyperparameter Value
Softmax
thresholding Softmax threshold 0.72
. Weibull tail 83
Orbit -
OpenMax Weibull alpha 3
Weibull threshold 0.81
CSSR Autoencoder latent 32
Softmax
thresholding Softmax threshold 0.61
Orbit Weibull tail 20
and OpenMax Weibull alpha 3
RPs Weibull threshold 0.79
CSSR
(Proposed) Autoencoder latent 32
Table 7. Fault diagnostic performance.
g
Inputs | Methods (Valld(aot/loc;n/test) (Validation/test)
(%)
Softmax
. thresholding 75.0/86.4 0.000/0.034
Orbit | openMax 92.2/92.2 0.010/0.010
CSSR 96.6/97.1 0.003/0.030
Orbit Softmax 75.0/79.9 0.000/0.042
rbi
and OpenMax 97.0/97.0 0.008/0.008
RPs CSSR
(Proposed) 96.6/99.0 0.005/0.012
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Figure 4. Performance improvement of CSSR with (a) orbit
plot only and (b) orbit plot with RPs.

6. CONCLUSION

The proposed VDI-CSSR method was validated using both a
simulation-based dataset and the RK4 journal bearing
experimental dataset. Only a limited number of samples were
intentionally used during training, and different combinations
of unknown classes were assigned to the validation and test
datasets to minimize the possibility of overfitting.
Nevertheless, the model selected based on the validation
dataset consistently showed strong performance on the test
dataset, indicating that the proposed approach can generalize
effectively even under limited-label conditions. Furthermore,
the CSSR-based approach  maintained  closed-set
classification accuracy while achieving significantly superior
rejection capability for unknown faults compared to Softmax
thresholding and OpenMax. In particular, the multi-channel
input configuration that combines orbit plots with recurrence
plots contributed to consistently improving open-set
recognition performance compared to using orbit plots alone.
These results demonstrate that the proposed VDI-CSSR
method can effectively learn meaningful features even in
data-constrained scenarios, and has high potential for
generalization in safety-critical industrial environments
where reliability and robustness are required.

This study does not cover conditions that may occur in actual
nuclear power plant environments. Future work will
incorporate a practical diagnostic procedure that reflects real
operational scenarios, applying a step-wise open-set
diagnosis structure in which normal/abnormal discrimination
is performed first, followed by detailed fault mode
identification. In addition, the design of unknown classes will
be redefined to focus on fault modes with higher diagnostic
value than impeller unbalance, such as oil whirl, oil whip, and
shaft-related defects. Real order-tracked data acquired during
the cost-down period will also be utilized to perform
validation at a field-deployable level. Based on this, DC
components and order-based features will be incorporated
into the diagnostic process, and domain adaptation
techniques will be integrated to reduce dependence on
labeled data and further improve unknown fault detection
performance.

ACKNOWLEDGMENT

This work was supported by the National Research
Foundation of Korea (NRF) grant funded by the Korea
government (MSIT) (No. RS-2022-00144441, No. RS-2025-
00517566), by the Korea Institute for Advancement of
Technology (KIAT) grant funded by the Korea government
(MOTIE) (No. RS-2025-02263945, HRD Program for
Industrial Innovation), and by the InnoCORE program of the
Ministry of Science and ICT(N10250154).

Baker Hughes Confidential



Asia Pacific Conference of the Prognostics and Health Management Society 2025

REFERENCES

Choi, J.,, Oh, J,, Ko, T., Chung, B., Choi, Y.-C., Lee, S., &
Oh, H. (2025). Intelligent metallic loose part monitoring in
three-dimensional structures using convolutional neural
networks and the position-invariant loss function. Nuclear
Engineering and Technology, 57(7), 103474,
https://doi.org/10.1016/j.net.2025.103474.

Hwang, M., Choi, M., & Oh, H. (2025). Frequency-enhanced
neural networks with a hybrid spall-size estimator for bearing
fault diagnosis. Journal of Computational Design and
Engineering, 12(5), 1-20.
https://doi.org/10.1093/jcde/qwaf040.

Choi, M., Lee, C., Park, S., Hwang, M., & Oh, H. (2025).
Frequency-enhanced network with self-supervised learning
for anomaly detection of hydraulic piston pumps. Expert
Systems with Applications, 282, 127662.
https://doi.org/10.1016/j.eswa.2025.127662.

Hu, M., Luo, C., Wang, C., & Qiang, Z. (2025). Compound
fault recognition and diagnosis of rolling bearing in open-set-
recognition setting. Measurement, 242 (Part D), 116132.
https://doi.org/10.1016/j.measurement.2024.116132.

Li, J., Lin, M., Wang, B., Tian, R., Tan, S., Li, Y., & Chen, J.
(2024). Open set recognition fault diagnosis framework
based on convolutional prototype learning network for
nuclear  power  plants.  Energy, 290, 130101.
https://doi.org/10.1016/j.energy.2023.130101.

Scheirer, W. J., de Rezende Rocha, A., Sapkota, A., & Boult,
T. E. (2013). Toward open set recognition. IEEE
Transactions on Pattern Analysis and Machine Intelligence,

35(7), 1757-1772. https://doi.org/10.1109/TPAMI.2012.256.

Bendale, A., & Boult, T. E. (2016). Towards open set deep
networks. Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 1563-1572.
https://doi.org/10.1109/CVPR.2016.173.

Huang, H., Wang, Y., Hu, Q., & Cheng, M. M. (2022). Class-
specific ~ semantic  reconstruction  for open  set
recognition. IEEE transactions on pattern analysis and
machine intelligence, 45(4), 4214-4228.

Lee, D., Lee, J. G., Choi, M., Park, C., Kim, C. W., Niu, G,
& Oh, H. (2025). Multi-fidelity sub-label-guided transfer
network with physically interpretable synthetic datasets for
rotor fault diagnosis. Engineering Applications of Artificial
Intelligence, 148, 110467.
https://doi.org/10.1016/j.engappai.2025.110467.

Jeon, B. C., Jung, J. H., & Youn, B. D. (2015). Datum unit
optimization for robustness of a journal bearing diagnosis
system. International Journal of Precision Engineering and
Manufacturing, 16(12), 2411-2425.
https://doi.org/10.1007/s12541-015-0311-y.

Eckmann, J.-P., Kamphorst, S. O., & Ruelle, D. (1987).
Recurrence plots of dynamical systems. Europhysics Letters,
4(9), 973. https://doi.org/10.1209/0295-5075/4/9/004.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual
learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition (pp.
770-778).

BIOGRAPHIES
Jonghyeok Kim received the B.S. degree
in civil and environmental engineering
e from Hanbat National University,
e~ Daejeon, Republic of Korea, in 2024,
4 where he is currently pursuing the M.S.
degree in mechanical and robotics
engineering from Gwangju Institute of
Science and Technology, Gwangju,
Republic of Korea. His current research
interest includes prognostics and health management for
RCP-VMS.

Jeongmin Oh received the B.S. degree in
mechanical design engineering from
Pukyong National University, Busan,
Republic of Korea, in 2022, the M.S.
degree in mechanical engineering from
the Gwangju Institute of Science and
Technology, Gwangju, Republic of
Korea, in 2024, where he is currently

pursuing the Ph.D. degree in mechanical and robotics

engineering from Gwangju Institute of Science and
Technology, Gwangju, Republic of Korea. His current
research interest includes prognostics and health
management for RCP-VMS.

Jueun Lee received the B.S. degree in
mechanical engineering from Pukyong
National University, Busan, Republic of
. Korea, in 2024, where she is currently
pursuing the M.S. degree in mechanical
and robotics engineering from Gwangju
Institute of Science and Technology,
Gwangju, Republic of Korea. Her current

research interest includes prognostics and

health management for RCP-VMS.

), |

Baker Hughes Confidential



Asia Pacific Conference of the Prognostics and Health Management Society 2025

Minseok Choi received the B.S. degree in
mechanical engineering from Gwangju
Institute of Science and Technology,
Gwangju, Republic of Korea, in 2021, the
M.S. degree in mechanical engineering

' from the Gwangju Institute of Science
and Technology, Gwangju, Republic of
Korea, in 2022, where he is currently

pursuing the Ph.D. degree in mechanical
and robotics engineering from Gwangju Institute of Science
and Technology, Gwangju, Republic of Korea. His current
research interest includes prognostics and health
management for RCP-VMS.

Hyunseok Oh received the B.S. degree in
mechanical engineering from Korea
University, Seoul, South Korea, in 2004,
the M.S. degree in mechanical
engineering from the Korea Advanced
Institute of Science and Technology,
Daejeon, South Korea, in 2006, and the
Ph.D. degree in mechanical engineering
from the University of Maryland, College
Park, MD, USA, in 2012. He is an Associate Professor with
the department of mechanical and robotics engineering,
Gwangju Institute of Science and Technology, Gwangju,
Republic of Korea. His research interests include fault
diagnostics, industrial artificial intelligence, and model
verification and validation.

Baker Hughes Confidential



