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ABSTRACT

When compound faults occur in rotating machinery, the 
mutual coupling and interference among different fault 
sources make it extremely difficult to directly isolate 
individual faults from the observed signals. Therefore, fault 
decoupling is essential prior to diagnosis. In this study, we 
propose a semi-supervised multi-source variable decoupling 
network (MVD-Net) that enables blind separation of 
unknown compound fault signals using only single-fault 
samples for training. First, low-dimensional features are 
extracted from the mixed signal through an encoder. These 
features are then mapped to multiple independent latent 
spaces corresponding to different fault sources via variational 
inference, while the number of sources is adaptively 
estimated using the evidence lower bound (ELBO). 
Subsequently, each source-specific decoder generates an 
estimated source signal from its corresponding latent 
representation. To ensure that each decoder focuses on a 
distinct fault component, a source-selective activation 
mechanism is incorporated into the decoding process, 
effectively mitigating the random assignment issue 
commonly encountered in traditional blind source separation 
methods. Finally, based on the estimated source signals, a 
separation mask is derived to extract individual sources from 
the original mixed signal. Two compound fault decoupling 
and diagnosis experiments were conducted on the BJTU-
RAO dataset. The results demonstrate that compared with 
other methods, the proposed approach yields cleaner 
separated signals with more distinct time-frequency fault 
features and achieves higher diagnostic accuracy. 

1. INTRODUCTION 

The train bogie contains a large number of rotating 
components that play critical roles in power transmission and 
load-bearing. Due to long-term service under high-speed and 
heavy-load conditions, combined with factors such as 
material aging and poor lubrication, key rotating parts such 
as gears and bearings are prone to various faults （He, Wu, 
Jin, Huang, Wei, & Yi, 2025). However, early weak faults 
often do not trigger immediate shutdowns for maintenance, 
making them likely to induce and accumulate additional 
faults, thereby leading to compound faults. The most 
prominent characteristic of compound faults is the coupling 
and mutual interference between different fault features （
Xiao & Yu, 2023). Even with noise reduction processing, it 
remains challenging to effectively extract fault 
characteristics, posing significant difficulties for bogie 
monitoring and maintenance. 

For the problem of compound fault diagnosis, early attempts 
involved treating each compound fault mode as an 
independent fault type for diagnosis. For example, Zhong, 
Yang, and Wong (2010) proposed a support vector machine 
(SVM)-based fault diagnosis method capable of identifying 
compound faults through feature extraction. While such 
methods perform well for known compound fault patterns, 
they suffer from a significant drawback: in industrial settings, 
obtaining training samples for all possible compound fault 
modes is extremely difficult. Consequently, research has 
shifted focus toward decoupling compound faults of 
unknown patterns into a limited set of single faults before 
diagnosis. 

Classical signal decomposition methods include wavelet 
decomposition, empirical mode decomposition (EMD), 
variational mode decomposition (VMD), and deconvolution. 
Jiang, Zhu, and Li (2016) proposed a compound faults 
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detection method for rolling bearings based on empirical 
wavelet transform and chaotic oscillator in Chaos. For 
compound fault decoupling, multi-wavelet and EMD 
methods were employed. Wan, Zhang, and Dou (2018) 
developed an improved fast spectral kurtosis with VMD to 
identify weak fault features in compound bearing faults. Lyu, 
Hu, Zhou, and Wang (2019) introduced a quantum genetic 
algorithm-enhanced maximum correlated kurtosis 
deconvolution (QGA-MCKD) method applicable to gear and 
bearing compound fault diagnosis. Zhang, Li, Xin, and Ma 
(2020) proposed an intrinsic component filtering-based 
approach for compound fault diagnosis that could adaptively 
utilize different filters. However, these classical signal 
processing-based compound fault diagnosis methods 
typically require substantial expert experience and prior 
knowledge of fault mechanisms to properly set parameters in 
order to achieve satisfactory signal decoupling quality and 
diagnostic accuracy. 

In recent years, with the continuous development of artificial 
intelligence technology, intelligent decoupling diagnosis 
methods for compound faults based on deep learning have 
begun to emerge. Huang, Liao, Zhang, and Li (2018) 
proposed a Deep Decoupling Convolutional Neural Network 
(DDCNN), designing multi-layer capsules as decoupling 
classifiers to accurately identify and decouple compound 
faults. Jin, Qin, Huang, and Liu (2021) introduced a novel 
Decoupling Attention Residual Network (DARN) for 
compound fault diagnosis, which utilizes attention modules 
and multi-label decoupling classifiers to precisely decouple 
and identify compound faults. He, Chu, Li, Zhang, Wei, and 
Hu (2023) developed a multi-fault coupling photovoltaic 
system diagnosis scheme based on multi-label classification, 
decoupling compound faults into multiple single faults 
through a multi-label learning approach. However, these 
intelligent decoupling methods typically perform decoupling 
at either deep feature or semantic levels, resulting in poor 
interpretability. Additionally, many methods still rely on 
comprehensive labeled compound fault samples to achieve 
relatively ideal diagnostic accuracy. 

In contrast, unsupervised blind source separation (BSS) 
methods can separate multi-source mixed signals into 
independent source signals without prior knowledge of signal 
sources or mixing systems. When applied to compound fault 
diagnosis, BSS requires neither prior fault knowledge nor 
expert experience, and is independent of compound fault 
samples. Zhang, Ji, Huang, and Lou (2021) proposed a 
canonical correlation analysis (CCA)-based method for blind 
extraction of specific fault signals from multi-channel 
observations, applied to compound fault diagnosis in aero-
engine main shaft bearings. Peng, Zhu, Teng, and Liu (2023) 
developed a Generalized Gaussian cyclostationary (GGCS) 
model based on fault frequency synchronous averaging, 
effectively incorporating shape parameter estimation into 
blind deconvolution methods. Cai and Tang (2024) 
introduced a novel blind deconvolution method called 

spectral sparse entropy ratio blind deconvolution (SSERBD) 
that requires no prior fault knowledge and effectively 
attenuates transmission path effects. Dong, Feng, Liu, and 
Zhang (2025) improved the maximum second-order 
cyclostationarity blind deconvolution (CYCBD) method by 
proposing adaptive blind deconvolution (ABDD), which 
outperforms traditional methods in compound fault feature 
extraction. However, BSS faces challenges in determining 
the number and order of source signals. Additionally, the 
inability to pre-learn source signal information limits its 
effectiveness in separating compound fault signals. 

To address the aforementioned challenges, we propose a 
semi-supervised Multi-source Variational Decoupling 
Network (MVD-Net). First, an encoder extracts low-
dimensional features from compound fault signals. These 
features are then mapped to multiple independent latent 
spaces corresponding to different fault sources through 
variational inference. Subsequently, independent decoders 
generate source estimates from each separated channel's 
latent representation. Finally, separation masks are computed 
based on source estimates, which are applied to the original 
mixed signals to obtain separated signals. The main 
contributions of this study are as follows: 

1. We propose a semi-supervised Multi-source Variational 
Decoupling Network that requires only single-fault 
samples for training. This achieves data-driven semi-
blind source separation, effectively utilizing single-fault 
sample information while eliminating dependence on 
compound fault samples. 

2. Under the evidence lower bound (ELBO) of variational 
inference, MVD-Net can automatically determine the 
number of fault sources. 

3. A source-selective activation mechanism is incorporated 
in the decoding process, ensuring each separation 
channel focuses on one fault type. This effectively 
mitigates the random semantic assignment problem 
caused by BSS's inherent ordering uncertainty. 

The remainder of this paper is organized as follows. Section 
2 introduces the fundamental theory of BSS and analyzes its 
two types of uncertainty, along with the basic principles of 
variational autoencoders. Section 3 details the proposed 
methodology's overall framework and implementation. 
Section 4 presents two compound fault decoupling and 
diagnosis experiments using the BJTU-RAO dataset. Section 
5 provides discussion and conclusions. 

2. FUNDAMENTAL CONCEPTS AND THEORIES 

2.1. The uncertainty of BSS 

BSS is a method for recovering source signals from observed 
mixtures without prior knowledge of either the source signals 
or the mixing system. Consider N statistically independent 
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signal vectors 1 2( ),  ( ),  ..., ( )nt t tx x x  from source signals that 

are mixed through an M N  mixing matrix A , yielding M

observed signal 1 2( ),  ( ),  ..., ( )mt t ts s s . The signal model is 

expressed as: 

( ) ( ) ( )t t t s Ax n (1) 

where ( )tn  represents an 1M   noise vector. 

The BSS problem can therefore be formulated as estimating 
an N M  separation matrix W  (the left inverse of A , 
satisfying WA I , where I  is the identity matrix), which 
recovers the source signals through: 

         y t Ws t WAx t x t (2) 

Since both the mixing matrix A  and source signals ( )tx  in 

Eq (1) are unknown, BSS suffers from two inherent 
uncertainties: 

1. Source Number Uncertainty: The dimensionality of 
separation matrix W cannot be determined a priori, 
typically requiring an assumed maximum number of 
potential sources. 

2. Permutation Ambiguity: The correspondence between 
separated signals ( )ty  and original source components 

( )tx  remains indeterminate. 

These uncertainties pose critical challenges for fault 
diagnosis: Permutation ambiguity causes semantic 
inconsistency in separated channels, requiring all fault types 
to be evaluated for every channel, thereby reducing 
diagnostic efficiency and accuracy. Source number 
uncertainty may lead directly to either missed detections or 
false alarms (overestimation). 

2.2. Variational Autoencoder 

The Variational Autoencoder (VAE) is a generative 
model composed of an encoder, latent variables, and a 
decoder. Its core concept revolves around data "compression 
and reconstruction". For a given set of data samples 

1 2( ),  ( ),  ..., ( )mt t tX = x x x , if we can determine the 

probability distribution ( )p x , we can generate all possible 

approximate samples. However, directly computing ( )p x  is 

extremely challenging. Instead, ( )p x is assumed to be 

generated from latent variables z that follow a Gaussian 
distribution: 

  ( | ) ( )
z

p p px x z z (3) 

The corresponding decoder is defined as：

      2| ;  ,  p  x z x z z IN (4) 

Where   represents the mean and 2  the variance. 

Accordingly, the encoder's task is to compress input data into 
a probability distribution: 

      2| ;  ,  q  z x z x x IN (5) 

Since computing ( )p x is equivalent to computing log ( )p x , 

and given that ( | ) 1
z

q  z x , we derive: 

log( ( )) ( | ) log( ( ))

( , ) ( | )
( | ) log

( | ) ( | )

( , ) ( | )
( | ) log ( | ) log

( | ) ( | )

z

z

z z

p q z p

p z q z
q z

q z p z

p z q z
q z q z

q z p z



 
  

 

   
    

   





 

x x x

x x
x

x x

x x
x x

x x

 (6) 

Here, the second term represents the Kullback-Leibler (KL) 
divergence between two distributions and is non-negative. By 
denoting the first term as bL , we obtain: 

log( ( )) bp Lx (7) 

Thus, we arrive at the lower bound of log( ( ))p x , known as 

the ELBO. Maximizing ( )p x is equivalent to maximizing 

bL . 

3. PROPOSED METHOD 

3.1. Overall Framework of the Proposed Method 

In current research on compound fault signal decoupling, 
unsupervised BSS-based methods suffer from two critical 
limitations: (1) difficulty in determining the number and 
order of source signals, and (2) inability to leverage prior 
knowledge of source signal characteristics. On the other 
hand, data-driven intelligent decoupling methods still rely 
heavily on labeled compound fault samples and exhibit poor 
interpretability. 

To address these challenges, we propose a semi-supervised 
Multi-source Variational Decoupling Network (MVD-Net). 
MVD-Net not only resolves the inherent uncertainties of 
traditional BSS methods (i.e., source number and 
permutation ambiguity) to achieve blind separation of 
compound fault signals but also incorporates prior 
distribution features learned from single-fault samples. This 
hybrid approach combines the strengths of both unsupervised 
decoupling and data-driven methods. The overall framework 
and forward computation process of MVD-Net are illustrated 
in Figure 1. 

Step1: Assuming a maximum of K potential sources, the 
encoder extracts feature h via Eq. (5) and projects them into 
K independent latent variables 2( , )k k   (k=1, 2, …, K) 

through dedicated fully-connected (FC) layers: 
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log 2 2

μ μ

ogσ ogσ

2

l l

μ =W h+ b

σ =W h+ b
(8) 

where ,  w b  denote trainable parameters for the FC. This 

achieves low-dimensional feature decoupling in latent space. 

Step2: To enable backpropagation, latent variables are 
sampled using the reparameterization trick: 

k k k  z μ σ ε (9) 

Where   denotes element-wise multiplication,

 ~ 0,1ε N . This maintains differentiability while 

preserving stochasticity. 

Step3: Each latent variable kz  is fed into an independent 

decoder to reconstruct the k-th source estimate ˆ kx . 

Step4: Separation masks km  are computed from source 

estimates ˆ kx . Applying masks to the raw mixed signal x

yields final separated signals kx% . 

Figure 1. The overall framework and forward computation 
process of MVD-Net 

3.2. Optimization Objective 

Based on Eq (5), the ELBO can be further decomposed as: 

( )
( )log ( )log( ( ))

( )
b

z z

p
L q q p

q

 
  

 
 

z
z x z x x z

z x
∣ ∣ ∣

∣
(10) 

According to the definitions of KL divergence and 
expectation, the ELBO can ultimately be expressed as: 

( )( ( ) ( )) E (log( ( )))b KL qL D q p p   z xz x z x z∣∣ ‖ ∣ (11) 

By taking the negative of the ELBO, we obtain the loss 
function for the VAE: 

VAE ( | )( ( | ) ( )) E (log( ( | )))KL qL D q p p  z xz x z x z‖ (12) 

Here, the first term on the right-hand side is the KL 
divergence loss, which encourages the distribution of the 
encoder's output z  to approximate a standard normal 
distribution, providing regularization. The second term is the 
reconstruction loss, which ensures the generated data closely 
matches the original data. 

The primary structure of MVD-Net can be viewed as a multi-
channel extension of the VAE. Therefore, its loss function 
also includes KL divergence loss and reconstruction loss, 
albeit with slightly different interpretations and 
computations. 

According to Eq (9) and the definition of KL divergence, the 
KL divergence loss for the K-channel MVD-Net is defined as 
the average of the KL divergences across all source channels: 

MVD
1

2 2 2
, , ,

1 1

1
( ( | ) ( ))

1 1
(1 log )

2

z
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k
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k j k j k j
k j

L D q p
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K
  



 



 
     

 



 

z x z‖

(13) 

where zD  is the dimensionality of the latent variables. 

MVD-Net further requires the fusion of all source estimates 
ˆ

kx  generated by the decoders to obtain the reconstructed 

signal x̂ : 

1

ˆ ˆ
K

k k
k

w


x x (14) 

where w  represents the channel activation weights, the 
specific role of which will be discussed in the next section. 

Since the reconstruction loss measures the discrepancy 
between the reconstructed signal and the original signal, the 
mean squared error (MSE) loss is used as the reconstruction 
loss for MVD-Net: 

2
MVD

ˆ|| ||recon  L x x (15) 

The total loss for MVD-Net is: 

MVD MVD MVD
KL recon L L + L (16) 

where ,     are weighting coefficients.

The role of MVD
KLL  is to drive the separated signals of each 

channel toward Gaussian noise, while MVD
reconL  ensures the 

separated signals approximate single-fault signals. Under the 
balance of these two losses, the model can learn distinct fault 
features while avoiding over-separation into non-existent 
faults, thereby achieving automatic source number 
identification. 

3.3. Source-Selective Activation Training Mechanism 

 MVD-Net requires training with both single-fault samples 
and mixed samples. The mixed samples are simulated 
compound fault samples randomly synthesized from different 
types of single-fault samples, without the need to know their 
specific fault types. Single-fault samples are labeled 
according to their fault type as  ( 0,  1,  ...,  )i i K , while 

mixed samples are uniformly labeled as −1. Each training 
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batch contains both single-fault and mixed samples, and the 
training process is illustrated in Figure 2. 

First, the encoder extracts low-dimensional features from the 
input samples. These features are then decoupled into K latent 
variables through parallel fully-connected layers using multi-
source variational inference, and the KL divergence loss is 
computed. Next, the multi-source latent variables undergo 
reparameterization sampling and are fed into independent 
decoders for signal decoding and reconstruction, during 
which the reconstruction loss is calculated. 

Figure 2. The training process of MVD-Net 

During the signal decoding and reconstruction phase, each 
decoder is associated with a specific fault type, serving as a 
specialized separation channel for that fault, denoted as 
decoder-k. It is important to note that this association 
between channels and fault types is a soft binding 
implemented through the source-selective activation 
mechanism, rather than a hard-coded strong binding. This 
allows the model to learn channel assignments 
autonomously, promoting better feature learning. The 
principles of the source-selective activation mechanism are 
as follows: 

1. When the latent variables of a single-fault sample are 
input to the decoder group, the signal generated by the 
decoder-k bound to that fault type is assigned a high 
weight during signal reconstruction. Signals generated 
by other decoders are assigned low weights during 
reconstruction. 

2. When the latent variables of a mixed sample are input to 
the decoders, all signals generated by the decoders are 
assigned equal weights during reconstruction. 

This mechanism serves to specialize each separation channel 
for a specific fault type, which not only determines the order 
of separated signals but also fixes the fault semantics of each 
channel, thereby improving diagnostic efficiency and 
accuracy. Furthermore, this mechanism constitutes a key 
design element that enables the trainability of the BSS model. 
It allows the model to simultaneously learn distinct fault 
patterns from single-fault samples while acquiring the 
capability to decouple mixed signals from composite samples. 

3.4. Mask-Based Separation 

To precisely capture fine-grained details from the original 
signal, a post-training masking operation is applied to convert 
source estimates ˆ kx  from MVD-Net into separated signals 

kx% : 

k k x m x% (17) 

1

ˆ| |

ˆ| |

k
k K

j
j





x
m

x ò (18) 

where ϵ is an infinitesimal constant to prevent division by 
zero. 

Mask separation converts the source estimates generated by 
the decoder into weight masks to precisely extract each 
source signal from the original signal. This method preserves 
all frequency details and characteristics of the original signal 
while ensuring energy conservation (the sum of separated 
signals strictly equals the original signal). It avoids the 
potential detail loss and energy mismatch issues that may 
arise from directly using source estimate signals, achieving 
an optimal combination of automatic source identification 
and precise signal separation. 

4. EXPERIMENTS AND VERIFICATION

4.1.  Dataset   

The experiments were validated using the BJTU dataset. As 
shown in Figure 3, the test bench was built at a 1:2 scale based 
on an actual metro train bogie, containing fault data from both 
the gearbox and axle box components. The fault data was 
collected by vibration acceleration sensors with a sampling 
frequency of 64 kHz. 

The gearbox includes bearing inner race faults (IF), gear 
tooth wear faults (WT), and their compound faults (IR&WT). 
The axle box includes bearing outer race faults (OF), bearing 
roller faults (BF), and their compound faults (OR&BF). 

Encoder - Extract features

Mixed Sample 
with lable -1

Single Fault 
Sample with lable i

Signal Reconstruction:

Reparameterization Sampling

1

ˆ
K

k k
k

w


x x

Lable -1Lable i

Decoder k generates the signal for the fault type k

Reconstruction Loss

KL Divergence Loss

1,  

0.3,
k

k i
w

k i


 


1kw 

Parallel Fully Connected - Multi-source 
variational inference
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Figure 3. The test bench and faulty parts 

The time-domain waveforms and frequency spectra (or 
envelope spectra) of all samples are shown in Figure 4. 
Among them, gear faults are represented by Fourier spectra, 
while other signals are represented by envelope spectra. For 
single-fault signals, characteristic frequencies and harmonics 
are clear in frequency or envelope spectra, while compound 
fault features are obscured.  

(a) BF                      (b) OR               (c) OR&BF 

(d) IR                        (e) WT               (f) IR&WT 

Figure 4. The time-domain waveforms and frequency 
spectra (or envelope spectra) of all samples 

The compound fault decoupling experiments for the two 
components are labeled Task A and Task B. Test conditions 
use a 20Hz motor speed and 10kN load. Dataset details are in 
Table 1: both tasks follow the same partitioning—300 single-
fault samples and 900 mixed samples for training, and 300 
unlabeled compound fault samples for testing. 

. 

4.2. Comparative Experiments 

To verify the advancement and superiority of the proposed 
model, we introduced two recently published state-of-the-art 
methods for comparison: the sparse decomposition-based 
compound fault feature separation method DASD-TIS (He, 
Li, Ding, & Zhang, 2022) and the deep learning-based single-
channel blind source separation method DRNN-BLSTM 
(Issa & Al-Irhaym, 2021). DASD-TIS achieves blind 
separation of single-channel compound fault signals through 
dual-dictionary sparse decomposition and time-domain 
impulse separation, making it particularly suitable for 
separating overlapping faults under strong background noise. 
DRNN-BLSTM employs bidirectional LSTM networks to 
predict optimal ratio masks, enabling end-to-end training 
without requiring manual dictionary design. 

The separation signals obtained by applying both 
comparative methods and the proposed method to the two 
decoupling tasks are shown in Figures 5 and Figure 6, where 
gear fault separation signals are displayed as Fourier spectra 
while bearing fault signals are shown as envelope spectra. 

(a) DASD-TIS: BF                  (b) DASD-TIS: OR 
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Table 1. The dataset information. 

Task
Dataset 

Split
Fault 
type

Sample 
size

Label
Batch 
Ratio

A
Training

OR 300 0 20%
BF 300 0 20%

Mixed 900 -1 60%

Testing OR&BF 300 — —

B
Training

IR 300 0 20%
WT 300 0 20%

Mixed 900 -1 60%

Testing IR&WT 300 — —
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(c) DRNN-BLSTM: BF        (d) DRNN-BLSTM: OR 

(e) MVD-Net: BF                    (f) MVD-Net: OR 
Figure 5 The time-domain waveform and envelope spectrum 

of the separated signal for Task A 

In Task A, the envelope spectrum of DASD-TIS's BA 
separation signal showed no first-order FCF, only second-
order FCF, while its OR separation signal envelope spectrum 
clearly displayed first and third-order FCFs. Although 
DRNN-BLSTM's BA separation signal envelope spectrum 
restored first-order FCF, it contained significant surrounding 
noise, while its OR separation signal envelope spectrum also 
showed relatively clear first and third-order FCFs. In 
comparison, MVD-Net's BA separation signal envelope 
spectrum clearly exhibited both first and second-order FCFs, 
and its OR separation signal envelope spectrum distinctly 
showed first, second and third-order FCFs. Clearly, in Task 
A, MVD-Net recovered more frequency details more 
accurately, producing results closer to the source signals. 

In Task B, although DASD-TIS's IR separation signal 
envelope spectrum showed first and second-order FCFs, it 
contained substantial noise, while its WT separation signal 
spectrum only displayed relatively weak first-order FCF 
along with second-order FCF from IR, indicating incomplete 
separation of the WT signal. DRNN-BLSTM's separation 
results were similar to DASD-TIS, with its IR envelope 
spectrum containing significant noise components and its 
WT spectrum retaining IR information. In contrast, MVD-
Net's IR envelope spectrum and WT spectrum both extracted 
pure FCFs with significantly higher signal-to-noise ratio than 
the comparative methods. 

(a) DASD-TIS: IR                  (b) DASD-TIS: WT 

(c) DRNN-BLSTM: IR           (d) DRNN-BLSTM: WT 

(e) MVD-Net: IR                    (f) MVD-Net: WT 
Figure 6 The time-domain waveform and envelope spectrum 

(or spectrum) of the separated signal for Task B 

The separation performance was evaluated based on fault 
diagnosis accuracy. A simple one-dimensional convolutional 
neural network-based diagnostic model was constructed. 
After training with the same single-fault training set, the 
diagnostic tests were performed on the separated signals 
obtained by the three methods. For each method, 50 
separation experiments were conducted to obtain 50 sets of 
diagnostic samples. The diagnostic accuracy for each channel 
and the overall diagnostic accuracy are shown in Figure 7. 
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(a) Task A 

(b) Task B 
Figure 7 The diagnostic accuracy of the two tasks 

Evidently, in both tasks, the separated signals obtained by the 
proposed MVD-Net method achieved higher diagnostic 
accuracy compared to the comparative methods. In Task A, 
while the diagnostic accuracy of OR separated signals by 
both DASD-TIS and DRNN-BLSTM was no less than 90%, 
the accuracy for BF separated signals was only 76% and 74% 
respectively. In contrast, MVD-Net achieved diagnostic 
accuracy above 90% for both channel-separated signals and 
the overall accuracy, demonstrating its advantage in 
separating weaker components in compound faults. In Task 
B, MVD-Net's diagnostic accuracy for both channel-
separated signals and the overall accuracy exceeded 95%, 
significantly outperforming the comparative methods. This 
benefits from MVD-Net's capability to determine the order 
and number of separated signals, thereby enhancing the fault 
semantics of each channel. Additionally, the results also 
indicate that the proposed method is applicable to different 
components, showing good generalizability. 

5. CONCLUSION

This study proposes a semi-supervised multi-source 
variational decoupling network for compound fault diagnosis 
of bogies under zero-shot conditions. The method requires 
only single-fault samples for training to achieve data-driven 
semi-blind source separation. The encoder extracts low-
dimensional features from compound fault signals, and 
variational inference maps these features to multiple 
independent latent spaces corresponding to different fault 
sources, automatically determining the number of fault 
sources under the effect of ELBO. The designed independent 

decoders and source-selective activation mechanism ensure 
each separation channel focuses on one fault type, effectively 
alleviating the random semantic assignment problem caused 
by blind source separation ordering uncertainty. 
Experimental results show that compared with baseline 
methods, the proposed approach achieves better separation of 
compound fault signals in both axle boxes and gearboxes, 
while obtaining higher accuracy in fault diagnosis tasks. 
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