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ABSTRACT

When compound faults occur in rotating machinery, the
mutual coupling and interference among different fault
sources make it extremely difficult to directly isolate
individual faults from the observed signals. Therefore, fault
decoupling is essential prior to diagnosis. In this study, we
propose a semi-supervised multi-source variable decoupling
network (MVD-Net) that enables blind separation of
unknown compound fault signals using only single-fault
samples for training. First, low-dimensional features are
extracted from the mixed signal through an encoder. These
features are then mapped to multiple independent latent
spaces corresponding to different fault sources via variational
inference, while the number of sources is adaptively
estimated using the evidence lower bound (ELBO).
Subsequently, each source-specific decoder generates an
estimated source signal from its corresponding latent
representation. To ensure that each decoder focuses on a
distinct fault component, a source-selective activation
mechanism is incorporated into the decoding process,
effectively mitigating the random assignment issue
commonly encountered in traditional blind source separation
methods. Finally, based on the estimated source signals, a
separation mask is derived to extract individual sources from
the original mixed signal. Two compound fault decoupling
and diagnosis experiments were conducted on the BJTU-
RAO dataset. The results demonstrate that compared with
other methods, the proposed approach vyields cleaner
separated signals with more distinct time-frequency fault
features and achieves higher diagnostic accuracy.

Qitao Yin et al. This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

1. INTRODUCTION

The train bogie contains a large number of rotating
components that play critical roles in power transmission and
load-bearing. Due to long-term service under high-speed and
heavy-load conditions, combined with factors such as
material aging and poor lubrication, key rotating parts such
as gears and bearings are prone to various faults (He, Wu,
Jin, Huang, Wei, & Yi, 2025). However, early weak faults
often do not trigger immediate shutdowns for maintenance,
making them likely to induce and accumulate additional
faults, thereby leading to compound faults. The most
prominent characteristic of compound faults is the coupling
and mutual interference between different fault features (
Xiao & Yu, 2023). Even with noise reduction processing, it
remains challenging to effectively extract fault
characteristics, posing significant difficulties for bogie
monitoring and maintenance.

For the problem of compound fault diagnosis, early attempts
involved treating each compound fault mode as an
independent fault type for diagnosis. For example, Zhong,
Yang, and Wong (2010) proposed a support vector machine
(SVM)-based fault diagnosis method capable of identifying
compound faults through feature extraction. While such
methods perform well for known compound fault patterns,
they suffer from a significant drawback: in industrial settings,
obtaining training samples for all possible compound fault
modes is extremely difficult. Consequently, research has
shifted focus toward decoupling compound faults of
unknown patterns into a limited set of single faults before
diagnosis.

Classical signal decomposition methods include wavelet
decomposition, empirical mode decomposition (EMD),
variational mode decomposition (VMD), and deconvolution.
Jiang, Zhu, and Li (2016) proposed a compound faults
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detection method for rolling bearings based on empirical
wavelet transform and chaotic oscillator in Chaos. For
compound fault decoupling, multi-wavelet and EMD
methods were employed. Wan, Zhang, and Dou (2018)
developed an improved fast spectral kurtosis with VMD to
identify weak fault features in compound bearing faults. Lyu,
Hu, Zhou, and Wang (2019) introduced a quantum genetic
algorithm-enhanced ~ maximum  correlated  kurtosis
deconvolution (QGA-MCKD) method applicable to gear and
bearing compound fault diagnosis. Zhang, Li, Xin, and Ma
(2020) proposed an intrinsic component filtering-based
approach for compound fault diagnosis that could adaptively
utilize different filters. However, these classical signal
processing-based compound fault diagnosis methods
typically require substantial expert experience and prior
knowledge of fault mechanisms to properly set parameters in
order to achieve satisfactory signal decoupling quality and
diagnostic accuracy.

In recent years, with the continuous development of artificial
intelligence technology, intelligent decoupling diagnosis
methods for compound faults based on deep learning have
begun to emerge. Huang, Liao, Zhang, and Li (2018)
proposed a Deep Decoupling Convolutional Neural Network
(DDCNN), designing multi-layer capsules as decoupling
classifiers to accurately identify and decouple compound
faults. Jin, Qin, Huang, and Liu (2021) introduced a novel
Decoupling Attention Residual Network (DARN) for
compound fault diagnosis, which utilizes attention modules
and multi-label decoupling classifiers to precisely decouple
and identify compound faults. He, Chu, Li, Zhang, Wei, and
Hu (2023) developed a multi-fault coupling photovoltaic
system diagnosis scheme based on multi-label classification,
decoupling compound faults into multiple single faults
through a multi-label learning approach. However, these
intelligent decoupling methods typically perform decoupling
at either deep feature or semantic levels, resulting in poor
interpretability. Additionally, many methods still rely on
comprehensive labeled compound fault samples to achieve
relatively ideal diagnostic accuracy.

In contrast, unsupervised blind source separation (BSS)
methods can separate multi-source mixed signals into
independent source signals without prior knowledge of signal
sources or mixing systems. When applied to compound fault
diagnosis, BSS requires neither prior fault knowledge nor
expert experience, and is independent of compound fault
samples. Zhang, Ji, Huang, and Lou (2021) proposed a
canonical correlation analysis (CCA)-based method for blind
extraction of specific fault signals from multi-channel
observations, applied to compound fault diagnosis in aero-
engine main shaft bearings. Peng, Zhu, Teng, and Liu (2023)
developed a Generalized Gaussian cyclostationary (GGCS)
model based on fault frequency synchronous averaging,
effectively incorporating shape parameter estimation into
blind deconvolution methods. Cai and Tang (2024)
introduced a novel blind deconvolution method called

spectral sparse entropy ratio blind deconvolution (SSERBD)
that requires no prior fault knowledge and effectively
attenuates transmission path effects. Dong, Feng, Liu, and
Zhang (2025) improved the maximum second-order
cyclostationarity blind deconvolution (CYCBD) method by
proposing adaptive blind deconvolution (ABDD), which
outperforms traditional methods in compound fault feature
extraction. However, BSS faces challenges in determining
the number and order of source signals. Additionally, the
inability to pre-learn source signal information limits its
effectiveness in separating compound fault signals.

To address the aforementioned challenges, we propose a
semi-supervised Multi-source  Variational Decoupling
Network (MVD-Net). First, an encoder extracts low-
dimensional features from compound fault signals. These
features are then mapped to multiple independent latent
spaces corresponding to different fault sources through
variational inference. Subsequently, independent decoders
generate source estimates from each separated channel's
latent representation. Finally, separation masks are computed
based on source estimates, which are applied to the original
mixed signals to obtain separated signals. The main
contributions of this study are as follows:

1. We propose a semi-supervised Multi-source Variational
Decoupling Network that requires only single-fault
samples for training. This achieves data-driven semi-
blind source separation, effectively utilizing single-fault
sample information while eliminating dependence on
compound fault samples.

2. Under the evidence lower bound (ELBO) of variational
inference, MVD-Net can automatically determine the
number of fault sources.

3. Asource-selective activation mechanism is incorporated
in the decoding process, ensuring each separation
channel focuses on one fault type. This effectively
mitigates the random semantic assignment problem
caused by BSS's inherent ordering uncertainty.

The remainder of this paper is organized as follows. Section
2 introduces the fundamental theory of BSS and analyzes its
two types of uncertainty, along with the basic principles of
variational autoencoders. Section 3 details the proposed
methodology's overall framework and implementation.
Section 4 presents two compound fault decoupling and
diagnosis experiments using the BJTU-RAO dataset. Section
5 provides discussion and conclusions.

2. FUNDAMENTAL CONCEPTS AND THEORIES

2.1. The uncertainty of BSS

BSS is a method for recovering source signals from observed
mixtures without prior knowledge of either the source signals
or the mixing system. Consider N statistically independent
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signal vectors x,(t), X, (t), ..., X, (t) from source signals that
are mixed through an M x N mixing matrix A, yielding M
observed signal s, (t), s,(t), ..., s, (t) . The signal model is
expressed as:

s(t) = Ax(t) + n(t) )
where n(t) representsan M x1 noise vector.

The BSS problem can therefore be formulated as estimating
an NxM separation matrix W (the left inverse of A,
satisfying WA =1, where | is the identity matrix), which
recovers the source signals through:

YO =Ws()=WAX()=x(t) ()

Since both the mixing matrix A and source signals x(t) in

Eq (1) are unknown, BSS suffers from two inherent
uncertainties:

1. Source Number Uncertainty: The dimensionality of
separation matrix W cannot be determined a priori,
typically requiring an assumed maximum number of
potential sources.

2. Permutation Ambiguity: The correspondence between
separated signals y(t) and original source components
x(t) remains indeterminate.

These uncertainties pose critical challenges for fault
diagnosis:  Permutation ambiguity causes semantic
inconsistency in separated channels, requiring all fault types
to be evaluated for every channel, thereby reducing
diagnostic efficiency and accuracy. Source number
uncertainty may lead directly to either missed detections or
false alarms (overestimation).

2.2. Variational Autoencoder

The Variational Autoencoder (VAE) is a generative
model composed of an encoder, latent variables, and a
decoder. Its core concept revolves around data "compression
and reconstruction". For a given set of data samples
X =x(t), X, (), ..., x,(t) , if we can determine the

probability distribution p(x), we can generate all possible
approximate samples. However, directly computing p(x) is
extremely challenging. Instead, p(x) is assumed to be

generated from latent variables z that follow a Gaussian
distribution:

p(x)=2 p(x12)p(2) @3)
The corresponding decoder is defined as:

p(xI12)=N (x u(2). o* (1) @

Where u represents the mean and o? the variance.

Accordingly, the encoder's task is to compress input data into
a probability distribution:

q(z|x)=N (z; u(x), GZ(X)I) (5)

Since computing p(x) is equivalent to computing log p(x),
and given that )" q(z | x) =1, we derive:

log(p(x)) = X a(z] x)log(p(x))

_ o P2:X) q(z|x>] 6
2.8z °g(q(z|x> p(z 1) ©

—Zq<z|x)log[‘J(Z’X)}Zq(ux)log[q(z | X’]

azlx)) = p(z[x)

Here, the second term represents the Kullback-Leibler (KL)
divergence between two distributions and is non-negative. By
denoting the first term as L, , we obtain:

log(p(x)) > L, U]

Thus, we arrive at the lower bound of log(p(x)), known as
the ELBO. Maximizing p(x) is equivalent to maximizing

3. PROPOSED METHOD

3.1. Overall Framework of the Proposed Method

In current research on compound fault signal decoupling,
unsupervised BSS-based methods suffer from two critical
limitations: (1) difficulty in determining the number and
order of source signals, and (2) inability to leverage prior
knowledge of source signal characteristics. On the other
hand, data-driven intelligent decoupling methods still rely
heavily on labeled compound fault samples and exhibit poor
interpretability.

To address these challenges, we propose a semi-supervised
Multi-source Variational Decoupling Network (MVD-Net).
MVD-Net not only resolves the inherent uncertainties of
traditional BSS methods (i.e., source number and
permutation ambiguity) to achieve blind separation of
compound fault signals but also incorporates prior
distribution features learned from single-fault samples. This
hybrid approach combines the strengths of both unsupervised
decoupling and data-driven methods. The overall framework
and forward computation process of MVD-Net are illustrated
in Figure 1.

Stepl: Assuming a maximum of K potential sources, the
encoder extracts feature h via Eg. (5) and projects them into
K independent latent variables (y,o?) (k=1, 2, ..., K)

through dedicated fully-connected (FC) layers:



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2025

”=W/£h+bﬂ
(8)
loge®> =W _,h+b ,

logo logo

where w, b denote trainable parameters for the FC. This
achieves low-dimensional feature decoupling in latent space.

Step2: To enable backpropagation, latent variables are
sampled using the reparameterization trick:

=M toll e 9
Where [ denotes  element-wise  multiplication,
e~N (01) This maintains differentiability while

preserving stochasticity.

Step3: Each latent variable z, is fed into an independent
decoder to reconstruct the k-th source estimate X, .

Step4: Separation masks m, are computed from source
estimates X, . Applying masks to the raw mixed signal x
yields final separated signals X, .

Figure 1. The overall framework and forward computation
process of MVD-Net

3.2. Optimization Objective
Based on Eq (5), the ELBO can be further decomposed as:

P(2)
q(zl x)

According to the definitions of KL divergence and
expectation, the ELBO can ultimately be expressed as:

L, =Dy (a(@ X p(2)) +E,, , (log(p(xl 2)))  (12)

By taking the negative of the ELBO, we obtain the loss
function for the VAE:

Luae =Dy (A2 Xl p(2)) — Eqpy (l0Y(P(X12)))  (12)

Here, the first term on the right-hand side is the KL
divergence loss, which encourages the distribution of the
encoder's output z to approximate a standard normal
distribution, providing regularization. The second term is the
reconstruction loss, which ensures the generated data closely
matches the original data.

L, = a( X)|09( J+ZQ(Z x)log(p(xl 2)) ~ (10)

The primary structure of MVD-Net can be viewed as a multi-
channel extension of the VAE. Therefore, its loss function
also includes KL divergence loss and reconstruction loss,
albeit  with slightly different interpretations and
computations.

According to Eq (9) and the definition of KL divergence, the
KL divergence loss for the K-channel MVD-Net is defined as
the average of the KL divergences across all source channels:

L, =iiD (9] ) p(2)

7<

(13)

z

1 2 2 2
1|: Ezl( IOgGk,j_,uk,j_Gk,j)
]:

XIH

where D, is the dimensionality of the latent variables.

MVD-Net further requires the fusion of all source estimates
X, generated by the decoders to obtain the reconstructed

signal X:

K
X = Z W X, (14)
P

where w represents the channel activation weights, the
specific role of which will be discussed in the next section.

Since the reconstruction loss measures the discrepancy
between the reconstructed signal and the original signal, the
mean squared error (MSE) loss is used as the reconstruction
loss for MVVD-Net:

Lo =l %=X (15)
The total loss for MVD-Net is:
Luwo =0 L’;ALVD + Blgvs (16)
where «, B are weighting coefficients.

The role of LY, is to drive the separated signals of each

channel toward Gaussian noise, while Ly55 ensures the

separated signals approximate single-fault signals. Under the
balance of these two losses, the model can learn distinct fault
features while avoiding over-separation into non-existent
faults, thereby achieving automatic source number
identification.

3.3. Source-Selective Activation Training Mechanism

MVD-Net requires training with both single-fault samples
and mixed samples. The mixed samples are simulated
compound fault samples randomly synthesized from different
types of single-fault samples, without the need to know their
specific fault types. Single-fault samples are labeled
according to their fault type as i (i=0, 1, ..., K), while

mixed samples are uniformly labeled as —1. Each training
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batch contains both single-fault and mixed samples, and the
training process is illustrated in Figure 2.

First, the encoder extracts low-dimensional features from the
input samples. These features are then decoupled into K latent
variables through parallel fully-connected layers using multi-
source variational inference, and the KL divergence loss is
computed. Next, the multi-source latent variables undergo
reparameterization sampling and are fed into independent
decoders for signal decoding and reconstruction, during
which the reconstruction loss is calculated.

‘ Encoder - Extract features ‘

1

A 4 1
1
Parallel Fully Connected - Multi-source
variational inference

v
[ KL Divergence Loss ]

A 4

‘ Reparameterization Sampling ‘

}

A 4 1
1
m Decoder k generates the signal for the fault type k ‘

: Lable Lable -1 |
1
! 1
, l l !
H .
' W = b _I- w, =1 :
H 0.3,k #i :
! 1
! 1
! 1
! 1

K
Signal ReconstructionX = > w, x,
k=1
_________________ L

v
[ Reconstruction Loss ]

Figure 2. The training process of MVD-Net

During the signal decoding and reconstruction phase, each
decoder is associated with a specific fault type, serving as a
specialized separation channel for that fault, denoted as
decoder-k. It is important to note that this association
between channels and fault types is a soft binding
implemented through the source-selective activation
mechanism, rather than a hard-coded strong binding. This
allows the model to learn channel assignments
autonomously, promoting better feature learning. The
principles of the source-selective activation mechanism are
as follows:

1. When the latent variables of a single-fault sample are
input to the decoder group, the signal generated by the
decoder-k bound to that fault type is assigned a high
weight during signal reconstruction. Signals generated
by other decoders are assigned low weights during
reconstruction.

2. When the latent variables of a mixed sample are input to
the decoders, all signals generated by the decoders are
assigned equal weights during reconstruction.

This mechanism serves to specialize each separation channel
for a specific fault type, which not only determines the order
of separated signals but also fixes the fault semantics of each
channel, thereby improving diagnostic efficiency and
accuracy. Furthermore, this mechanism constitutes a key
design element that enables the trainability of the BSS model.
It allows the model to simultaneously learn distinct fault
patterns from single-fault samples while acquiring the
capability to decouple mixed signals from composite samples.

3.4. Mask-Based Separation

To precisely capture fine-grained details from the original
signal, a post-training masking operation is applied to convert
source estimates X, from MVD-Net into separated signals

X,
)~(k =m, -X a7
| X |
M=
S, |+ (18)

=

where € is an infinitesimal constant to prevent division by
Zero.

Mask separation converts the source estimates generated by
the decoder into weight masks to precisely extract each
source signal from the original signal. This method preserves
all frequency details and characteristics of the original signal
while ensuring energy conservation (the sum of separated
signals strictly equals the original signal). It avoids the
potential detail loss and energy mismatch issues that may
arise from directly using source estimate signals, achieving
an optimal combination of automatic source identification
and precise signal separation.

4. EXPERIMENTS AND VERIFICATION

4.1. Dataset

The experiments were validated using the BJTU dataset. As
shown in Figure 3, the test bench was built at a 1:2 scale based
on an actual metro train bogie, containing fault data from both
the gearbox and axle box components. The fault data was
collected by vibration acceleration sensors with a sampling
frequency of 64 kHz.

The gearbox includes bearing inner race faults (IF), gear
tooth wear faults (WT), and their compound faults (IR&WT).
The axle box includes bearing outer race faults (OF), bearing
roller faults (BF), and their compound faults (OR&BF).
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Figure 3. The test bench and faulty parts

The time-domain waveforms and frequency spectra (or
envelope spectra) of all samples are shown in Figure 4.
Among them, gear faults are represented by Fourier spectra,
while other signals are represented by envelope spectra. For
single-fault signals, characteristic frequencies and harmonics
are clear in frequency or envelope spectra, while compound
fault features are obscured.
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Figure 4. The time-domain waveforms and frequency
spectra (or envelope spectra) of all samples

The compound fault decoupling experiments for the two
components are labeled Task A and Task B. Test conditions
use a 20Hz motor speed and 10kN load. Dataset details are in
Table 1: both tasks follow the same partitioning—300 single-
fault samples and 900 mixed samples for training, and 300
unlabeled compound fault samples for testing.

Table 1. The dataset information.

Dataset Fault | Sample Batch
Task Split type sizg Label Ratio
OR 300 0 20%
Training BF 300 0 20%
A Mixed | 900 | -1 | 60%
Testing | OR&BF 300 — —
IR 300 0 20%
B Training WT 300 0 20%
Mixed 900 -1 60%
Testing | IR&WT 300 — —

4.2. Comparative Experiments

To verify the advancement and superiority of the proposed
model, we introduced two recently published state-of-the-art
methods for comparison: the sparse decomposition-based
compound fault feature separation method DASD-TIS (He,
Li, Ding, & Zhang, 2022) and the deep learning-based single-
channel blind source separation method DRNN-BLSTM
(Issa & Al-Irhaym, 2021). DASD-TIS achieves blind
separation of single-channel compound fault signals through
dual-dictionary sparse decomposition and time-domain
impulse separation, making it particularly suitable for
separating overlapping faults under strong background noise.
DRNN-BLSTM employs bidirectional LSTM networks to
predict optimal ratio masks, enabling end-to-end training
without requiring manual dictionary design.

The separation signals obtained by applying both
comparative methods and the proposed method to the two
decoupling tasks are shown in Figures 5 and Figure 6, where
gear fault separation signals are displayed as Fourier spectra
while bearing fault signals are shown as envelope spectra.
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Figure 5 The time-domain waveform and envelope spectrum
of the separated signal for Task A

In Task A, the envelope spectrum of DASD-TIS's BA
separation signal showed no first-order FCF, only second-
order FCF, while its OR separation signal envelope spectrum
clearly displayed first and third-order FCFs. Although
DRNN-BLSTM's BA separation signal envelope spectrum
restored first-order FCF, it contained significant surrounding
noise, while its OR separation signal envelope spectrum also
showed relatively clear first and third-order FCFs. In
comparison, MVD-Net's BA separation signal envelope
spectrum clearly exhibited both first and second-order FCFs,
and its OR separation signal envelope spectrum distinctly
showed first, second and third-order FCFs. Clearly, in Task
A, MVD-Net recovered more frequency details more
accurately, producing results closer to the source signals.

In Task B, although DASD-TIS's IR separation signal
envelope spectrum showed first and second-order FCFs, it
contained substantial noise, while its WT separation signal
spectrum only displayed relatively weak first-order FCF
along with second-order FCF from IR, indicating incomplete
separation of the WT signal. DRNN-BLSTM's separation
results were similar to DASD-TIS, with its IR envelope
spectrum containing significant noise components and its
WT spectrum retaining IR information. In contrast, MVD-
Net's IR envelope spectrum and WT spectrum both extracted
pure FCFs with significantly higher signal-to-noise ratio than
the comparative methods.
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Figure 6 The time-domain waveform and envelope spectrum

(or spectrum) of the separated signal for Task B

The separation performance was evaluated based on fault
diagnosis accuracy. A simple one-dimensional convolutional
neural network-based diagnostic model was constructed.
After training with the same single-fault training set, the
diagnostic tests were performed on the separated signals
obtained by the three methods. For each method, 50
separation experiments were conducted to obtain 50 sets of
diagnostic samples. The diagnostic accuracy for each channel
and the overall diagnostic accuracy are shown in Figure 7.
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Figure 7 The diagnostic accuracy of the two tasks

DASD-TIS

Evidently, in both tasks, the separated signals obtained by the
proposed MVD-Net method achieved higher diagnostic
accuracy compared to the comparative methods. In Task A,
while the diagnostic accuracy of OR separated signals by
both DASD-TIS and DRNN-BLSTM was no less than 90%,
the accuracy for BF separated signals was only 76% and 74%
respectively. In contrast, MVD-Net achieved diagnostic
accuracy above 90% for both channel-separated signals and
the overall accuracy, demonstrating its advantage in
separating weaker components in compound faults. In Task
B, MVD-Net's diagnostic accuracy for both channel-
separated signals and the overall accuracy exceeded 95%,
significantly outperforming the comparative methods. This
benefits from MVD-Net's capability to determine the order
and number of separated signals, thereby enhancing the fault
semantics of each channel. Additionally, the results also
indicate that the proposed method is applicable to different
components, showing good generalizability.

5. CONCLUSION

This study proposes a semi-supervised multi-source
variational decoupling network for compound fault diagnosis
of bogies under zero-shot conditions. The method requires
only single-fault samples for training to achieve data-driven
semi-blind source separation. The encoder extracts low-
dimensional features from compound fault signals, and
variational inference maps these features to multiple
independent latent spaces corresponding to different fault
sources, automatically determining the number of fault
sources under the effect of ELBO. The designed independent

decoders and source-selective activation mechanism ensure
each separation channel focuses on one fault type, effectively
alleviating the random semantic assignment problem caused
by blind source separation ordering uncertainty.
Experimental results show that compared with baseline
methods, the proposed approach achieves better separation of
compound fault signals in both axle boxes and gearboxes,
while obtaining higher accuracy in fault diagnosis tasks.
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