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ABSTRACT

Battery health monitoring is essential in applications such
as electric vehicles and energy storage systems, where the
lifespan and health state of batteries directly impact the
safety and operational costs. However, existing works have
demonstrated promising performance in predicting the state
of health (SOH) of batteries within the same type under cer-
tain working conditions. However, batteries are produced
with different types and work under different conditions in
real applications. Existing methods fail to leverage the in-
herent correlations between related battery types and over-
look the various working conditions, resulting in subopti-
mal robustness and prediction accuracy. To address this lim-
itation, we propose SRSE: a novel Shared Representation
learning framework that jointly learns shared representation
(hidden knowledge) across multiple battery configurations
for robust and generalized SOH Estimation. In particular,
an adversarial training scheme is utilized to eliminate task-
specific contamination in the shared feature space. SRSE
captures both feature-level and logit-level shared knowledge
and subsequently transfers it from the shared layer to task-
specific layers, enhancing the adaptability and efficiency of
each task. Extensive experiments on three large-scale battery
health datasets demonstrate that our proposed method signif-
icantly improves SOH estimation performance across diverse
battery types and operating conditions.

1. INTRODUCTION

Battery health monitoring is a critical technology to ensure
the safety and reliability of batteries, which are widely used in
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electric vehicles, energy storage systems, and portable elec-
tronic devices. Key indicators such as State of Health (SOH)
and Remaining Useful Life (RUL) are essential for evaluat-
ing battery performance and determining maintenance and
replacement strategies. While SOH reflects the current ca-
pacity retention, RUL extends this by predicting end-of-life
timelines(Wen et al., 2025; Hou, Wang, et al., 2025; Y. Wang,
Wu, Li, Xie, & Chen, 2025; Hou, Ragab, et al., 2025), with
both relying on understanding battery degradation patterns.
However, battery health monitoring faces significant chal-
lenges, including the non-linear and time-varying nature of
battery aging processes, as well as the difficulty in directly
observing internal states. Current battery health monitoring
methods can be broadly categorized into physics-based and
data-driven approaches(F. Wang, Zhai, Zhao, Di, & Chen,
2024). Many scholars estimate SOH by establishing battery
aging models(Baghdadi, Briat, Delétage, Gyan, & Vinassa,
2016; Dong & Wei, 2021; Lui et al., 2021), leveraging prior
knowledge, but suffer from high computational complexity
and limited practicality. And data-driven methods(Attia et
al., 2020; Rauf, Khalid, & Arshad, 2022) offer better real-
time performance but lack interpretability and struggle to
capture microscopic battery dynamics. Recent efforts to in-
tegrate physical knowledge with data-driven methods have
shown promise, but limitations remain. Most existing ap-
proaches operate in a single-task learning paradigm, failing
to leverage the inherent correlations between related tasks.
By isolating tasks, those methods miss opportunities to ex-
ploit shared knowledge and dependencies, which could en-
hance the model’s ability to generalize and improve predic-
tion accuracy across multiple tasks. This highlights the need
for developing a unified framework that can effectively inte-
grate and utilize the interconnected nature of battery health
monitoring tasks.

Multitask Learning (MTL) is a machine learning paradigm
that improves model generalization and efficiency by sharing
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(a) SOH degradation curves for batteries with different materials
and models.

(b) SOH degradation curves for the same type of battery under
different external conditions (charging rates).

Figure 1. Visualization of domain shifts in battery health monitoring across different battery types and operation conditions. (a)
Differences in SOH degradation across battery types highlight the challenge of generalization in cross-type estimation tasks.
(b) Even within the same battery type, external operation conditions such as charging rates induce distribution shifts, further
complicating the problem for cross-condition generalization.

knowledge across multiple related tasks. Compared to single-
task learning, sharing common knowledge across multiple
learning tasks reduces overfitting, enhances data utilization,
and improves the model’s ability to handle complex tasks.
MTL has achieved significant success in various domains,
including computer vision(Heuer, Mantowsky, Bukhari, &
Schneider, 2021), natural language processing(Chen, Zhang,
& Yang, 2024), and healthcare(He et al., 2020). It has also
attracted attention in battery health monitoring. For exam-
ple, Zhang et al.(S. Zhang, Liu, Xu, & Su, 2024) proposed
a physics-informed hybrid multitask learning (PIHMTL)
method, which simultaneously learns about battery health sta-
tus and other related tasks to estimate the full lifecycle aging
state of lithium-ion batteries more comprehensively. How-
ever, these MTL approaches still face challenges, such as the
difficulty in effectively disentangling shared and task-specific
features, which limits model performance.

Despite its potential in battery health monitoring, significant
research gaps remain in proposing a tailored MTL frame-
work with satisfactory overall performance. First, existing
methods struggle to effectively disentangle shared and task-
specific features, leading to feature redundancy and noise in-
terference in the shared feature space, which significantly
degrades model performance. Second, task interference is
a critical issue, where certain tasks may negatively impact
the learning of others, especially when there are substantial
differences between tasks. This interference often results in
suboptimal performance for some tasks while improving oth-
ers, creating an imbalance in task learning. Third, the ef-
ficiency of knowledge transfer in the existing MTL frame-
work remains low. Figure 1 visualizes the domain shifts in
battery health monitoring. Specifically, Figure 1a illustrates
the differences in state of health (SOH) degradation curves

across various battery types, highlighting the distribution
shifts under varying battery conditions. Figure 1b demon-
strates that even within the same type of battery, distribu-
tion shifts can occur under different external conditions, such
as charging rates, further complicating the learning process.
Consequently, due to the unresolved issue of domain shift,
current methods still lack effective mechanisms to transfer
learned knowledge from multiple tasks to new ones, thereby
limiting the model’s adaptability and generalization capabili-
ties. These challenges highlight the need for more advanced
knowledge-sharing mechanisms that can address feature re-
dundancy, task interference, and knowledge distillation in
battery health monitoring.

To address these gaps, this paper proposes a novel Shared
Representation learning framework that integrates adversar-
ial training, knowledge distillation, and domain adaptation
techniques (Ben-David, Blitzer, Crammer, & Pereira, 2006;
Ben-David et al., 2010), specifically designed for general-
izable SOH Estimation across various battery configurations
(SRSE). The framework introduces a joint feature purifica-
tion mechanism that leverages adversarial training to ensure
the shared feature space remains free from task-specific con-
tamination. Specifically, we employ a gradient reversal layer
(GRL) to enforce task-invariant feature learning, ensuring
that the shared representation captures only common and
task-invariant information. Additionally, we incorporate a
knowledge distillation module that distills both feature-level
and logit-level knowledge from the shared layer to the task-
specific layers, enabling efficient cross-domain transfer. The
feature-level fusion combines shared and task-specific fea-
tures to produce more informative representations for each
task, while the logit-level augmentation refines task-specific
predictions by incorporating additional logit-level guidance
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from the shared layer. This dual focus on feature purity and
model efficiency addresses the limitations of existing meth-
ods and provides a robust solution for battery health monitor-
ing tasks.

The contributions of this work are summarized as follows:

1. We propose a shared representation learning framework
that integrates adversarial training, knowledge distilla-
tion, and domain adaptation techniques, specifically de-
signed for generalizable SOH estimation across various
battery configurations.

2. We introduce a joint feature purification mechanism that
leverages adversarial training to ensure the shared feature
space remains free from task-specific contamination.

3. We incorporate a knowledge distillation module that dis-
tills both feature-level and logit-level knowledge from
the shared layer to the task-specific layers, enabling effi-
cient cross-domain transfer.

4. We demonstrate the effectiveness of our proposed frame-
work through extensive experiments on three large-scale
battery health datasets, showing significant improve-
ments in performance over existing methods.

2. RELATED WORK

Battery Health Monitoring is a critical task in battery man-
agement systems, aiming to accurately estimate the State
of Health (SOH). Current battery health monitoring meth-
ods can be broadly categorized into physics-based and data-
driven approaches. Physics-based methods rely on funda-
mental electrochemical and physical principles to model the
behavior and degradation of lithium-ion batteries. Bagh-
dadi et al.(Baghdadi et al., 2016) developed a lithium bat-
tery aging model based on Dakin’s degradation approach, fo-
cusing on the calendar and power cycling aging behaviors
of two distinct lithium battery chemistries. Similarly, Dong
and Wei(Dong & Wei, 2021) developed an aging model that
captures the coupled chemical and mechanical degradation
mechanisms, including SEI layer formation and crack propa-
gation, to accurately predict capacity loss under storage and
cycling conditions. However, their performance is often lim-
ited by the accuracy of the assumed models, and those models
may struggle to capture complex degradation patterns that are
not fully described by existing physical models.

Then, with the rapid development of deep learning, data-
driven methods gain significant attention due to their ability
to capture complex patterns in battery data without relying
on explicit physical models. For instance, Li et al. (Li, Lyv,
Gao, Li, & Zhu, 2025) proposed a co-estimation framework
combining semi-supervised learning (SSL) with Long Short-
Term Memory (LSTM) networks to reduce the dependency
on labeled data. Lu et al. (Lu, Xiong, Tian, Wang, & Sun,
2023) designed a deep learning framework to estimate battery

SOH without additional degradation experiments, using a hy-
brid of domain adaptation and deep neural networks. Another
study by Zhu et al. (Zhu et al., 2022) utilized voltage relax-
ation features to estimate battery capacity through machine
learning models, eliminating the need for additional cycling
information. Despite their effectiveness, data-driven methods
often require extensive labeled data for training, which can
be time-consuming and costly to obtain. Additionally, these
methods may lack interpretability and generalizability to new
battery types or operating conditions.

To address the limitations of purely model-based and data-
driven methods, hybrid approaches have been proposed to in-
tegrate the strengths of both paradigms. For instance, The-
len et al.(Thelen et al., 2022) presented a lightweight method
combining physics-based modeling and machine learning
to estimate the capacity and degradation modes of lithium-
ion batteries, leveraging both early-life experimental data
and simulation data generated from a physics-based half-cell
model. Another example is the work by Wang et al. (F. Wang
et al., 2024), which proposed a PINN-based approach to
model battery degradation dynamics using empirical degra-
dation equations and neural networks. These hybrid meth-
ods offer enhanced accuracy and robustness by incorporating
physical insights into data-driven models.

Despite the existence of physics-based methods, data-
driven approaches, and hybrid methods that integrate both
paradigms, these techniques have predominantly focused
on learning within a single task. This limitation restricts
their ability to fully leverage the interconnections between
related tasks. Therefore, Multi-task Learning (MTL) has
also been explored to improve the accuracy of SOH and
RUL estimation by simultaneously learning related tasks.
Kim et al. (Kim & Sohn, 2021) proposed a convolutional
neural network-based multitask learning method to integrate
health status detection and RUL prediction, demonstrating
superior performance on the C-MAPSS dataset compared to
traditional models. Similarly, Zhang et al.(S. Zhang et al.,
2024) proposed a physics-informed hybrid multitask learn-
ing method to simultaneously estimate Li+ concentration
dynamics in solid particles and electrolyte, electrode aging
states, and battery health status, achieving higher accuracy
and interpretability in lithium-ion battery aging estimation.
These studies highlight the potential of MTL framework in
improving the accuracy and generalizability of battery health
monitoring systems.

However, these MTL methods all focus on tasks that will be
related but still independent, such as electrode aging states
and battery health status, which can lead to poor generaliza-
tion performance for other datasets in either method. Further-
more, they have difficulty in effectively disentangling shared
and task-specific features and solving the interference prob-
lem between different tasks, resulting in poor knowledge
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Figure 2. Overview of the proposed SRSE framework for battery SOH estimation.

transfer efficiency. Therefore, we propose a shared repre-
sentation learning framework for SOH Estimation to address
these challenges. The proposed SRSE treats different datasets
under the same task as different tasks, to improve the general-
ization performance of the model and learn multiple datasets
at the same time, rather than training a separate network per
dataset. The framework includes a joint feature purification
mechanism to ensure the shared feature space is free from
task-specific contamination. Additionally, we introduce a
knowledge distillation module that transfers knowledge from
the shared layer to the task-specific layers at both feature
and logit levels, thereby enhancing cross-domain transfer ef-
ficiency. This dual strategy not only ensures feature purity
but also improves model efficiency, offering a robust solution
for battery health monitoring tasks.

3. METHODOLOGY

3.1. Problem Formulation

We formulate the cross-configuration SOH estimation via
shared representation learning as a tailored multi-task learn-
ing problem, where SOH estimation for each battery config-
uration is treated as a learning task. The overall goal is to
train a unified framework that jointly learns multiple tasks for
various battery configurations while mitigating task interfer-
ence and enhancing knowledge transfer (Y. Zhang & Yang,
2021). Formally, let T = {T1, T2, . . . , TM} denote a set of
M tasks. Each task Tm is associated with a dataset Dm =
{(Xm

i , Y m
i )}Nm

i=1 containing Nm samples, where Xm
i ∈ Rd

is the input vector and Y m
i is the corresponding label. The

objective is to learn a model f : X → Y that can gener-

alize across all tasks through effectively leveraging shared
knowledge(Deng, Chen, Jiang, Song, & Tsang, 2022).

In this work, various battery configurations correspond to dif-
ferent battery types or operating conditions, where each learn-
ing task involves predicting the State of Health (SOH) based
on recordings of battery characteristics collected during the
charge-discharge processes. Specifically, the SOH estimation
could be considered as a regression task, whose input X is
sensor measurements during a single charge-discharge cycle.
The measurements could be structured as multivariate time
series sequences with four channels: timestamp, voltage, cur-
rent, and charge. The output Y of the regression task is a
scalar value indicating the SOH, which measures the ratio of
the battery’s current capacity to its initial capacity.

3.2. Architecture of the Proposed SRSE

Depicted as Fig 2, the proposed Shared Representation learn-
ing framework for SOH Estimation (SRSE) consists of a
shared layer and M task-specific layers. Each ask-specific
layer corresponds to a learning task under one specific bat-
tery configuration. Note that we only illustrate the case of
two tasks in the diagram, while the framework can exactly
handle multiple tasks. The shared layer is trained using data
from all tasks simultaneously, allowing it to capture shared
representations and knowledge that can be useful across dif-
ferent tasks. On the other hand, the task-specific layers are
designed to learn specialized features of each task and out-
put the final label Y (Liu, Qiu, & Huang, 2016). To enhance
the overall performance, the proposed framework enables the
transfer of both feature-level and logit-level knowledge from
the shared layer to the task-specific layers. We introduce a
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joint discriminator with an adversarial learning scheme and
a joint classifier with a supervised learning scheme to effi-
ciently transfer these two types of shared knowledge.

3.3. Learning the Shared Features with Two Schemes

To effectively learn shared representations across multiple
tasks, we introduce two complementary learning schemes:
an adversarial learning scheme and a supervised learning
scheme. These schemes work together to extract clean and
informative joint features while mitigating task interference
and noise.

3.3.1. Adversarial Learning for Extracting Pure Joint
Features

For the proposed shared representation learning framework,
extracting pure joint features is crucial because they con-
tain common, task-invariant information that benefits all tasks
while minimizing task-specific biases. However, in practice,
the shared feature space often retains task-specific details,
leading to interference and suboptimal performance (Liu,
Qiu, & Huang, 2017).

In order to tackle this problem, an adversarial learning
scheme (Goodfellow et al., 2014) is adopted in SRSE. We
first incorporate a Joint Discriminator D, which is a multi-
class classifier to identify the task origin of the shared fea-
tures, i.e., predicts which task a given input feature comes
from. Formally, let fshared(X) denote the shared feature rep-
resentation extracted from input X . The Joint Discriminator
D takes these features as input and predicts the task index m,
where m ∈ {1, 2, . . . ,M}. The classification loss for D is
given by:

Ldis = −E(Xm,m)∼D

M∑
m=1

1[m] logD(fshared(X
m)) (1)

where 1[m] is the indicator function defined as:

1[m] =

{
1, if the task index is m
0, otherwise

(2)

By minimizing Ldis, D learns to correctly classify input fea-
tures according to their task origin. If these features contain
task-specific information, D can easily distinguish them. On
the other hand, if the features are truly task-invariant, D will
struggle to classify them correctly, indicating that they do not
retain task-specific characteristics.

To actively enforce this invariance, we introduce a gradient
reversal layer (GRL) between fshared and D(Ganin & Lem-
pitsky, 2015). The GRL negates the gradient from D be-
fore propagating it back to fshared, encouraging fshared to learn
representations that hinder D’s classification ability. Specif-
ically, given an input feature X , the GRL acts as an identity

function in the forward pass:

GRL(x) = x, (3)

While in the backward pass, it scales the gradient by a nega-
tive factor, reversing its direction:

∂GRL(x)
∂x

= −αI. (4)

where I is the identity matrix, and α is a hyperparameter that
controls the strength of the gradient reversal. By gradually
increasing α, the model initially focuses more on preserving
supervised performance, while progressively shifting atten-
tion towards minimizing task discrepancy.

This adversarial training enables the simultaneous optimiza-
tion of fshared and D using Eq. (1), ensuring that the shared
representation captures only common and task-invariant in-
formation.

3.3.2. Supervised Learning for Preserving Task-Relevant
Information

While adversarial learning removes task-specific biases, it
also risks discarding useful task-relevant information, leading
to performance degradation. To counteract this, we employ
a supervised learning scheme that ensures the shared repre-
sentation remains informative for all tasks. In particular, we
introduce a joint predictor P , which is trained to predict a
generic label Y based on the shared representation:

Lsup = E(X,Y )∼D [ℓ (P (fshared(X)), Y )] (5)

where ℓ(·) is the supervised loss function, such as mean
squared error (MSE) for regression tasks or cross-entropy loss
for classification tasks. This supervision ensures that the ex-
tracted shared features retain task-relevant knowledge rather
than collapsing into representations dominated by noise.

3.4. Enhancing Task-Specific Learning with Shared
Knowledge

To improve the robustness and generalizability of task-
specific layers, we develop two knowledge enhancement
strategies: feature-level fusion and logit-level augmenta-
tion. These two approaches both optimize the task-specific
layers, ensuring that they benefit from the shared repre-
sentation, while still leveraging the inherent, task-specific
information(Xu, Wu, Li, Mao, & Chen, 2023).

3.4.1. Feature-Level Fusion

Feature-level fusion aims to combine shared and task-specific
features to produce more informative representations for each
task. In our approach, we use element-wise addition as the
fusion technique. Mathematically, let ftask(X) be the task-
specific features. The fused feature vector Ffused is computed
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as:
Ffused = fshared(X) + ftask(X) (6)

This allows both sources of information to be integrated
straightforwardly and efficiently. By utilizing feature-level
fusion, we enable the model to generalize better across tasks
while simultaneously capturing the unique aspects of each
learning task, thereby enhancing the model’s overall perfor-
mance.

3.4.2. Logit-Level Augmentation

While feature-level fusion integrates knowledge at the repre-
sentation stage, logit-level augmentation refines task-specific
predictions by incorporating additional logit-level guidance
from the shared layer into the learning process. Specifically, it
leverages the predictive confidence of the shared representa-
tion to guide task-specific learning (Hinton, Vinyals, & Dean,
2015). During the supervised training of the shared layer, we
can estimate how much the shared features contribute to each
sample’s prediction. This contribution is derived from the
joint prediction P (fshared(X)), which, in classification tasks,
corresponds to the probability distribution over true labels:

wi = P (Yi | fshared(Xi)) (7)

and in regression tasks, represents the error relative to the
ground truth:

wi = exp

(
−|P (fshared(Xi))− Yi|

β

)
(8)

where β is a scaling factor that controls the sensitivity of the
weight adjustment.

To incorporate this knowledge into task-specific learning, we
assign wi for each sample i to control its influence on the
task-specific layer’s training:

Ltask =
1

N

N∑
i=1

wiℓ(Ptask(Ffused), Yi) (9)

where ℓ(·) is the supervised loss function, and Ptask represents
the task-specific predictor. This dynamic weighting mech-
anism ensures that task-specific layers pay more attention to
samples that provide more reliable task-invariant information,
thereby preventing the model from overfitting to task-specific
features.

Finally, the complete details of our proposed SRSE frame-
work are illustrated in Algorithm 1.

4. EXPERIMENTS

4.1. Datasets

To evaluate the performance of our proposed framework, we
conduct experiments on three different large-scale datasets in

the field of battery health, including the TJU dataset (Zhu et
al., 2022), the XJTU dataset (F. Wang et al., 2024), and the
SANDIA dataset (Preger et al., 2020). These datasets cover
a wide range of lithium-ion battery types, chemistries, and
operating conditions, with the aim of predicting the remaining
life of a battery based on the curves of voltage, current, and
charge over time during charging and discharging.

Each dataset contains detailed charge/discharge profiles and
corresponding state of health (SOH) information, enabling us
to thoroughly evaluate the accuracy and stability of our model
under different scenarios. In each dataset, we divide the tasks
based on the chemical composition of the battery, charging
protocol, and other factors. Below is a detailed description of
each dataset.

4.1.1. TJU

The TJU dataset contains three types of batteries: NCA bat-
tery (3500 mAh nominal capacity and 2.65–4.2 V cut-off
voltage), NCM battery (3500 mAh nominal capacity and
2.5–4.2 V cut-off voltage), and NCM + NCA battery (2500
mAh nominal capacity and 2.5–4.2 V cut-off voltage). The
batteries were cycled at different temperatures (25°C, 35°C,
and 45°C) and various charge/discharge rates (0.25C to 4C).
We use batch 1, batch 2, and batch 3 to represent NCA, NCM,
and NCM + NCA batteries, respectively.

4.1.2. XJTU

The XJTU battery dataset consists of 55 Lithium Nickel
Cobalt Manganese Oxide (NCM) batteries with a nominal
capacity of 2000 mAh, a nominal voltage of 3.6 V, and the
cut-off voltages for charging and discharging are 4.2 V and
2.5 V. The batteries were cycled to failure under six distinct
charge/discharge protocols at room temperature. These pro-
tocols include fixed charging and discharging, random dis-
charging with a fixed current in different cycles, random
walking, and the charging and discharging strategy of a satel-
lite in Geosynchronous Earth Orbit (GEO). In our experi-
ments, we use batch 1 to batch 4 to respectively represent
the first 4 charging/discharging protocols in (F. Wang et al.,
2024).

4.1.3. SANDIA

The Sandia dataset is derived from a comprehensive study
conducted by Sandia National Laboratories, examining the
degradation of commercial 18650 lithium-ion cells with dif-
ferent chemistries (NCA, NMC, and LFP) under various cy-
cling conditions, including different temperatures, depths of
discharge (DOD), and discharge rates, to investigate their
long-term degradation behavior. In our experiments, we use
batches 1 to 3 to represent LFP-15C, LFP-25C, and LFP-35C
batteries, respectively.
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Algorithm 1 The Proposed SRSE Framework
Input: Multi-task dataset D = {D1,D2, . . . ,DM}, learning rates η1, η2, gradient reversal factor α, weight scaling factor β.
Output: Optimized task-specific extractors fm

task and predictors Pm
task for each task Tm.

1: Initialize shared feature extractor fshared, task-specific extractors fm
task, task predictors Pm

task, joint predictor P , and joint
discriminator D.

2: repeat
3: for each mini-batch {(Xm

i , Y m
i )}Bi=1 from all tasks Tm do

4: // Step 1: Extract shared features
5: Fshared ← fshared(X)
6: // Step 2: Adversarial training with Joint Discriminator
7: Compute discriminator loss: Ldis ← − 1

M

∑M
m=1 1[m] logD(Fshared)

8: Update discriminator D: D ← D − η1∇DLdis
9: Reverse gradients via GRL and update fshared: fshared ← fshared + η1α∇fsharedLdis

10: // Step 3: Supervised learning for shared feature
11: Compute supervised loss: Lsup ← 1

B

∑B
i=1 ℓ(P (Fshared), Yi)

12: Update shared feature extractor fshared: fshared ← fshared − η1∇fsharedLsup
13: // Step 4: Task-specific learning with feature-level fusion
14: Extract task-specific features: Fm

task ← fm
task(X)

15: Fuse features: Fm
fused ← Fshared + Fm

task
16: // Step 5: Task-specific learning with logit-level augmentation
17: Compute sample weights: wi ← exp(−|P (Fshared,i)− Yi|/β)
18: Compute task-specific loss: Lm

task ← 1
B

∑B
i=1 wiℓ(P

m
task(F

m
fused), Yi)

19: Update task-specific predictor: Pm
task ← Pm

task − η2∇Pm
task
Lm

task
20: Update task-specific extractor: fm

task ← fm
task − η2∇fm

task
Lm

task
21: end for
22: until convergence or maximum iterations reached

4.2. Data Preprocessing

To ensure the consistency and reliability of the dataset, we
implemented a rigorous data preprocessing pipeline. The pre-
processing steps include extracting key cycle-level features,
filtering outliers, aligning timestamps, and normalizing data
for model input.

4.2.1. Data Extraction and Cleaning

We first process the raw dataset by grouping data based on
the cycle number. Each cycle’s data is extracted separately,
and the corresponding state of health (SOH) is calculated as:

SOH =
Qdischarge

Qnominal
(10)

where Qdischarge is the maximum discharge capacity observed
in the cycle, and Qnominal is the nominal capacity of the bat-
tery. Cycles with SOH values outside the range of [0.5, 2] are
considered outliers and removed from further analysis.

4.2.2. Feature Extraction and Temporal Interpolation

To characterize battery behavior during charging, we ex-
tract key features from the constant-current constant-voltage
(CCCV) phase, including voltage, current, charge capacity,
and timestamp. Given that the length of CCCV data varies
across cycles due to differences in sampling rates and operat-

ing conditions, we standardize each cycle’s data using linear
interpolation.

To ensure uniformity, we resample each cycle’s time series
to a fixed length of 1000 points by evenly dividing the total
duration into 1000 intervals:

tinterp = tmin + k · tmax − tmin

999
, k = 0, 1, . . . , 999 (11)

Vinterp = interp(tinterp, t, V ) (12)

Iinterp = interp(tinterp, t, I) (13)

Qinterp = interp(tinterp, t, Q) (14)

where interp(·) denotes linear interpolation. Additionally, we
compute the charge capacity differential concerning voltage:

dQ

dV
=

∆Qinterp

∆Vinterp
(15)

After preprocessing, each charge-discharge cycle is repre-
sented as a multivariate time series with four channels: volt-
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age, current, charge capacity, and dQ/dV , all standardized to
1000 time steps.

4.2.3. Final Dataset Structure

Each cycle is represented as a time-series feature matrix of
shape [5, 1000], where the five channels correspond to inter-
polated voltage, current, charge capacity, charge derivative
(dQ/dV ), and time. The final dataset is stored as PyTorch
tensors for efficient model training.

4.3. Experiments Setup

For the proposed SRSE framework, we select different
batches from the dataset to represent different tasks. For
example, in the TJU dataset, batches corresponding to dif-
ferent chemical components and different charge/discharge
protocols are treated as separate tasks. In addition, both the
joint network and the task-specific networks employ different
models as their backbone, including 1-D CNN, MLP, DNN,
and LSTM.

During training, a well-trained joint network is a prerequisite
to perform task-invariant information distillation. We first
employ the domain-adversarial training of neural networks
(DANN) approach (Ganin et al., 2016) to train the joint net-
work. Once the joint network is trained, we freeze its parame-
ters to prevent further updates. We then train the task-specific
networks on top of the frozen joint network. This allows each
task-specific network to focus on learning task-specific pat-
terns while leveraging the joint feature representations pro-
vided by the joint network. Furthermore, in terms of evalua-
tion metrics, we adopt MAPE and RMSE for all experiments.
For all experiments, we repeat 10 times with different random
seeds.

4.4. Main Experiments Results and Comparative Analy-
sis

We first employ a 1-D CNN with nine layers as the backbone
on three datasets. Table 1 shows that using the same CNN
and the same hyperparameter configuration, our proposed
SRSE framework achieves better performance than single-
task training in the vast majority of tasks, with a more sig-
nificant lead. Performance improvements can reach up to
69.05%. Across all tasks with decreased errors, RMSE met-
rics decreased by an average of 46.71% and MAPE metrics
decreased by an average of 46.58%. Furthermore, even in
tasks where the minimum error was not achieved, our method
exhibits only a minimal gap compared to the best results ob-
tained.

In addition, to verify the effectiveness of our proposed SRSE
framework based on different backbones, we replace differ-
ent backbones on the TJU dataset, including MLP, DNN, and
LSTM. From Table 3, it can be seen that our SRSE framework

still works despite changing different backbones. Our SRSE
framework always achieves the best performance among all
backbone approaches. This significantly demonstrates the
effectiveness of our proposed SRSE framework in enhanc-
ing the performance of individual tasks. The consistent im-
provements across various metrics highlight the robustness
and versatility of our approach, which is capable of elevating
the performance even in scenarios where single-task training
has struggled to achieve optimal results. This underscores the
potential of our SRSE framework as a valuable tool for opti-
mizing task-specific outcomes within a shared representation
learning context.

4.5. SRSE Across Different Operating Conditions

In 4.4, we evaluated our SRSE framework by partitioning
tasks based on intrinsic battery properties, such as material
composition and model type. In this section, we further in-
vestigate the effectiveness of our framework by defining tasks
based on external operating conditions, including charging
rate, discharging rate, and temperature. This setting allows us
to assess how well the framework can leverage shared knowl-
edge across different environmental conditions, which is cru-
cial for real-world battery health monitoring applications.

To construct these tasks, we focus on the TJU dataset and
partition it based on specific external conditions:

• Charging Rate: We select cells from the NCA 25°C
batch and categorize them into three tasks based on dif-
ferent charge rates (1C, 0.5C, 0.25C), keeping all other
conditions constant.

• Discharging Rate: We select cells from the NCM and
NCA batches and define three tasks corresponding to dif-
ferent discharge rates (1C, 2C, 4C).

• Temperature: We select cells from the NCM batch
and divide them into three tasks based on ambient tem-
peratures (25°C, 35°C, 45°C), keeping all other factors
such as charge-discharge rates and battery chemistry un-
changed.

Table 2 presents the performance comparison between the
SRSE (with CNN as backbone) model and the single-task
CNN model across these different external conditions. The
results demonstrate that SRSE consistently outperforms the
single-task model in most cases, achieving lower RMSE and
MAPE. Notably, in the charge rate setting, SRSE consis-
tently outperforms the single-task model across all tasks. Fur-
thermore, for tasks defined by discharge rate variations, our
model exhibits a substantial performance gain, particularly at
2C and 4C, where RMSE is reduced by 61.6% and 16.2%,
respectively. This suggests that SRSE effectively captures
common patterns across different environmental conditions,
enabling more accurate and robust SOH estimations.
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Table 1. The results of our proposed SRSE framework on three datasets. The best results are in bold.

Dataset Task SRSE CNN Improvement
RMSE MAPE RMSE MAPE RMSE MAPE

TJU
1 0.0155 0.0153 0.0201 0.0196 22.89% 21.94%
2 0.0137 0.0141 0.0200 0.0208 31.5% 32.21%
3 0.0176 0.0167 0.0357 0.0352 50.7% 52.56%

XJTU
1 0.0191 0.0173 0.0558 0.0559 65.77% 69.05%
2 0.0257 0.0247 0.0586 0.0590 56.14% 58.14%
3 0.0237 0.0221 0.0625 0.0630 62.08% 64.92%
4 0.0187 0.0155 0.0514 0.0508 65.37% 69.49%

SANDIA
1 0.0169 0.0166 0.0270 0.0153 37.41% -
2 0.0086 0.0052 0.0061 0.0052 - -
3 0.0180 0.0176 0.0252 0.0184 28.57% 4.35%

Table 2. Comparisons of SRSE and CNN across different operating conditions.

Dataset condition task meaning SRSE CNN
RMSE MAPE RMSE MAPE

NCA 25°C charge rate
1 1C 0.0130 0.0137 0.0146 0.0143
2 0.5C 0.0096 0.0088 0.0110 0.0114
3 0.25C 0.0109 0.0108 0.0193 0.0199

NCM/NCA discharge rate
1 1C 0.0176 0.0077 0.0175 0.0098
2 2C 0.0118 0.0090 0.0307 0.0304
3 4C 0.0129 0.0083 0.0154 0.0109

NCM temperature
1 25°C 0.0074 0.0088 0.0117 0.0126
2 35°C 0.0061 0.0054 0.0075 0.0073
3 45°C 0.0099 0.0112 0.0097 0.0107

However, we also observe that in some cases, such as high-
temperature conditions (45°C), the performance gap between
shared representation learning across multiple battery config-
urations and configuration-specific learning is minimal. This
may be attributed to the accelerated aging effects at high tem-
peratures, which introduce complex degradation patterns and
make knowledge transfer less effective.

Overall, these results confirm that our proposed SRSE frame-
work enhances predictive accuracy under varying external
conditions, thereby enabling more reliable SOH estimation
and improving battery health management in diverse opera-
tional scenarios.

4.6. Ablation Study

There are two key components in our proposed framework:
the joint discriminator D and feature enhancement of the
task-specific layer(contribution). To analyze the contribution
of each component, we conduct an ablation study on the TJU
dataset using CNN as the backbone. As Table 4 shows, first,
without using the joint discriminator and the feature enhance-
ment of the task-specific layer, there are only shared features
passed to each task-specific layer. As can be seen from the re-
sults, some tasks may have relatively poor performance due to
noise in the shared features or interference from other tasks.
Then, we add adversarial training, or a joint discriminator,
so that the shared features contain task-invariant information,
and the shared features are more ”pure”, thus achieving better
performance. Finally, by adding all the components, our ap-
proach achieves optimal performance on all three tasks. This
shows that all our proposed components work and contribute

to the performance of each task. This demonstrates the ef-
ficiency of the proposed SRSE framework, with each core
component contributing positively to the overall performance
enhancement. The joint discriminator aids in ensuring the
shared features are more refined and contain task-invariant
information, while the feature enhancement mechanism fur-
ther optimizes these features, leading to superior model per-
formance across various tasks.

5. CONCLUSION

In this work, we propose a novel shared representation learn-
ing framework for generalizable SOH Estimation across mul-
tiple Battery configurations, which effectively addresses the
limitations of existing methods by leveraging the inherent
correlations between different battery types. Through an ad-
versarial training scheme, our approach mitigates task inter-
ference in the shared feature space, ensuring better gener-
alization across diverse battery types and operating condi-
tions. Additionally, transferring both feature-level and logit-
level knowledge to task-specific layers further enhances the
adaptability and efficiency of the model. Experimental re-
sults on three large-scale battery health datasets confirm that
our method significantly improves generalization and predic-
tive capability, offering a more robust and accurate solution
for battery health monitoring in real-world applications.
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