Probabilistic graphical models for diagnosing defectivity patterns
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ABSTRACT

In the high-tech sector, diagnosing performance issues often
involves analysing a variety of defectivity patterns on prod-
ucts. High-tech systems perform numerous processes — e.g.
product handling, light projection, jetted ink application, and
thermal treatments — all of which affect the quality of the
product itself. Their potential malfunctioning can contribute
to defects with characteristic patterns. Often there is not a
one-to-one mapping between root causes of these malfunc-
tions and the resulting observable defectivity patterns. Con-
sequently, identifying the root cause of these patterns is a
challenging and an intrinsically probabilistic task. This paper
proposes a framework to relate these patterns to the underly-
ing root causes and employs Probabilistic Graphical Models
(PGM) to reason about these relations. We find that PGMs
ability to contain arbitrary graph topologies and jointly rea-
son across all root causes empowers the modeller to adapt
the models to the system at hand and include domain specific
knowledge that would be hard to account for using more data-
driven approaches. When provided with data from an opera-
tional system in the field, the PGM identifies the underlying
root causes of product quality issues. We demonstrate the
methodology with a real use case from the production print-
ing industry.

1. INTRODUCTION

The overall output quality in modern high-tech systems is de-
termined by the joint performance of several system compo-
nents across various integrated processes. Directly monitor-
ing each individual process within a high-tech system is often
operationally infeasible. Instead, it is typically only possi-
ble to observe their overall effect by measuring the resulting
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quality at multiple locations on the product. Product quality
below specification is measured as a distribution of defects on
the product’s surface, i.e. a defectivity pattern. Inferring the
root causes from the available indirect and aggregated set of
measurements, i.e. observations, results in a significant chal-
lenge. For example, consider the semiconductor lithography
process. The precise alignment of different layers on each die
is a major contributor to product quality. If a wafer shows
misaligned regions after exposure, it is crucial to determine
whether the issue originated from the wafer itself or the ex-
posure process.

This paper introduces a framework to assist engineers in diag-
nosing product quality issues. Central to our framework is the
observation that different root causes acting on the system’s
processes, components and product will induce characteristic
correlations among measurements. We capture these corre-
lations by defining different distance metrics between the lo-
calized observations. These metrics are used to reason about
the root causes underlying the abnormal observations.

For example, in the exposure cycle of a lithography system
the same pattern is repeatedly projected onto dies on a wafer
following a particular path, i.e., exposure sequence. In this
case our methodology establishes both a spatial distance met-
ric and an exposure sequence metric between any two dies.
As a result, two abnormal alignment measurements could be
correlated based on their spatial proximity on the wafer or on
their exposure sequence proximity. If the first is the case, we
reason that the problem originates in the wafer, while the sec-
ond indicates a problem with the exposure process, e.g. the
robot that moves the wafer under the light source.

A different example of a high-tech system that can be mod-
elled in a similar way is the printing process of an industrial
printer. There, ink-jetting nozzles are arrayed in a 2D grid
and follow a predefined jetting sequence. We will develop
this example further in Section 3.
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In this paper we employ Probabilistic Graphical Models
(PGM) for modelling and reasoning over the system’s obser-
vations, structure and hidden states. The application of PGMs
in diagnostics, specifically in the medical domain, stems
from a long line of research (Pearl, 1988), (Darwiche, 2009),
with specific applications in high-tech diagnostics (Barbini,
Bratosin, & Nigele, 2021; van Gerwen, Barbini, Borth, &
Passmann, 2024). In the PGM framework, the diagnostic in-
ference task is framed as a problem of statistical inference,
specifically the computation of a diagnosis as the posterior
probability given observed evidence. In this work, we use
Conditional Markov Random Fields (CRF) to model root
causes as the hidden states of the system’s components, con-
ditioned on the observed qualities measured at multiple points
on the product.

The paper is organized as follows. Section 1.1 gives an
overview of the relevant approaches to the diagnosis of prod-
uct quality problems. Section 2 gives details on how we spec-
ify and use CREF for the diagnostic inference task. In Section
3, the proposed methodology is applied to a use case from
the industrial production printing domain. Finally, Section
5 summarizes the main findings, the current limitations and
outlines future research directions.

1.1. Current Approaches

The current approaches to diagnosing defectivity patterns in
high-tech production systems primarily use data-driven meth-
ods, especially machine learning and deep learning (Bai et al.,
2025; Henn, Zhou, & Barnes, 2019), alongside expert-based
approaches. A well-known challenge for purely data-driven
methods, particularly in performance diagnostics, is acquir-
ing a sufficiently large dataset of labelled field data. This is
because during both design and early usage, the full range
of potential performance problems and their underlying root
causes are often unknown, emerging only during extensive
real-world operation. Consequently, it is difficult to system-
atically label data linking the observed defectivity patterns
to the root causes. Furthermore, reliable ground truth is fre-
quently unavailable or requires costly designed experiments,
for example by inducing a specific failure and measuring its
effects. As aresult, a common practice is to rely on expert in-
terpretation of complex dashboards displaying measured data
in various visualizations, along with estimated features, leav-
ing the identification of root causes to human inference.

Another key limitation of currently used methods is their ten-
dency to analyse individual defect contributors in isolation,
rather than from a system-level perspective. This typically
results in estimating a single system process or component’s
performance based on aggregated measurements. However,
in complex systems, all processes and components influence
these measurements. While effective for quality issues trace-
able to a single source, this isolated analysis fails when de-

fects require simultaneous reasoning across multiple inter-
acting factors. The challenges of the current approaches de-
scribed above highlight the ongoing need for approaches that
can incorporate domain knowledge across multiple aspects of
a system, and can reason effectively even without large, per-
fectly labelled datasets.

2. METHODOLOGY

Our methodology aims to classify observations taken over
time and at different positions of a product into a discrete
set of possible root causes. The proposed approach is based
on two key assumptions. First, we assume that observations
of the product are discrete (e.g., OK, NOK) and indirectly
reflect the hidden state of the hardware, processes, and the
product itself. Second, we assume to have knowledge of fail-
ure behaviour, i.e. root causes, and of the system design, such
as component layout or process geometry. This knowledge is
used to determine the distance metrics to which the consid-
ered root causes adhere.

This classification task is reminiscent of the problem of image
segmentation, where the goal is to label every pixel in a 2D
image into a set of classes. Inspired by the literature on image
segmentation (Kato & Zerubia, 2012), we use probabilistic
graphical models (PGMs) in the form of Conditional Random
Fields to model our system, and reason about it, in probabilis-
tic terms. Our assumptions contain all the necessary ingredi-
ents to frame our problem in the language of PGMs (Koller
& Friedman, 2009). In contrast with the square grids used in
the image segmentation literature, we will make use of CRFs
with arbitrary topology.

Let us take as an example a system where the observations
are arrayed on the product in a 2D grid but also connected
along a 1D path. Both the lithography and industrial printing
processes mentioned in Section 1 are of this type. The con-
struction of the PGM proposed by our framework is outlined
in Figure 1.

First, we model each localized observation O; as an observed
random variable taking discrete values {OK, NOK}. The
classification of observation O; is then modelled as another
discrete random variable H;, this time hidden, taking values
in {c1,...cx}, the set of root causes, of which we assume
to have prior knowledge. Based on this description, we con-
struct a graph, see Figure 1-a, for which the random variables
are the nodes and edges connect each O; and H; pair (bottom
and top, respectively). Edges in the graph represent our belief
that the two variables are directly correlated. Second, we add
edges between different H;’s. These edges encode proximity
in one of the design-informed distance metrics. We call the
set of edges induced by each distance metric a representation
of the observations. In Figure 1-b we add the edges induced
by the grid-like 2D structure on the product, while in Figure
1-c we add the edges induced by the 1D path.
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Figure 1. Construction of the CRF for a system with two representations.

To make a conditional random field, we place factors f; on
the edges between variables. These factors are numerical ar-
rays quantifying the strength of correlation between the dis-
crete states in the variables they connect. These factors are
depicted in Figure 1-d with empty squares. In this work
we use design knowledge and domain expertise to determine
their values.

Equation (1) gives an example of how we use one-hot encod-
ings to represent discrete random variables.

0, € {OK, NOK} = { H 7 m } ,

17 [o] [o (1
H; € {h=co,c1,e2} = ¢ (0], |1], |0
0 0 1

Specifically, it shows random variable O; with two states
{OK, NOK}, represented as orthogonal unit vectors in a 2-
dimensional space; together with a random variable H; with
three states {h, ¢1, co} corresponding respectively to healthy
state and root causes ¢; and co, represented as orthogonal unit
vectors in a 3-dimensional space.

Let fo(i) = fo in Eq. (2) be the factor connecting the vari-
ables O; and H; in Figure 1-d for any index i.

Hl:h Hi:cl Hi:CQ
1 0 0 0; = OK
o= g (@)
f 0 1 1 0; = NOK

Rows and columns of the factor correspond to the states of
the variables O; and H; respectively. The entries of the array
folJ, k] indicate the strength of correlation we attribute to the
combination of variable’s states indicated by the j-th row and
k-th column. For this factor, the first row encodes the fact
that O; = OK perfectly correlates with H; = h. The second
row encodes the fact that a NOK observation could be caused
by either ¢; or cy. The zeros in the array encode impossible
combinations. If need be, false positives and negatives could
be incorporated into the factor. Similarly, f1(:) = f1 shown

in Eq. (3), is the factor connecting any two variables H;,
H,;; consecutive along the 1D path.

Hiy1=h Hiy1=c Hip1=c
1 € € H,=h
fl = € 2 € H,=c (3)
€ € 1 H; =cs

The rows of f; correspond to the different states of H; and
the columns correspond to the different states of H,;;. As
in the case of fo, fi[j, k] is the weight given to the combi-
nation H; = c¢; and H; 1 = cg, for j,k = 0,1,2. Let us
assume root-cause c; displays larger correlation along the 1D
path than cause c. Factor f; enforces this by making f;[1, 1]
larger than the other entries. For simplicity we have given a
small weight of € to all non-diagonal entries of f;. Depending
on the application, these entries can be given distinct values
or be functions parametrized by, e.g., time, or the factor’s lo-
cation on the graph.

Let O = {O;},H = {H,} be the observed and hidden vari-
ables, and V = O U H be their union. Let E C V x V
be the set of edges between variables. Let F = {f;} be
the set of factors and A : E — F be a map assigning a
factor to each element in E. Then, the probabilistic graph-
ical model M = (V,E, F, A) defines a Conditional Random
Field (CRF).

A CRF encodes the conditional probability distribution
p(H|O), meaning that it encodes the joint posterior proba-
bility of the hidden variables H conditioned on the observed
variables O. We then obtain the marginal posterior proba-
bility p(H;|O) for every hidden variable H; using loopy
belief propagation as our inference algorithms, although oth-
ers exist, see Section 4. This marginal posterior probability
conditioned on the observations becomes our classification,
i.e. our diagnosis for the root cause of the observation.

The strength of the CRF, and more generically of PGMs, as
a framework for modelling defectivity patterns resides in its
ability to contain arbitrary graph topologies, and to perform
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inference, i.e., reasoning, across all representations forming
the graph. This empowers the modeller to adapt the model
to the system at hand, including domain specific knowledge
that would be hard to account for using more data-driven
forms of image segmentation. Furthermore, we remark that
our methodology is not limited to 1 or 2-dimensional lattices
embedded in a graph. Indeed one could conceive, e.g., of
fan-like representations of electrical interconnections on so-
lar panels, or completely irregular structures like the overlap-
ping high-voltage grid and communication networks forming
a modern electricity grid.

2.1. Multi-Resolution Spatial and Temporal Analysis

The factors in Figure 1 are all binary in the sense that they
connect two variables. It is also possible to use unary (af-
fecting just one variable) or higher order factors. Unary fac-
tors are useful because they act as weights on variables. In
Bayesian terms, we can think of them as priors. These can
come from historical data or from previous computations on
the same data. In this work we will use unary factors to extend
the models in two directions: multi-resolution and temporal
analysis.

When one of the relevant distance metrics induces a 2D
square lattice structure on the model graph, one may model
the system at a lower resolution scale. Atlow resolutions, pat-
terns that are too discontinuous for the high-resolution model
with only nearest neighbour interactions, are smoothed over
and become once again continuous, and thus, visible to the
model. While multi-resolution analysis is not limited to 2D
lattices, or indeed, lattices of any dimension (Z. Zhang et al.,
2023; S. Zhang, Tong, Xu, & Maciejewski, 2019), in this
work we limit ourselves to the 2-dimensional case.

The process starts with grouping and fusing the 2D observa-
tions. In this work we group them into blocks of [ x [. We
use MaxPool(O;,...,0;42_1) to determine the value of
the effective observation O;C representing the block, and as-
sign also an effective hidden variable to each block H, ,; Then
we create a model by connecting the pooled observations to
the new hidden root causes for the blocks and connect these
to each other following the 2D grid pattern inherited from the
base model. This is shown in Figure 2-a. Although some fea-
tures are shared, low- and high-resolution models might have
different topologies and might have different factors. Upon
usage, we use the low-resolution model to infer the marginal
distributions of the blocks’ hidden variables and subsequently
we insert them as priors on the full-resolution model (solid
light-blue squares), see Figure 2-b.

The second use of unary factors or priors in this work is in
modelling the evolution of the hidden states over time. We
assume the data consists of a time series of 2D observations.
Our models so far have been geared towards representing and
reasoning on one timestep of the series of observations. To al-

b)

Figure 2. Construction of a low-resolution model for the sys-
tem in Figure 1. a) Observations are pooled into blocks of

size 2 x 2 and the new hidden states H. ,; are connected. b)
Depicts the full model with multi-resolution and temporal in-
formation. The inference results of the low-resolution model
inserted as unary factors H, , (solid blue), and the posteri-

ors of the previous time-step inserted as unary factors H; ;1
(solid green), connected to the current variables H; ; via an-
other factor accounting for time evolution of the states.

low the inferred hidden states in the previous timestep H; ;1
to affect the current timestep H; ¢, we insert them as unary
factors containing the posterior distribution of H;;_; com-
puted in the previous iteration (solid green squares in Figure
2-b) and connect them to the variables H; ; via a factor fr
encoding the time evolution of the hidden root-causes (empty
green squares). This carrying of information forwards in time
is a form of Bayesian filtering (Sarkki, 2013).

2.2. Workflow

The full workflow of the methodology to perform classifica-
tion at multiple resolutions and over time, is shown in Fig-
ure 3. At discrete points in time, the system is measured
providing raw data D;. Depending on the application, this
data can be a float, a vector, or even a nan. Therefore, it
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Figure 3. Graphical representation of the workflow for multi-resolution and temporal inference.

must be interpreted, i.e. processed, into an N x M array
of binary observations. This processed data is then down
sampled to size IV " x M’ and used as evidence for a low-
resolution model R’ that possibly admits information from
prior timesteps. Inference on model R’ produces an N "x M
array of k’-dimensional vectors representing the posterior
probability that each observation is caused by each one of the
k' effective root causes. These values are then used as priors
in the full-resolution model R together with the N x M vec-
tors of posteriors from the previous timestep and the N x M
observations of the current timestep. The outcome of this pro-
cess is an N x M array of k-dimensional vectors containing
the probability of the root causes of each observation.

3. APPLICATION

In this section, we discuss the application of the proposed
methodology to an industrial use-case. Specifically, the di-
agnosis of print quality artefacts manifesting in an indus-
trial inkjet printer manufactured by Canon Production Print-
ing. Industrial inkjet printers are complex machines, featur-
ing thousands of tiny nozzles (just a few micrometres in di-
ameter) that jet billions of ink droplets every second. To mon-
itor performance, the machine occasionally prints, scans, and
analyses a test page. This process provides an indirect mea-
surement of the printing accuracy of each individual nozzle.
These measurements are then further analysed to determine
the causes of suboptimal nozzle performance, allowing for
optimization of the printing process and ensuring high print
quality. The main challenge in this diagnostic process lies
in the second analysis step: inferring the root causes of un-
derperforming nozzles from their observations. A high-level
schematic representation of the printing and scanning process
is given in Figure 4.

Our methodology is well suited for this use-case as different
distance metrics can be defined for the nozzles. Here we will
consider two metrics: the spatial location of nozzles on the
printhead and their jetting order. Figure 4-b illustrates the
spatial arrangement of three nozzles on the printhead, where
empty cells denote locations without a nozzle and black cells

indicate nozzle presence. Notice that nozzles in close spatial
proximity, such as nozzles 1 and 3, are not consecutive in the
jetting order.

Given these two metrics we construct a CRF like the one
shown in Figure 2-b. Purple edges and factors correspond
to the spatial location metrics while orange edges and factors
correspond to the jetting order metric. Specifically, in our
implementation we define |O] = |H| = 21° random vari-
ables for the Observed and Hidden variables, respectively.
These random variables are arrayed in an N x M lattice with
M = N = 25, following the layout of the nozzles on the
printhead. In the context of print quality, we consider four
possible root causes for nozzle underperformance. Hence, H;
can take a value between {h, RC'1, RC2, RC3, RC4} where
h stands for healthy and RC for root cause. For the multi-
resolution, we set [ = 23 so we have|O’| = |H'| = 2%. All
the factors in the CRF, which we do not show for confiden-
tiality reasons, are specified using experts’ knowledge.

3.1. Results

To demonstrate the application of our methodology, we
present the results of the CRF using nozzle performance data
from two test sheets of an industrial printer operating in the
field. As described in Section 2.2, the input to the CRF is an
N x M array of binary observations. When visualized as an
image, this forms a binary map where black pixels represent

Printhead

— |:|I|:|I i

a) b)

Figure 4. a) High level schematics of ink-jet printing process.
Only test pages are scanned. b) Example position of 3 noz-
zles on the printhead. Nozzle numbers (1,2,3) correspond to
jetting order.
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Figure 5. Results for two test sheets a) and b) respectively. The first column displays the binary nozzle performance data used as
input for the model. Columns RC'1 to RC'4 display the posterior probabilities for each root cause in the spatial representation.
The first row of a) shows the down sampled input (obtained by max-pooling), the second row shows the full-resolution spatial
representation, the third row shows the jetting order representation (only the last 70 nozzles are shown for clarity). In b), only
the full-resolution input and jetting order representation are shown.

underperforming nozzles and white pixels indicate normally
functioning nozzles, see Figure 5. The down sampled evi-
dence required for the multi-resolution analysis is obtained
through a two-dimensional max-pooling operation applied to
this binary image. Alternatively, when the same binary data
is arranged according to the jetting order, it results in a one-
dimensional array, see last row of Figure 5.

The first row of Figure 5-a shows the posterior probabilities
of the low-resolution model for the first test sheet. For clar-
ity, the posteriors corresponding to the healthy state have been
omitted. Because the input is down sampled, underperform-
ing nozzles merge into a continuous vertical band, enabling
the model to capture broad, global patterns. RC'1, RC2, and
RC3 are associated with root causes that appear as vertical

structures in the spatial domain. Whereas RC'4 is associated
with isolated underperforming nozzles, which can appear as
clusters of any shape when the input is downsampled. By
design, the low-resolution model allows for greater uncer-
tainty between the different root causes, resulting in prob-
abilities spread across RC'1 — 4 for this test sheet. Figure 5
shows probabilities in gray scale, with white corresponding to
a probability of 0 and black corresponding to a probability of
1. The actual diagnosis is performed at full resolution, where
the model reasons jointly over both the jetting order and spa-
tial representation. The second row of Figure 5-a presents
the full-resolution posterior probabilities for the first sheet,
computed using the low-resolution model outputs as priors.
Figure 5-b displays the full-resolution results for the second
test sheet (low resolution results omitted).
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Figure 6. Row-normalized confusion matrix comparing the
CRF-predicted classes with the corresponding expert labels.

Both test sheets show a similar vertical band of underper-
forming nozzles along the right edge of the paper. How-
ever, as identified by the CRF, the underlying causes dif-
fer. In the first sheet, the pattern originates from an issue
in the jetting order. In the second sheet, the root cause mani-
fests spatially on the printhead. This distinction becomes ap-
parent when examining the jetting order representation: the
first sheet exhibits a continuous sequence of underperforming
nozzles, whereas the second shows a more intermittent pat-
tern. Additionally, the few isolated NOK observations scat-
tered throughout the test sheets that were not clearly iden-
tified in the low-resolution inference are correctly identified
as RC'4 when considered by the high-resolution model. By
incorporating and reasoning upon both the jetting order and
spatial representations, the CRF can effectively distinguish
between these different root causes on a nozzle-by-nozzle ba-
sis. These results were confirmed by domain experts at Canon
Production Printing.

To quantitatively assess model performance, the posteriors of
the CRF were compared against a set of 48 test sheets inde-
pendently annotated by two domain experts according to one
of the four root causes (RC1 — 4). Only sheets for which
both experts reached consensus on the assigned label were
retained, ensuring a high-confidence ground truth. For each
sheet, the predicted root cause was determined by summing
the posterior probabilities per root cause and selecting the one
with the highest sum. This prediction was then compared
against the expert-assigned label. Across this consensus set,
the model achieved an overall accuracy of 0.88 (42 correctly
classified sheets out of 48) and a macro-averaged F} score of
0.85. The confusion matrix is shown in Figure 6. Further val-
idation on a larger dataset is ongoing to confirm the model’s
performance.

4. DISCUSSION

The proposed CRF framework can identify different root
causes of system underperformance using real data from an
operational high-tech system. The model captures both spa-

tially localized and process-related defectivity patterns by
jointly reasoning over multiple representations of the ob-
servations. Quantitative validation on a consensus-labelled
dataset further confirmed the method’s diagnostic capabil-
ity, with an overall accuracy of 0.88 and a macro-averaged
F score of 0.85. These findings indicate that combining
multi-resolution modelling with probabilistic reasoning en-
ables interpretable diagnostics in complex high-tech systems.
Although these results are promising, the current model can
only diagnose root causes that correspond to predefined hid-
den states in the CRF. In practice, the range of failure modes
that can lead to defectivity patterns is extensive, and it is
not feasible to model all of them explicitly. The present
validation therefore focused on the most common and well-
understood root causes. Extending the framework to account
for previously unseen causes is a subject of ongoing research.

In parallel with the development of the CRF framework, we
explored unsupervised data-driven approaches for clustering
the two-dimensional observation data. The choice of an un-
supervised approach is motivated by the absence of a large
labelled dataset, as explained in Section 1.1. Although this
approach could capture broad similarities between patterns,
it was considered unable to distinguish between the different
root causes, as it relied solely on the spatial representation.

Below we discuss some computational aspects of the method-
ology, namely the choice and rationale for loopy belief prop-
agation as an inference algorithm, as well as limitations of
this approach and possible extensions. In this work we used
the Python library Quimb (Gray, 2018) to specify the mod-
els, and loopy belief propagation (K. P. Murphy, 2023) as the
inference engine. The computational complexity of loopy be-
lief propagation is O(I- E-D?), where I is the total number of
iterations, E is the number of edges, in this case E = O(N),
and D = O(1) is the number of distinct root causes. Al-
though the computation time varies per case, it stays in the or-
der of seconds on a standard laptop for models with 102 hid-
den variables, acceptable for the scope of this study. Loopy
belief propagation is not guaranteed to converge to the true
posteriors. In particular, when two or more joint configura-
tions are equally likely, belief propagation will oscillate be-
tween them (K. Murphy, Weiss, & Jordan, 2013). This situ-
ation could arise in the diagnostic setting when an observed
pattern is equally compatible with multiple root causes. For
such cases, we are currently investigating the use of measures
of computational hardness, e.g. number of iterations of belief
propagation, together with the likelihood of the model given
data, to characterize our confidence in the model’s output.

Scaling our methodology to tens of thousands of variables
may require changes on the inference algorithm. A possi-
ble improvement is message vectorization, which greatly re-
duces the compute time of belief propagation in the regime
of large number of small factors, as is the case for our di-
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agnostic models. Hardware acceleration, such as PyTorch,
JAX and CUDA, is another possibility offered by the Quimb
library yet to be explored. Another alternative would be to
use Gibbs sampling (Kato & Zerubia, 2012), a technique em-
ployed in image segmentation known to scale to thousands of
variables.

Lastly, we discuss factor specification. In this work we opted
for a manual approach. As a consequence, the model qual-
ity depends on the modeller’s skill at translating root-cause
behaviour into probabilistic weights. Manual factor specifi-
cation is an iterative process that employs failure simulators
in order to test a modeller’s hypothesis on synthetic data. This
iterative process is a qualitative form of optimization. There
is no mathematical guarantee that the parameters are the cor-
rect ones, in the sense that they do not necessarily maximize
the likelihood of the parameters given the model. However,
the fact that our models with manually specified factors per-
form well on real-world data speaks to the robustness of the
approach.

A natural extension to the methodology would be to algorith-
mically learn the factors from a training dataset. The most
widely known algorithm for learning of factors in probabilis-
tic graphical models is expectation-maximization (K. P. Mur-
phy, 2023). Deep learning-based training is also possible, as
demonstrated in (Pastorino, Moser, Serpico, & Zerubia, 2023;
Liu, Lin, Qiao, & Shen, 2017). Given the availability of some
labelled data, semi-supervised learning is also an interesting
possibility, as is treating the factors as random variables with
distributions learnable through Bayesian inference (Cox, van
de Laar, & de Vries, 2019). These investigations are left for
future work.

5. CONCLUSIONS

In this paper, we presented a novel application of Conditional
Markov Random Fields (CRFs) for diagnosing root causes
of defectivity patterns in high-tech manufactured products.
Our methodology was preliminary validated on a real indus-
trial scenario. To the best of the authors’ knowledge, this is
the first time CRFs have been employed for this task. Our
methodology offers several advantages. First, it is model-
based, allowing for the incorporation of domain expertise.
This leads to a classification that is explainable, directly con-
nected to known root causes, and grounded in the known
design and operations of the system. Second, its inherent
flexibility allows for time and spatial multi-resolution anal-
ysis, and reasoning across various representations. Third, it
performs probabilistic diagnostics by computing the poste-
rior probability of different root causes. This is important for
those complex cases in which a diagnosis is not certain, e.g. a
defect is due to concomitant root causes. Lastly, the approach
demonstrates strong data robustness, as it is not dependent on
high-quality data for model specification, and adapts effec-

tively to diverse data shapes. Missing or uncertain data can
be handled as well by treating them as unobserved (hidden)
variables, with some prior distribution reflecting the uncertain
beliefs of the observation’s value.

Despite these strengths, the methodology in its current form
has certain limitations. It is primarily limited to discrete
classification on discrete data. Future extensions could ex-
plore alternative models such as hybrid CRFs to accom-
modate continuous data types. Image segmentation mod-
els with normally distributed observations and discrete labels
have already been studied in the literature (Kato & Zerubia,
2012). Similar techniques could be applied to the case of non-
Gaussian observations provided that the likelihoods of each
label can be efficiently computed.

Furthermore, the manual specification of factors within the
CRF model necessitates a good understanding of probabilis-
tic graphical models alongside domain expertise. Future re-
search could investigate the automatic learning of the factors.
Additionally, while our models are Bayesian on variables,
their parameters are currently fixed, even when learned. Fu-
ture research should then focus on extending these models to
incorporate Bayesian parameter estimation approaches. This
will allow for a more complete probabilistic programming
treatment of the problem.
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