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ABSTRACT

Industrial anomaly detection aims to identify significant data
deviations. However, it is hampered by the complex dynam-
ics of time series, distributed data silos, and data heterogene-
ity. To overcome these challenges, we introduce a novel fed-
erated learning framework (FL) with two core modules: Mul-
tiple Definition Operators (MDO) to capture intricate tempo-
ral dynamics, and Temporal Trend Convolution (TTC) to ex-
tract interpretable trend patterns. FL enables multiple clients
to collaboratively train a robust global model without cen-
tralizing raw data, thereby boosting generalization and pre-
serving privacy. Critically, a tailored data-sharing strategy is
implemented within the framework to mitigate the challenge
of non-independent and identically distributed data. Exper-
iments conducted on the Skoltech Anomaly Benchmark and
other real-world datasets validate the efficacy of the MDO
and TTC modules as well as confirm that the proposed frame-
work significantly improves anomaly detection performance,
demonstrating its practical potential for industrial applica-
tions.

1. INTRODUCTION

The proliferation of Internet of Things (IoT) and edge de-
vices in industry has revolutionized data transmission. How-
ever, anomalies within these systems can lead to catastrophic
outcomes, making their accurate and timely identification
paramount. Owing to their powerful ability to learn com-
plex features from temporal data, deep neural networks have
become a cornerstone of time series anomaly detection. For
instance, Zhang et al. (2023) addressed data challenges with
self-supervised adaptive memory networks, while Jeong et al.
(2023) employed data degradation schemes. In a similar vein,
Deng & Hooi (2021) enhanced accuracy by combining graph
neural networks with attention mechanisms.

Despite these advancements, the decentralized and privacy-
sensitive nature of industrial data renders centralized model
training impractical. Federated learning (FL) (McMahan et
al. (2017)) offers a privacy-preserving alternative, enabling
collaborative training across clients without exposing raw

data. Consequently, FL. has been explored for industrial
anomaly detection using various architectures, including hy-
brid CNN-LSTMs (Liu et al. (2020)), stacked LSTMs (Sater
& Hamza (2021)), and parameter-efficient models (Xu et al.
(2024)). However, a major challenge in FL caused by non-
independent and identically distributed (non-IID) data across
industrial clients is client drift, which degrades global model
performance. To address this challenge, this work makes a
pragmatic trade-off by implementing a strategic data-sharing
mechanism, which mitigates client drift and enhance model
generalization.

However, designing a powerful local model for industrial
time series is non-trivial. Many anomaly detection ap-
proaches frame the task as time series forecasting, where
significant deviations from predictions indicate anomalies.
While several advanced forecasting models like ITransformer
(Liu et al. (2024)), TimesNet (Wu et al. (2023)) and TSLANet
(Eldele et al. (2024)) have shown promise, they still have
critical limitations. Specifically, approaches based on peri-
odicity decomposition, such as TimesNet, can introduce re-
dundancy and fail to capture comprehensive trend dynamics.
More broadly, despite various strategies like inverted atten-
tion or interactive convolution and frequency denoising anal-
ysis, a fundamental gap remains: the inability to adaptively
model nonlinear patterns while extracting interpretable tem-
poral trends.

Based on the above motivations, this article proposes a new
model named multiple definition operators with temporal
trend convolution (MDOC), which is designed for nonlin-
ear feature extraction and the acquisition of trend informa-
tion. Moreover, we collaboratively develop this model to es-
tablish a federated framework named Fed-MDOC to address
both data privacy and model generalization concerns. A data-
sharing strategy is further being utilized to address the issue
of client shift arising from the non-IID characteristics of dis-
tributed industrial data.

The structure of this paper unfolds as follows: following this
introduction, the subsequent methodology is detailed in sec-
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Figure 1. Overall anomaly detection process of our proposed Fed-MDOC.

tion 2. Section 3 presents the experiments and results, along
with analysis. Finally, a conclusion is drawn in section 4.

2. METHODOLOGY

In this section, a federated anomaly detection method is de-
signed as shown in Fig. 1, which includes offline model-
ing and online detection parts. The first part consists of lo-
cal anomaly detection model development and FL with data-
sharing strategy to aggregate a generalized global anomaly
detection model. And the second part deploys the well trained
global model for anomaly detection, which is achieved by
comparing the errors between predicted and true values
against a threshold learned from normal data.

2.1. Development of Local Anomaly Detection Model

The MDOC is proposed as the local anomaly detection model
which leverages two novel modules, i.e., the MDO and the
TTC.

2.1.1. Non-linear feature extraction with MDO

For each client k, the raw data matrix X, 4., € RV+*P from
D sensors is transformed into a three-dimensional training
tensor X¢pain € RVF=TIXTXD ysing a sliding window of
size T. To allow each variable to focus solely on its fea-
ture extraction, the raw batch sequences Xpqser, € REXPXT
where B denotes the batch size, are encoded to a embedding
input matrix Xe,mpeq € REXP*E independently through ap-
plying a linear layer, in which E is the embedding dimension
of the encoder. Next, a linear coefficient W € RIXDPxE jg
randomly initialized and the linear component output f; €
RBXDX1 is below:

f, = Z Xembed - Repeat(wa (B, 1, 1))7

dim=—1

(D

Eq. 1 reflects the interaction between the adaptive linear coef-
ficient and the bgtch embedded data. Moreover, the adaptive
nonlinear term W € R1*P>K jg designed to further derive
nonlinear attributes as follows:

f = Repeat(f;, (1,1, K)),
W = Repeat(W, (B,1,1)),

— W ak
fnl |:fbdk:
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where K means the length of predicted sequences, and f,,; is
the output which contains abundant nonlinear information of
each definition operator.

Finally, the batch normalized outputs are then summed and
combined with a residual connection to prevent gradient van-
ishing.

2.1.2. Local Anomaly Detection Model with TTC

To address this limitation in trend discernment, the innovative
TTC method is developed to augment the model’s sensitivity
of underlying trend dynamics.

As shown in Fig. 2, the TTC module first transforms the 1D
temporal data into a 2D representation using a time-lag oper-
ation. A subsequent padding step aligns the temporal dimen-
sion of this 2D structure with the original sequence, making
it compatible with convolutional operations. These processes
ensure that each convolution kernel’s receptive field encom-
passes three distinct temporal trend patterns: past-aware pat-
tern, past and future-aware pattern, future-aware pattern. By
iteratively applying above procedures across the entire origi-
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Figure 2. The proposed temporal trend convolution (TTC).
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Figure 3. The data-sharing strategy.

nal series, a trend sequence that effectively encapsulates valu-
able underlying trend dynamics is costructed. Finally, the
predicted values Y are produced by a linear layer which
decodes the generated trend-aware series to the prediction
space. And a local anomaly detection model O is derived
through the gradient-based learning method:

6« 6 -nVL(Y,Y), 3)

where 7 is the learning rate for weight learning, and £ denotes
the loss function evaluated by the mean squared error.

2.2. Federated Anomaly Detection Model with Data-
sharing Strategy

The non-IID nature of data distributions across different
clients leads to a biased global model during aggregation at
the central server. Therefore, a data-sharing strategy within
the federated framework is employed to mitigate these prob-
lems by reducing the impact of data distribution discrepancy
among clients.

Initially, we employ a random client selection method, where
a subset of clients is randomly chosen from the entire pool
for each training round. Furthermore, as illustrated in Fig.
3, the core principle of our proposed strategy is to aggregate
a small proportion, denoted by 3, of each client’s training
data into a centralized dataset on the server, referred to as the

concentrated data and represented by set G. At the beginning
of each round, a proportion « of this concentrated data (set
G) is sampled and combined with each participating client’s
local training data. This mixed dataset then serves as the new
training data for each client. And then, for the aggregation of
parameters from all trained clients into a global model, which
subsequently initializes the local models for the next round,
we utilize an element-wise averaging approach:

1 .
Wt+1 — Z NW;, “4)
ceCy

where C; represents the set of trained clients in the ground ¢,
N is the length of C,, and Wy is the parameters of client ¢ in
the ground .

Afterwards, the parameters of local models are averaged to
produce the next communication round global model W ;.
The training finally yields the final global model W, after ¢
communication rounds.

2.3. Online Anomaly Detection

For the task of anomaly detection, squared prediction error
(SPE) needs to be introduced to measure the control limits.
In terms of normal samples:

D

SPEnorm = Z(Qd - yd>27 (5)
d=1

D denotes variable dimension of each normal sample.

And the control limits J, can be derived based on the
SP Enorm:

Sp = X (6)
) 2m?2

g=g— h=""F ()
mi Vk

my = Mean[SPE,orm], vk = Var[SPEnorm], (8)

where X,QW represents the critical value of the chi-square dis-
tribution, with the confidence level of p and the degree of
freedom of h. Mean]-] and Var[] are the operations for tak-
ing the mean and taking the variance, respectively.

Following the training of the global anomaly detection model
described in Section 2.2, it is deployed to all local clients to
facilitate online anomaly detection, upon arrival of the test
samples X;esr = (X1,...,Xy), where X; € RP*T. They
are fed into the deployed offline model ch to yield predic-

tions Yyess = ch (Xtest ). The errors between the predictions

Y;.s: and the true values are then compared with a threshold
learned from normal data, and errors exceeding this threshold
indicate anomalies.



Table 1. MDO and TTC test on Anomaly_free

Models \ LSTM MDO+LSTM MDO TTC MDO+TTC

Metrics RMSE(%) R? RMSE(%) R? RMSE(%) R? RMSE(%) R? RMSE(%) R?
AccelerometerIRMS 8.91+0.09  0.7832£0.0037  8.9840.20 0.7797+0.0686 | 8.00+0.18  0.8252£0.0067 7.57+0.46  0.8429£0.0203  6.96+0.66  0.866620.0480
Accelerometer2RMS 849+0.15  0.8179£0.0057  8.3140.17  0.8253+0.0046 | 8.46+0.19 0.8190£0.0060 7.65+0.38  0.8516+0.0089  7.34+0.78  0.862140.0252
Current 21.86+0.12 -0.1750+0.0085 19.80+0.12 0.0362£0.0105 | 20.014£0.07 0.0159£0.0079 16.72£150 0.3071£0.0971 11.63£1.37  0.6627+0.0657
Pressure 11.44+0.04 -0.0647£0.0055 10.9940.05 0.0177£0.0148 | 11.05£0.04 0.0063£0.0052  8.58+0.76  0.3967+0.0631  7.37+£0.66  0.5541+0.0795
Temperature 6.18£0.03  0.535940.0050  5.85+0.06  0.5833+0.0077 | 5.89+0.03 0.5782+0.0062 5.09+0.17 0.6839+0.0211  4.83£0.26  0.7150%0.0088
Thermcouple 0.56£0.02  0.9653£0.0020  0.59£0.03  0.9608£0.0041 | 0.28£0.01  0.9909£0.0005  0.45£0.04  0.9769£0.0046  0.57£0.08  0.96270.0088
Voltage 26.02+£0.32  -0.5096£0.0456 20.88£0.11 0.0276£0.0117 | 20.92£0.06 0.0243£0.0080 18.29£1.77 0.2465+0.1034 12.05£1.82 0.6686+0.0656
Volume Flow RateRMS | 4.68£0.05  0.4870£0.0110  4.09£0.02  0.6094£0.0036 | 4.24+0.01  0.5793£0.0053  3.67£0.09  0.6839£0.0176  3.66£0.30  0.6844+0.0324
Avg 11.02£0.10  0.3500£0.0108  9.940.09  0.4800£0.0157 | 9.85+0.07  0.4799+0.0057  8.50+0.65  0.6236£0.0420  6.80£0.74 _ 0.7470+0.0417

3. EXPERIMENTS AND RESULTS
3.1. Data Preparation

To evaluate the prediction ability of the MDOC model, we
used the time series real-world datasets, e.g., ETT (Zhou et
al. (2021)), ECL!, Exchange, and Traffic. Moreover, we con-
ducted anomaly detection experiments on Skoltech Anomaly
Benchmark (SKAB)? dataset.

e ETT: This dataset contains transformer temperature
readings from electricity systems, divided into hourly-
sampled categories (ETThl, ETTh2) and minute-level
sampled categories (ETTm1, ETTm?2).

 ECL: This dataset contains electricity consumption
records for 321 customers, recorded hourly from 2012 to
2014.

* Exchange: This dataset provides daily exchange rate
data for eight countries spanning 1990 to 2016.

* Traffic: Hourly traffic flow data from 862 sensors on San
Francisco freeways are included in this dataset.

* SKAB: This project offers a baseline platform for eval-
uating anomaly detection, containing one anomaly-free
dataset and 34 datasets existing abnormal conditions.
And each dataset contains eight variables.

3.2. Ablation Study

For the statistical robustness, all reported metrics are the av-
erage of ten independent experimental runs. Table 1 presents
the results for the eight variables on the SKAB Anomaly_free
dataset, reported as the mean + standard deviation calculated
from the ten trials. The results demonstrate a consistent im-
provement in the predictive performance of the LSTM model
across most dimensions when MDO is applied. For the TTC
model, significant gains were observed in the prediction of
Current, Pressure, Temperature, and Voltage, while
minimal differences were noted in the performance of other
dimensions. Moreover, the MDO+TTC model exhibits the

'The specific description of ECL dataset can refer to
https://archive.ics.uci.edu/dataset/321/
electricityloaddiagrams20112014

2SKARB is a specially developed by Skoltech used for evaluation of anomaly
detection core open source project. (https://github.com/waico/
SKAB)

Table 2. comparing MDOC with Others. And Avg means the
average results from Outputs lengths 7' € {1, 24, 48,96}

Models MDOC TSLANet ITransformer TimesNet
Metric |RMSE R? |RMSE R?> |RMSE R? |RMSE R?

1 10.0331 0.9687]0.0537 0.9178]0.0540 0.9167 | 0.0549 0.9138
24 10.0926 0.7549 |0.0884 0.7763|0.0972 0.7300 | 0.1023 0.7006
48 10.0994 0.7174|0.0955 0.7387|0.1030 0.6963 | 0.1056 0.6805
96 |0.1070 0.6716|0.1031 0.6950 | 0.1111 0.6460 | 0.1199 0.5874

| Avg | 0.0830 0.7782]0.0852 0.7820]0.0913 0.7473|0.0957 0.7206

1 10.0183 0.9936 | 0.0272 0.9858 | 0.0265 0.9866 | 0.0269 0.9862
24 10.0456 0.9601 |0.0470 0.9577|0.0500 0.9521|0.0512 0.9498
48 |0.0537 0.9447|0.0533 0.9456 | 0.0565 0.9388 | 0.0587 0.9339
96 |0.0630 0.9238 | 0.0620 0.9264 | 0.0653 0.9184 | 0.0705 0.9047

| Avg | 0.0452 0.9556|0.0474 0.9539]0.0496 0.9490|0.0518 0.9437

1 10.0194 0.9888|0.0357 0.9620|0.0357 0.9621|0.0345 0.9646
24 10.0816 0.8017 |0.1063 0.6640 | 0.1008 0.6974 | 0.0959 0.7263
48 10.1038 0.6794 |0.1345 0.4614|0.1267 0.5220|0.1174 0.5900
96 |0.1024 0.6876 |0.1217 0.5589|0.1164 0.5967 | 0.1203 0.5690

| Avg | 0.0768 0.7893]0.0995 0.6616]0.0949 0.6946|0.0920 0.7125

1 10.0114 0.9975|0.0174 0.9941]0.0174 0.9941|0.0169 0.9944
24 10.0317 0.9804 |0.0385 0.9711 |0.0400 0.9687 | 0.0406 0.9678
48 10.0418 0.9659 | 0.0485 0.9541|0.0490 0.9531|0.0538 0.9436
96 | 0.0468 0.9572|0.0502 0.9507 | 0.0518 0.9476 | 0.0554 0.9401

| Avg | 0.0329 0.9753]0.0387 0.9675]0.0395 0.9659|0.0417 0.9615

1 |0.0419 0.9607 |0.0438 0.95150.0349 0.9719 |0.0423 0.9587
24 10.0730 0.8809|0.0712 0.8866|0.0681 0.8964 |0.0715 0.8857
48 10.0797 0.8580|0.0789 0.8608 | 0.0771 0.8671 | 0.0793 0.8594
96 ]0.0842 0.8418|0.0840 0.84250.0826 0.8476|0.0861 0.8343

| Avg | 0.0697 0.8854]0.0695 0.8854|0.0657 0.8958|0.0698 0.8845

1 10.0122 0.9969|0.0116 0.99720.0114 0.9973|0.0124 0.9968
24 10.0257 0.9861|0.0283 0.9830|0.0349 0.9742|0.0349 0.9743
48 10.0382 0.9691|0.0381 0.9693]0.0472 0.9529 | 0.0453 0.9567
96 ]0.0572 0.9285]0.0533 0.9379|0.0637 0.9115|0.0673 0.9013

| Avg |0.0333 0.9702]0.0328 0.9719]0.0393 0.9590 | 0.0400 0.9573

1 10.0445 0.9226|0.0501 0.8682|0.0435 0.8824 |0.0495 0.8479
24 10.0653 0.8328|0.0693 0.8117|0.0628 0.8456 | 0.0672 0.8230
48 10.0694 0.8113]0.0756 0.7764 |0.0682 0.8182|0.0659 0.8301
96 ]0.0772 0.7657|0.0808 0.7434]0.0751 0.7786 | 0.0769 0.7680

| Avg | 0.0641 0.8331]0.0690 0.7999 | 0.0624 0.8312]0.0649 0.8173
Ist count | 17 17 | 8 9 | 9 8 | 1 1

ETTh1

ETTh2

ETTml1

ETTm2

ECL

FExchange

Traf fic

lowest mean RMSE (6.80% + 0.74%) and the highest R?
(0.7470 £ 0.0417). Therefore, all these results clearly demon-
strate the effectiveness of MDO.

Though had digged the nonlinear characteristics through
MDO, the trend information is not extracted sufficiently.
Consequently, Table 1 also records the enhancement of TTC
to MDO to verify its influence. With the exception of the
Thermocouple dimension, the predictive performance for
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Figure 4. The SPE values and thresholds of different models.

all other dimensions of MDO+TTC (MDOC) exhibited sig-
nificant improvements, and the averaged RM SE across all
dimensions was reduced by 30.96% compared to the MDO.

3.3. Time Series Forecasting Using the Proposed MDOC

To further validate the superior capabilities of the MDOC
model, we compared it against several advanced models
(i.e., TSLANet, ITransformer and TimesNet) in the time
series forecasting domain with the output lengths T° €
{1,24,48,96} while the size of lookback window is 24.
Moreover, the complete forecasting results are presented in
Table 2, with the best results highlighted in red. The term
Awg refers to the arithmetic mean across all considered output
lengths. As evidenced by the results in Table 2, the MDOC
model exhibited a notable level of long-term prediction per-
formance across the evaluated models, achieving 17 best re-
sults out of 35 instances for both RMSE and R2. All the
aforementioned evidence further supports the efficacy of our
proposed approach, also validating the MDOC model as the
cornerstone model for the subsequent federated anomaly de-
tection task.

3.4. Federated Anomaly Detection

To maintain the distinction between normal and abnormal
data during forward propagation, the anomaly detection ex-
periments did not employ a series-stationarization process.
For the Fed-MDOC model, datasets were divided into 13
training, 5 validation, and 16 testing working conditions, re-
spectively. During the testing phase, a SPE value exceed-
ing the threshold &g 95, which was predetermined using the
whole normal data from the anomaly_free dataset in the
confidence level of 0.95, was classified as anomaly.

Moreover, the SPE values of Otherll are presented in con-
trasted Fig. 4, data points above the horizontal dotted red
decision line are classified as outliers, while those below are
considered normal points. Values on the right side of the
green line are labeled as anomalies. The MDOC-based mod-
els demonstrate superior anomaly detection, effectively sepa-
rating normal and anomalous data both visually and quantita-
tively (Table 3). And the federated approach (FedMDOC)
further enhances this by learning from diverse operational

conditions. Notably, the federated model makes a strategic
trade-off, accepting a minor loss in accuracy for a signifi-
cantly higher Fl-score, indicating a better balance between
false positives and negatives.

Furthermore, the FedMDOC with data-sharing strategy
(FedDS) is primarily characterized by the two aforemen-
tioned parameters, o and (3. The effectiveness of this strategy
is illustrated by comparing its performance with that of Fe-
dAvg on the normal data of all test working conditions. As
presented in Table 4, underlined values represent results
that outperform FedAvg, and the best performing value is
highlighted in red among these. It demonstrates that greater
values of « and 3 generally result in improved performance,
as indicated by lower MSE values. This can be attributed
to the fact that larger o and [ values introduce a greater
proportion of diverse data from other clients, facilitating the
learning of global data characteristics by the local model.
Moreover, the anomaly detection performance of FedDS is
also recorded in Table 4, the FedDS can also maintain the
detection ability while improving forecasting precision.

4. CONCLUSION

We proposed a MDOC model to extract the nonlinearity and
abundant trend information of time series in this paper. And
we have testified the promotion of MDO and TTC modules
to models. Moreover, experiments show the superior ability
of anomaly detection of Fed-MDOC because it owns a vision
of vary fault conditions what can have a better generaliza-
tion. Finally, the impact of introducing a data-sharing strat-
egy along with its key parameters « and g on the performance
of the federated model is discussed. In real-world anomaly
detection scenarios, the operational states of equipments are
influenced by numerous factors, leading to significant hetero-
geneity in data collected from the same client. Consequently,
future research will focus on enhancing the domain general-
ization capabilities of federated learning in such contexts.
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